Excerpt by Hermann Härtig
The Rationale for
Time-Triggered (TT) Ethernet

H Kopetz
TU Wien
December 2008
Whenever we use the term *time* we mean *physical time* as defined by the international standard of time TAI.

If the occurrence of events is restricted to some active intervals on the timeline with duration π with an interval of silence of duration Δ between any two active intervals, then we call the time base π/Δ-sparse, or *sparse* for short, and events that occur during the active intervals *sparse events*.
Cyclic Representation of the Sparse Time

Real-Time

Occurrence of Sparse Events

Silence
A *component* is a hardware/software unit that accepts input messages, provides a useful service, maintains internal state, and produces after some *elapsed time* output messages containing the results. A component is thus an identifiable functional unit of data transformation and comprehension and forms an abstract high-level concept in the mental model of system behavior.
Sparse Time and State

Silence, when State is defined

Real-Time

Occurrence of Sparse Events
Fault-Handling at the Architectural Level: TMR

Triple Modular Redundancy (TMR) is the *generally accepted technique* for the mitigation of component failures at the system level:

\[
\begin{align*}
&\text{A} \quad \text{B} \\
&\text{A/1} \quad \text{A/2} \quad \text{A/3} \\
&\text{B/1} \quad \text{B/2} \quad \text{B/3}
\end{align*}
\]
The purpose of TT Ethernet is to provide a uniform communication system for all types of distributed non-real-time and real-time applications, from very simple uncritical data acquisition tasks, to multimedia systems and up to safety-critical control applications, such as fly-by-wire or drive-by wire.

It should be possible to upgrade an application from standard TT-Ethernet to a safety-critical configuration with minimal changes to the application software.
Legacy Integration

TT-Ethernet is required to be fully compatible with existing Ethernet systems in hardware and software:

♦ Message format in full conformance with Ethernet standard

♦ Standard Ethernet traffic must be supported in all configurations

♦ Existing Ethernet controller hardware must support TT Ethernet traffic.

♦ IEEE 1588 standard for global time representation is supported
Distinguish between two Categories of Messages

ET-Messages:
♦ Standard Ethernet Messages
♦ Open World Assumption
♦ No Guarantee of Timeliness and No Determinism

TT-Messages:
♦ Scheduled Time-Triggered Messages
♦ Closed World Assumption
♦ Guaranteed *a priori* known latency
♦ Determinism
TT and ET Ethernet Message Formats are Alike

<table>
<thead>
<tr>
<th>Preamble (7 bytes)</th>
<th>Standard Ethernet Message Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Frame Delimiter (1 byte)</td>
<td></td>
</tr>
<tr>
<td>Destination MAC Address (6 bytes)</td>
<td></td>
</tr>
<tr>
<td>Source MAC Address (6 bytes)</td>
<td></td>
</tr>
<tr>
<td>Tag Type Field (88d7) if TT</td>
<td></td>
</tr>
<tr>
<td>Client Data (0 to n bytes)</td>
<td></td>
</tr>
<tr>
<td>PAD (0 to 64 bytes)</td>
<td></td>
</tr>
<tr>
<td>Frame Check Sequence (4 bytes)</td>
<td></td>
</tr>
</tbody>
</table>
Conflict Resolution in TT Ethernet

- **TT versus ET:** TT message wins, ET message is interrupted (preempted). The switch will retransmit the preempted ET message autonomously.
- **TT versus TT:** Failure, since TT messages assumed to be properly scheduled (closed world system).
- **ET versus ET:** One has to wait until the other is finished (standard Ethernet policy).

There is no guarantee of timeliness and determinism for ET messages!
Global Time

♦ TT Messages are used to build a global time base

♦ TT Ethernet time format is a sparse binary time format. Fractions of a second are represented as 24 negative powers of two (down to about 60 nanoseconds), and full seconds are presented in 40 positive powers of two (up to about 30 000 years) of the physical second.

♦ This binary time-format has been standardized by the OMG and IEEE 1588.

♦ TT Ethernet gives the user the option to make a tradeoff between dependability and cost of the global time.
TT Ethernet Periods

♦ The TT Ethernet recommends to restrict the period durations to the positive and negative powers of two of the second, i.e. a period can be either 1 second, 2 seconds, 4 seconds, and so forth, or 1/2 second, 1/4 second, 1/8 second and so forth.

♦ The duration of each period can then be characterized by the corresponding bit (period bit) in the binary time format.

♦ The phase of a period, i.e. the offset to the start instant of the selected duration in the global time format, is designated by the specification of a pattern of twelve bits (the phase bits) to the right of the period bit.

We then can represent a cycle with two Bytes (four period bits i.e. 16 periods, and twelve phase bits).
Specification of a period of $1/2^4$ (i.e. 1/16) second with a phase (i.e. the offset from the periodic 1/16 second instant) of $1/2^6 + 1/2^{11} = 16113 \, \mu$seconds.
Integrity-Level of Application Domains

<table>
<thead>
<tr>
<th>Application</th>
<th>System MTTF w.r.t. permanent failures (in years)</th>
<th>System MTTF w.r.t transient failures (in years)</th>
<th>Data-integrity requirement</th>
<th>Market volume</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Integrity</td>
<td>> 10</td>
<td>> 1</td>
<td>low</td>
<td>huge</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Moderate-Integrity</td>
<td>> 100</td>
<td>> 10</td>
<td>moderate</td>
<td>large</td>
<td>Present-day automotive</td>
</tr>
<tr>
<td>High-Integrity</td>
<td>> 1000</td>
<td>> 100</td>
<td>very high</td>
<td>moderate</td>
<td>Enterprise server</td>
</tr>
<tr>
<td>Safety-Critical</td>
<td>> 100 000</td>
<td>> 100 000</td>
<td>very high</td>
<td>small</td>
<td>Flight control</td>
</tr>
</tbody>
</table>
Conclusions

TT Ethernet

♦ provides a uniform communication infrastructure for all types of real-time and non real-time applications--from simple data acquisition systems, to multimedia systems up to safety-critical control applications.

♦ is based on sound theoretical concepts concerning time and determinism

♦ is fully compatible with the existing Ethernet standard.

♦ can be introduced in a modular fashion, integrating existing Ethernet hardware and software with modules that support the new services.