Real-Time Systems

Time and Order

(following Tanenbaum/Coulouris for Logical and Kopetz for Physical Time)

Hermann Härtig

Overview

- Events, computer generated and environmental
- (Real) Time
- The order of events, temporal and causal
- Logical Clocks, 2 versions
- Physical Clocks and their properties
- Global (real) time in distributed systems

Topics

- Can clocks (logical or physical) be used
 - to derive the order of events
 - to identify events
 - to generate events at certain points in time?
- Which precision can be achieved
 - to measure time?
 - to measure durations?

How and how often have clocks to be synchronized?

Time in Distributed (Real-Time) Systems

- Actions/events/... in distributed real-time systems
 - Concurrent
 - on different nodes
 - must have a consistent behavior / order.
- Consistent order
 - temporal order
 - causal order
- Global Time Base

Events in Computers

- Computer Generated Events:
 - execution of statement
 - sending/receiving a message
 - start and end of a compilation
 - creation/modification of a file
- Sequence of states is determined by
 - instructions, disk accesses
 - discrete steps

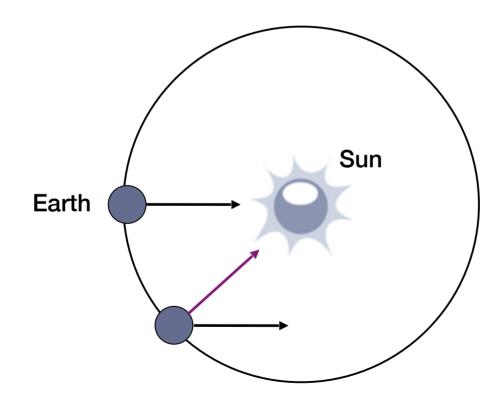
Events in the Real World

- Environmental Events:
 - newton mechanics
 - pipe rupture
 - human interaction
- Sequence of states is determined by
 - laws of physics
 - physical (or real) time: "second"
 - continuous

Astronomical Time

Solar Day: from noon to noon

Solar Second: Solar Day / (24 * 60 * 60)



Atomic time

TAI ... International Atomic Time

 1 second = "duration of 9192631770 (9 Gigahertz) periods of of the radiation of a specified transition of the caesium atom 133"

GPS clock is based on TAI

Time Standard(s)

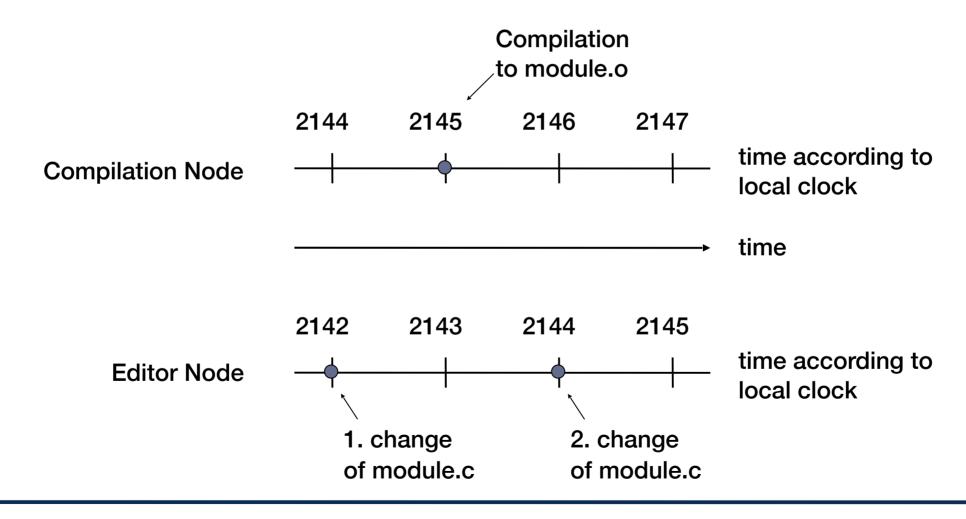
- UTC ... Coordinated Universal Time
 - TAI adjusted with leap seconds to compensate for slowing earth rotation
- Sources:
 - earth-bound radio
 - Geosynchronous satellites
 - GPS

Temporal vs. Causal Order of Events

- Temporal Order:
 - induced by (perfect) timestamp
- Causal Order:
 - induced by some causal dependency between events
- Example
 - e1: somebody enters a room
 - e2: the telephone rings
 - cases
 - e1: occurs after e2 causal dependency possible
 - e2: occurs after e1 causal dependency unlikely
- Temporal order is necessary but not sufficient to establish causal order.

Another Example

 Imperfect Timestamps can be misleading in establishing causal dependency (example by A.S. Tanenbaum)



Causal Order (for Computer Generated Events)

- Partial Order for Computer Generated Events
- a → b "a causes b" (happened before, causally dependent)
- If a, b events within a sequential process then a → b, if a is executed before b.
- 2) If a is "sending of a message" by a process and b the "reception of that message" by another process, then a → b.
- 3) \rightarrow is transitive.

Temporal Order

Modeling the continuum of time: infinite set of instants {T}

- {T} is ordered:
 if p, q any 2 instants, then either p,q simultaneous
 (i.e. the same instant), or (exclusive) p precedes q,
 or q precedes p
- {T} is dense:
 at least 1 instant q between p and r
 iff p and q are not simultaneous
- Instants are totally ordered

Temporal Order, Timestamps, Duration, Clocks

- Events occur at an instant of the timeline
 - => Timestamp.
- Events in a distributed system are partially ordered.
- Duration is a section of the timeline.
- Clocks measure time imperfectly, create imperfect Timestamps.

