
WS 2018/19

Real-Time Systems

Hermann Härtig

Introduction

Real-Time Systems: IntroductionWS 2018/19 �2

Examples of Real-Time-Systems

• video decoding and other multimedia

• touch and haptic (force feed back) devices

• planes, trains, cars, e-bikes

• control systems (see later slide)

• alarm systems

• automatic trading systems (?)

• ABS, ESP, autonomous driving

• “Tactile Internet” (5G)

• robot: balancing (short term) and movement (longer term)

Real-Time Systems: IntroductionWS 2018/19 �3

Surrounding Terminology

Embedded Systems
• Computers as part of something else

• Can be Real-Time Systems

Cyber-Physical Systems
• Interaction with physical environment

• Often Real-Time Systems

Safety-Critical Systems
• Humans in danger, mission in danger

General Purpose Systems
• Interactive Systems

• Smoothness and Responsiveness of UI

Real-Time Systems: IntroductionWS 2018/19 �4

Computer Science Areas

• Computer architecture

• Low Level I/O

• Communication

• Modeling techniques (Scheduling)

• Computer science theory

• Operations research

• Programming languages

• Parallel programming

• Fault tolerance

• Software engineering

Real-Time Systems: IntroductionWS 2018/19 �5

Overview of Class

Basics
• Definitions, Models, and Terminology

• Time (Clocks, Synchronisation)

• Time-Driven + Event-Driven: Basic Scheduling

Advanced Scheduling
• Resource Sharing

• Multiprocessor Scheduling

• Probabilistic and Mixed Criticality Scheduling

More than just scheduling
• Hardware & Communication

• Programming Languages & Operating Systems

Real-Time Systems: IntroductionWS 2018/19 �6

Course Material

Textbooks (available in library)
• [Kopetz] 

Hermann Kopetz 
Real-Time Systems (Kluwer)

• [Liu] 
Jane Liu 
Real-Time Systems (Prentice Hall)

Additional papers
• 	provided in lectures

Real-Time Systems: IntroductionWS 2018/19 �7

Real-Time Systems

Definition (strict)
Systems, whose correctness depends

• (not only) on the correct logical results of computations

• (but also) on meeting all deadlines.

Deadlines are dictated by the environment of the system.

Results and deadlines must be specified.

Real-Time Systems: IntroductionWS 2018/19 �8

Real-Time Systems

Definition (weaker)
Systems, whose quality depends

• (not only) on the logical results of computations

• (but also) on the time these results are produced.

Required timing characteristics originate from the environment 
of the system.

Real-Time Systems: IntroductionWS 2018/19 �9

Weakness Flavors

• Some deadlines are more important than others 
(Later: imprecise computations, mixed criticality)

• Occasional misses of deadlines are OK. (e.g., 3 in 10)

• Approximate values may be sufficient 

(approximate computing, energy saving)

The value of a result depends on the time it becomes available:

• An imperfect result early may be better than a perfect result 

(too) late.

• The more results can be obtained before a given deadline 

the better.

• Explicit mapping of time to value

Real-Time Systems: IntroductionWS 2