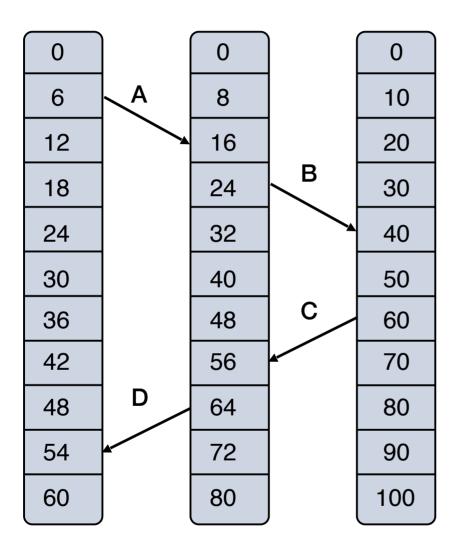
Clocks: Physical and Logical

- Physical Clocks
 - devices to measure time
 - necessarily imperfect (more later)
- Problems:
 - how to create knowledge about causal dependency of computer events without relying on physical clocks? => Logical Clocks
 - how to establish a
 X certainly occurred after Y relation (temporal order)
 for environmental events? => Global Time

Logical Clocks

- Definitions:
 - monotonically increasing SW counters (COULOURIS)
 - clocks on different computers that are somehow consistent (LAMPORT)
- Events: a,b: a → b: a causes b (causally dependent)
- Timestamps: C(a), C(b)
- Potential Requirements for logical clocks:
 - $a \rightarrow b => C(a) < C(b)$
 - $a \to b <=> C(a) < C(b)$

Logical Clock Example



Lamport's Logical Clocks

- each Process has local clock LC_i
- tick:
 - with each local event e:

$$LC_i := LC_i + 1; e$$

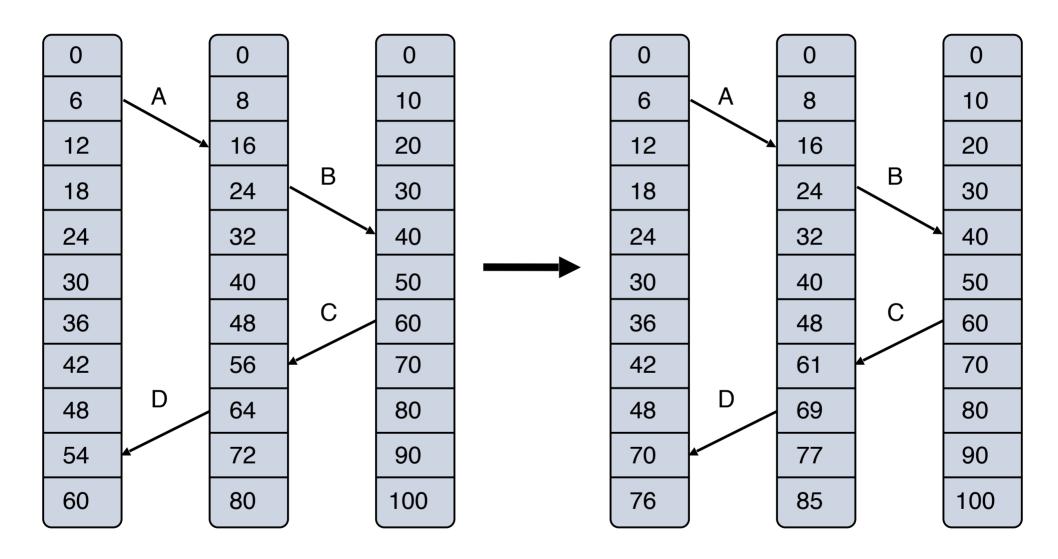
with each sending of a message by process P_i:

```
LC_i := LC_i + 1; send(m, LC_i)
```

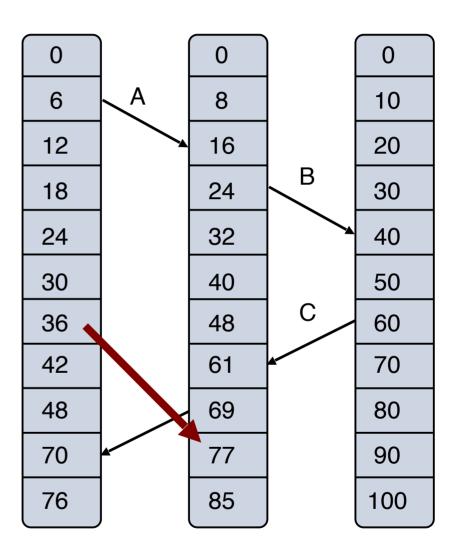
with each reception of a message (m, LC_m) by P_j:

$$LC_i := max(LC_m, LC_i); LC_i := LC_i + 1$$

Lamport's Logical Clocks



Partial Timestamp Order



Lamport Clocks

- Properties:
- a → b => C(a) < C(b),
 but not:
 C(a) < C(b) => a → b
- partial order

Vector Time (Mattern 1989)

- Each process P_i has its own vector clock C_i.
- C_i: n-dimensional vector (n: number of processes).
- Intuition
- C_i[j]: the timestamp of the last event in P_j
 by which P_i has potentially been effected

Vector Time Ticks

Initial:

$$C_i := (0, ..., 0)$$
 for all i

Local event in P_i:

$$C_i[i] := C_i[i] + 1;$$

Sending message m in P_i:

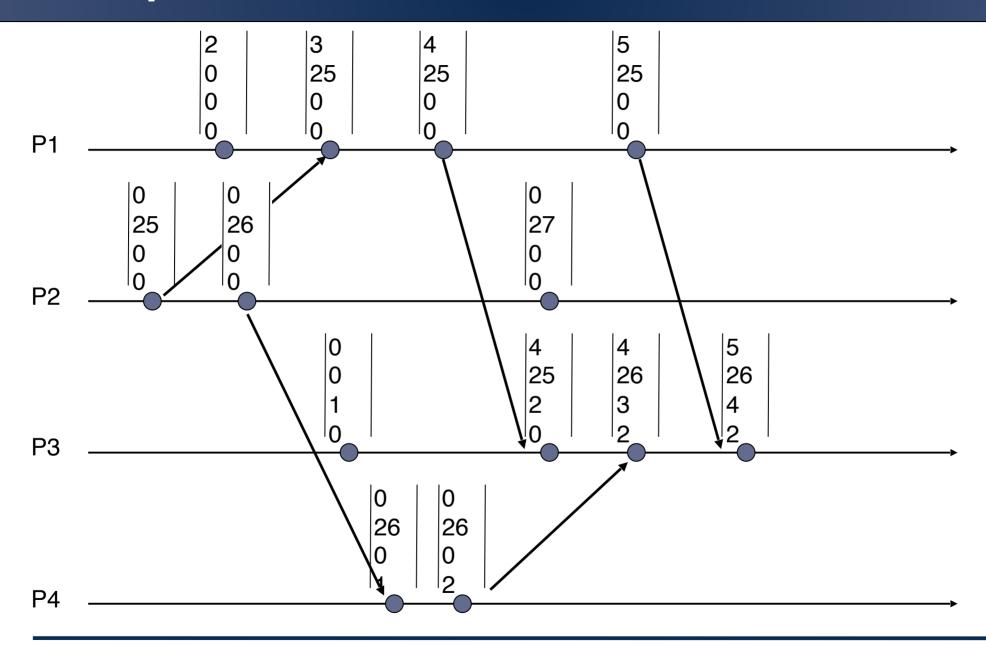
$$C_{i}[i] := C_{i}[i] + 1; send(m, C_{i})$$

Receiving a message (m, C_m) in P_j:

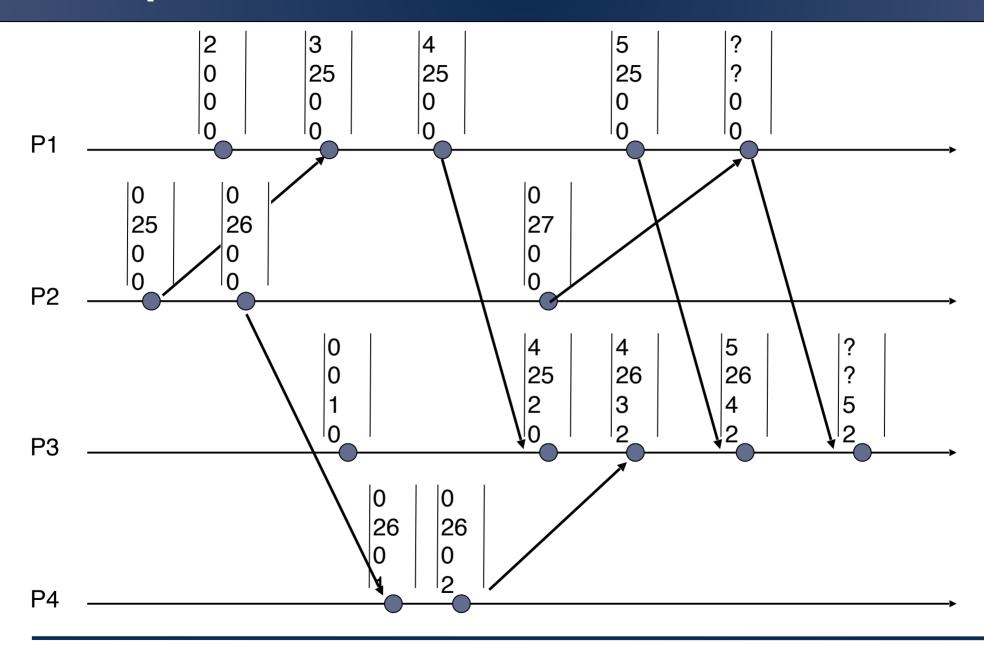
$$C_i[j] := C_i[j] + 1;$$

$$C_j[k] := max(C_m[k], C_j[k]), for all k$$

Example



Example



Properties of Vector Time

Definition

- $C_a \le C_b :\Leftrightarrow \forall k : C_a[k] \le C_b[k]$
- $C_a < C_b :\Leftrightarrow C_a \le C_b \land C_a \ne C_b$
- $C_a \parallel C_b :\Leftrightarrow C_a \not< C_b \land C_b \not< C_a$

- Property
 - $C_a < C_b \Leftrightarrow a \rightarrow b$

Physical Clocks and Their Properties

Physical Clock

- device for measuring time
- counter + oscillator → "microtick"
- time between microticks: granularity leads to digitalization error
- Notation:

```
g<sup>clock</sup>, microtick<sup>clock</sup>number of tick
```

 To discuss properties of physical clocks, we invent the perfect reference clock as purely theoretical construct

Reference Clock, Notations (Kopetz)

- Reference Clock z
 - perfect with regard to UTC
 - very small granularity (to disregard digitalisation error)
 - Reference Ticks: Ticks of the perfect reference clock
- z(event): (Absolute) Timestamp from reference clock establishes temporal order
- g^k granularity of clock k in microticks of ref. clock

Reference Clock, Notations (Daum)

- Reference Clock z
 - perfect with regard to REAL TIME
 - dense (no ticks, to avoid digitalisation error)
- z(event): (Absolute) Timestamp from reference clock establishes temporal order
- g^k granularity of clock k in terms of z-durations as specified (vs. real behavior)

Tick Tack Terms

Micro Ticks Ticks generated by the physical

oscillator of a clock

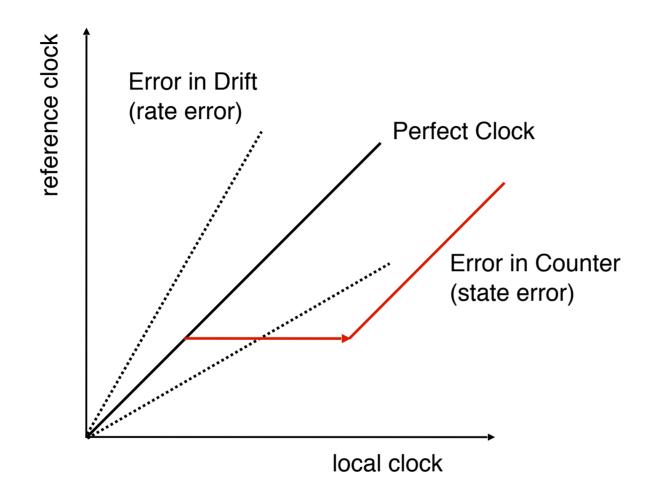
Macro Ticks Multiple of Micro Ticks chosen by

designer of clock

t^k(event) Timestamp in number of Ticks of clock k

Granularity distance between adjacent Ticks

Failure Modes: Drift and Counter Errors



Maximum Drift Rate

Drift-Rate

- Varying
- Influenced by environmental conditions (temperature,...)
- clocks specify maximum drift rate (10⁻² ... 10⁻⁷)

$$p_{i}^{k} = \frac{z \left(microtick_{i+1}^{k}\right) - z \left(microtick_{i}^{k}\right)}{g^{k}} - 1$$

Precision of an Ensemble of Clocks

Offset

between two clocks j,k of same granularity at microtick i:

offse
$$t_i^{jk} = |z(microtick_i^j) - z(microtick_i^k)|$$

in the period of interest:

$$offset^{jk} = m \underset{i}{a} x(offset_{i}^{jk})$$

Precision

of an ensemble of clocks {1,2, ...,n} in the period of interest:

$$\Pi = \max_{1 \le j, k \le n} (offset^{jk})$$

maximum offset for any two clocks

Accuracy

Accuracy

of a given clock in the period of interest:

$$accuracy^{k} = m \underset{i}{a} |z (microtick_{i}^{k}) - i \cdot g^{k}|$$

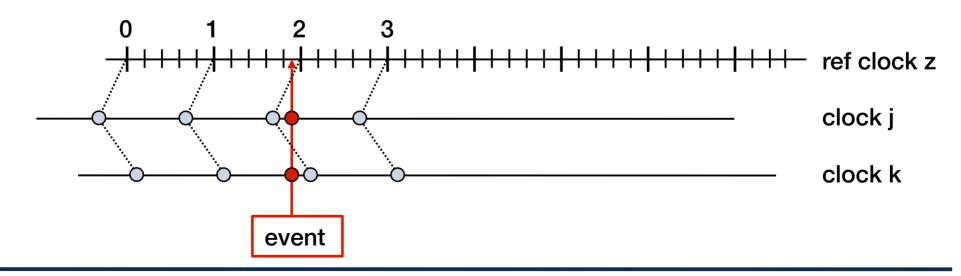
- maximum offset to reference clock
- If all clocks of an ensemble have accuracy A, the precision of the ensemble is ??

Resynchronisation

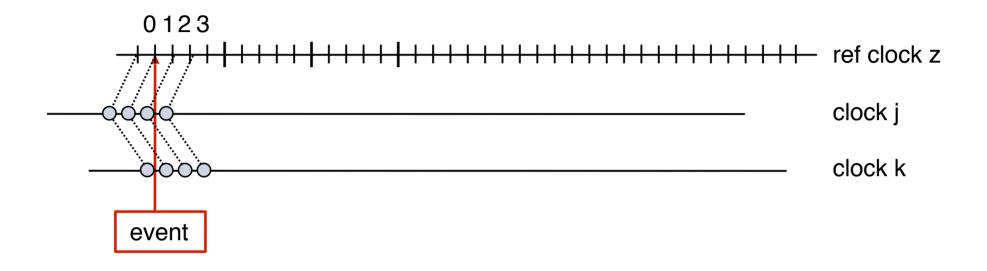
- External Resynchronization
- resynchronization with reference clock
- to maintain bounded accuracy
- Internal Resynchronization
- mutual resynchronization of an ensemble
- to maintain bounded precision

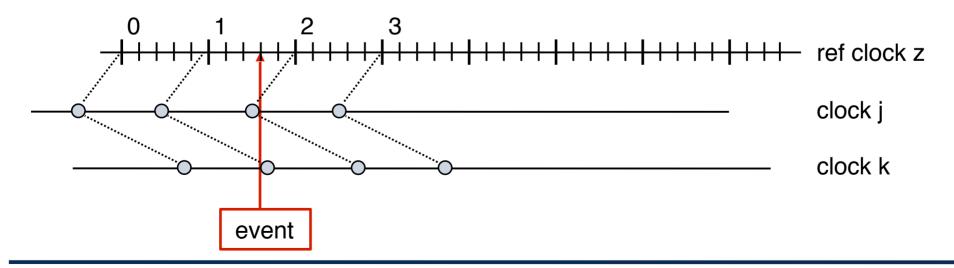
Global Time

- Given an ensemble of clocks (internally) synchronized with precision π
- For each clock select macrotick as local implementation of a global notion of time with granularity g^{global}
- We note ref clock time (real-time, UTC) in units of g^{global}



Examples for Bad Choice for Global Time

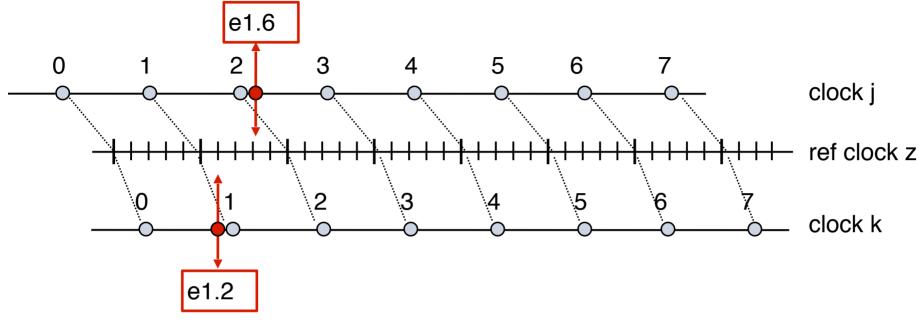




Reasonable: One Tick Difference

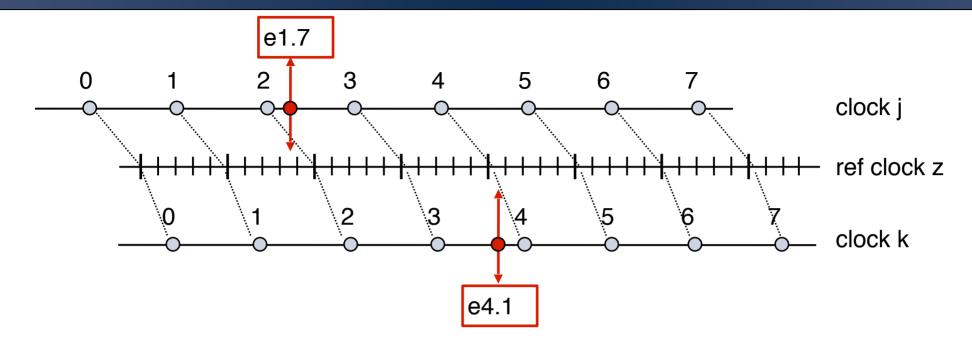
- Reasonableness Condition:
 - global time t is reasonable if $g^{global} > \pi$ holds for all local implementations
- t^j(event):
 - Denotes global time for the implementation at clock j
- Then: For any single event e, holds: $|t^{j}(e)-t^{k}(e)| \le 1$
- Global timestamps differ at most by one (macro-)tick.
 Best one can achieve!

Interpretation for Temporal Order



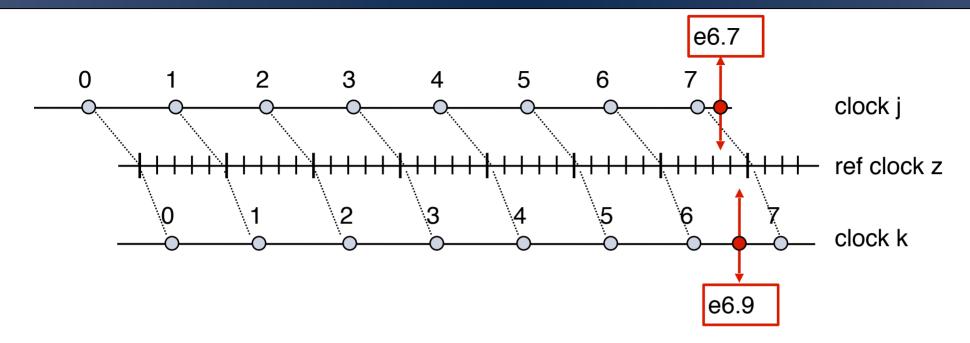
- z(e1.6) z(e1.2): 0.4 g^{global} ref clock
- t^j(e1.6) t^k(e1.2): 2 global time ticks
- Temporal order can be established because
 Tick^k₁ must be before Tick^j₂ (Reasonabless Condition)
- Hence: If the (global) timestamps differ by two ticks, the temporal order can be established.

Caution: Example



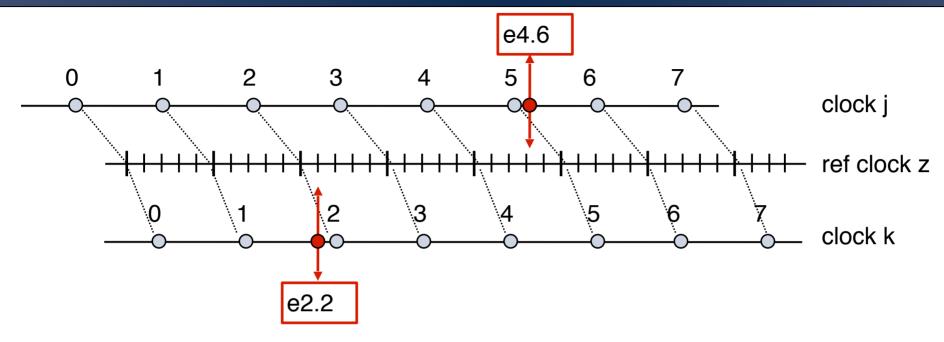
- z(e4.1) z(e1.7): 2.4 g^{global} ref clock
- t^k(e4.1) t^j(e1.7): 1 global tick
- A distance of 2*g^{global} between two events does not suffice to determine temporal order.

Another Example



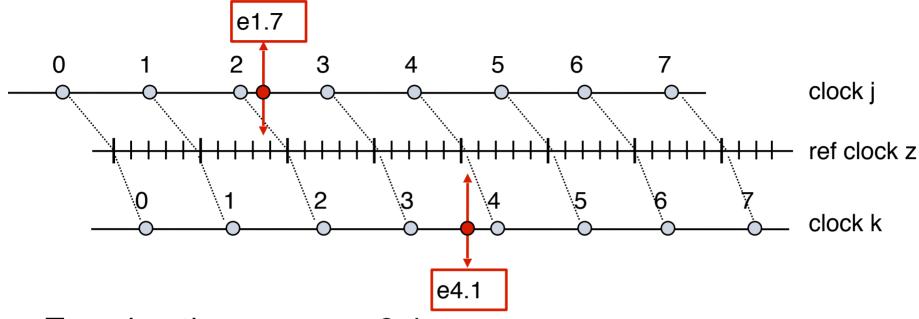
- z(e6.9) > z(e6.7)
- $t^{k}(e6.9) < t^{j}(e6.7)$

Interpretation for Durations



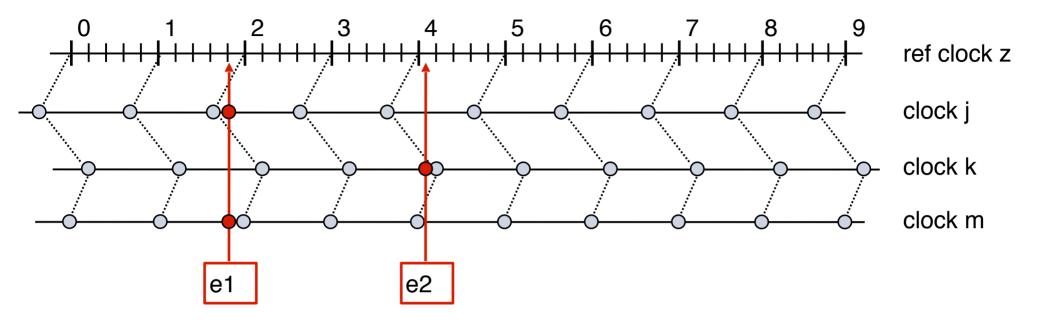
- True duration: 2.4
- Observed duration d: 5-1=4 (t^j(e4.6) t^k(e2.2))
- Can be driven to true duration: 2+ε for small ε
- $d^{obs} 2*g^{global} \le d^z$

Interpretation for Durations



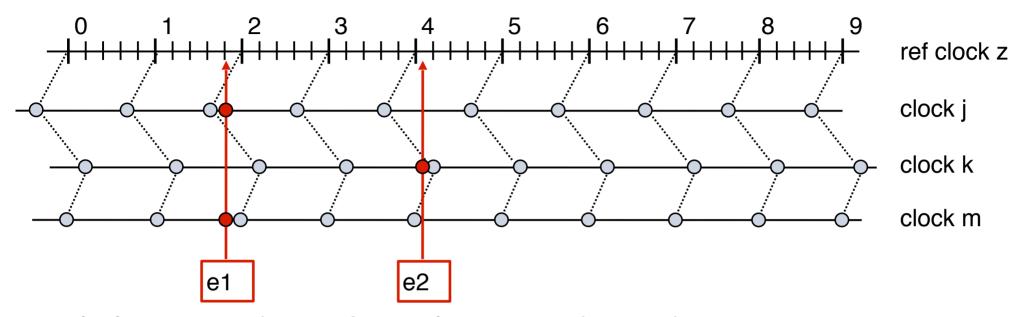
- True duration: 2.4
- Observed duration d: 3-2=1 (tk(e4.1) ti(e1.7))
- Example can be constructed for true duration:
 3 ε for small ε (and still observed duration is 1)
- $d^{obs} 2*g^{global} < d^z < d^{obs} + 2*g^{global}$

Cooperation and Clocks



- (only) nodes j and m can observe e1
- (only) node k can observe e2
- Node k tells nodes j and m about e2
- Nodes j and m draw their conclusions ...

Dense Time Requires Agreement



- j observes e1 at t=2, m observes e1 at t=1
- k observes e2 and reports to j and m: "e2 occurred at t=3"
- j calculates a time difference of 1, hence concludes: "events cannot be ordered"
- m calculates a time difference of 2, hence concludes: "events definitely ordered" => inconsistent view

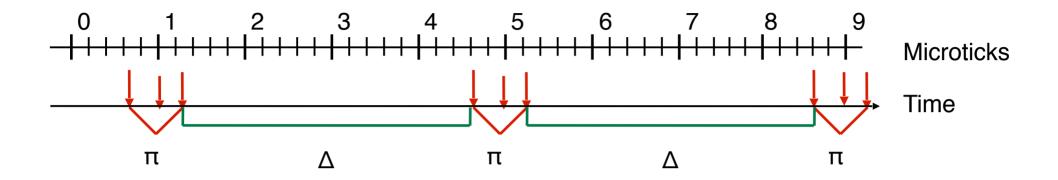
Agreement Protocols

- information interchange:
 each node acquires local views from all other nodes
- deterministic algorithm that lead to same result on all nodes
- expensive

Sparse Time

- Two clusters A,B with synch clocks of granularity g each, no clock synch between A and B
- cluster A generates events, cluster B observes
- Goal:
 - if at cluster A events are generated at same cluster wide tick never should temporal order be concluded
 - always establish temporal order otherwise

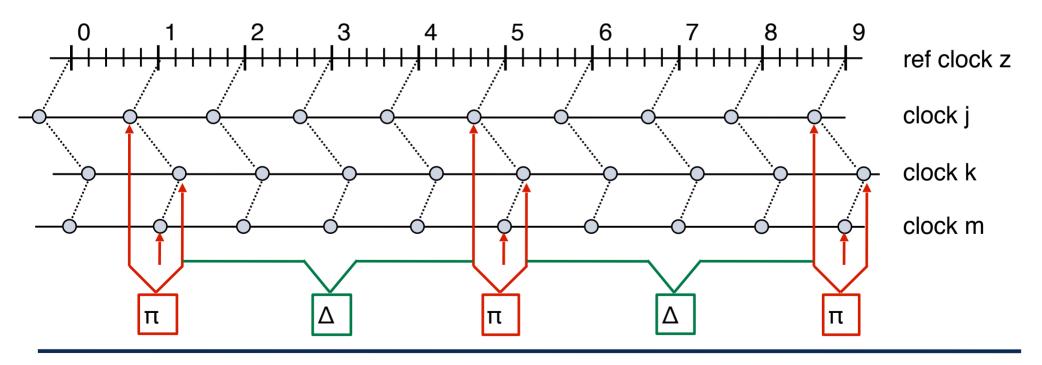
Dense Time vs. Sparse Time



- dense time: events are allowed at any time
- sparse time: events are only allowed within active time intervals π
- sparse time only possible for computer controlled events

Generated Events

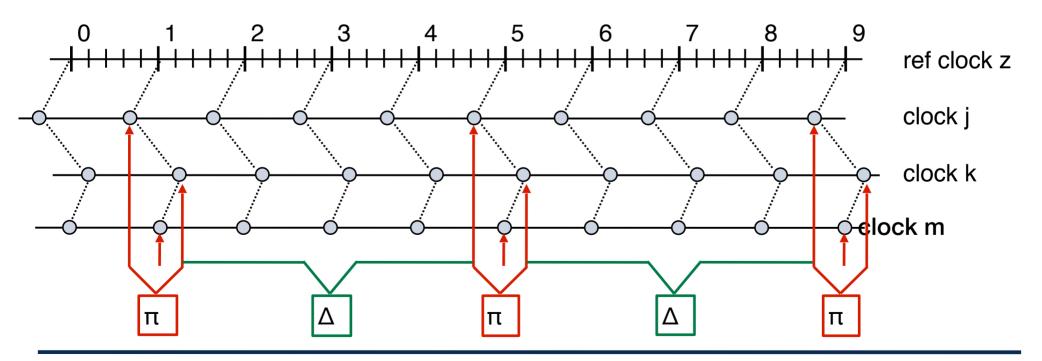
- Cluster of three nodes:
 - each generates event at the same global tick
 - t = 1, 5, 9
- observation:



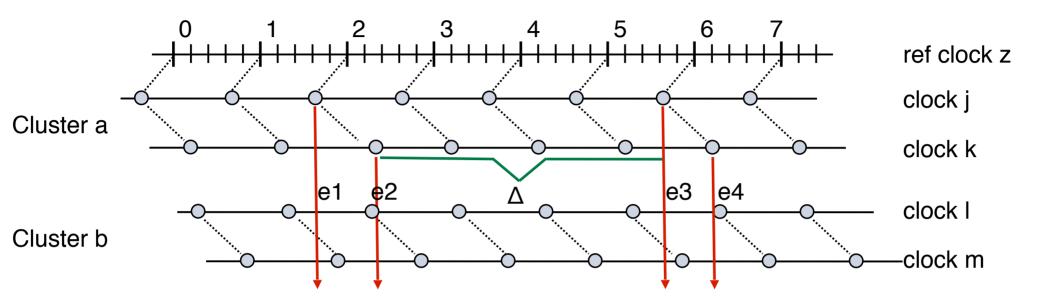
π/Δ -Precedence of Sets of Events

- Properties of sets of events:
 - How far apart (number of granules) must events be to enable reconstruction of order?
- A set of events is called π/Δ -precedent, if:

$$[|z(e_i)-z(e_j)| \leq \pi] \vee [|z(e_i)-z(e_j)| > \Delta]$$



Example for 1g/3g



- $t^{l}(e2) t^{m}(e1) = 2$:
 - BUT: should not derive order because events were intended by cluster A for the same time
- $t^{m}(e4) t^{l}(e2) > 2$ BUT: $t^{m}(e3) t^{l}(e2) = 2$:
 - BUT: temporal order is intended ($\Delta = 3g$)
- => 1g/3g precedence not sufficient => 1g/4g

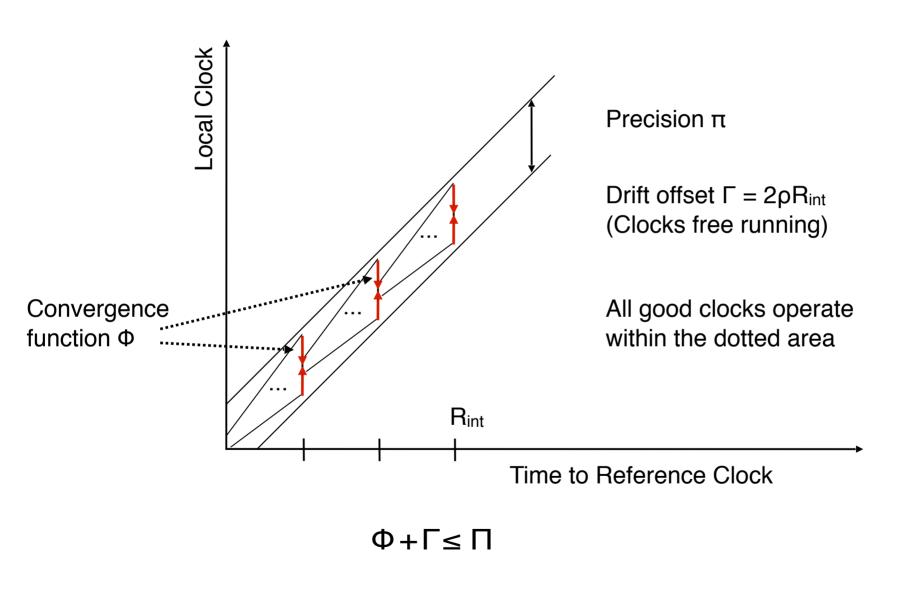
Temporal Order

Event Set	Observed timestamps of two nonsimultaneous events are always greater or equal to	Temporal order of the events can always be reestablished
0/1g precendent	$ t^j(e_1)-t^k(e_2) \ge 0$	no
0/2g precendent	$ t^{j}(e_1)-t^{k}(e_2) \ge 1$	no
0/3g precendent	$ t^{j}(e_1) - t^{k}(e_2) \ge 2$	yes
0/4g precendent	$ t^{j}(e_1) - t^{k}(e_2) \ge 3$	yes

Fundamental Results in Time Measurement

- A single event observed at different nodes may have timestamps differing by one; not sufficient to establish temporal order
- Duration: $d^{obs} 2*g^{global} < d^z < d^{obs} + 2*g^{global}$
- temporal order can be recovered from their timestamps if they differ by 2 global time ticks
- temporal order of events can always be recovered from timestamps if the event set is 0/3g precedent

Internal Clock Synchronisation



Synchronisation Condition

resynchronization interval: R_{int}

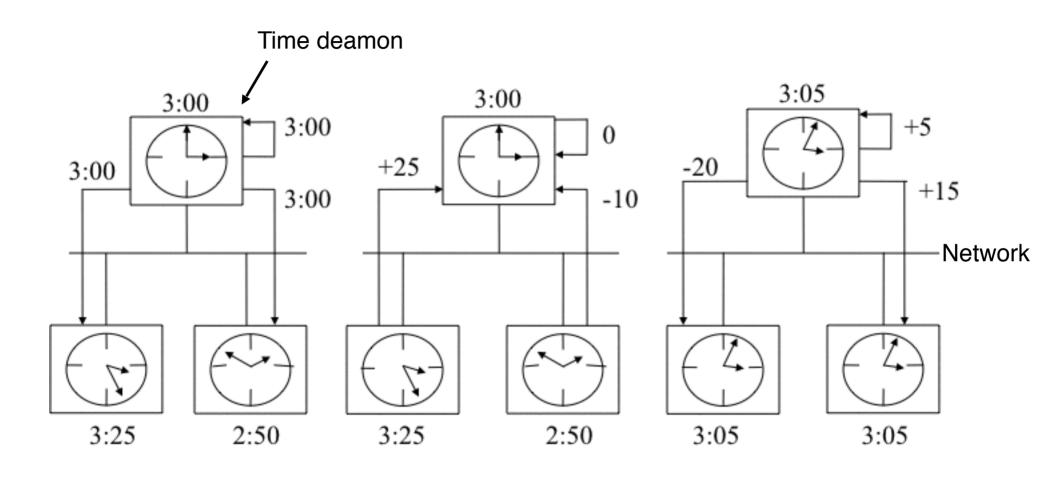
convergence function:
 Ф offset after resynch.

drift offset:

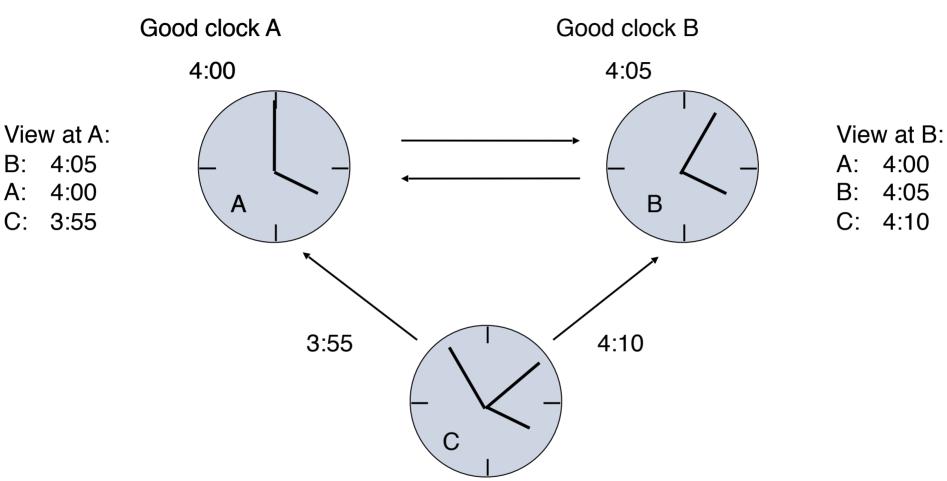
• Required: $\Gamma = 2 \rho R_{int}$

Г+Ф≤ П

Distributed Synchronisation: Berkeley



Byzantine Error



"two faced" malicious clock C

Impossibility Result

$$\pi = \varepsilon \left(1 - \frac{1}{N} \right)$$

 No better precision can be achieved even with perfect clocks in all nodes (N number of nodes).

Literature

Logical Clocks:
 Standard text books: Coulouris, Tanenbaum

Physical Clocks:
 This lecture followed strictly
 Hermann Kopetz, Distributed Real-Time-Systems

 David Mills: Internet Time Synchronisation: the Network Time Protocol, IEEE Transactions Communic. 39,10 (Oktober 1991)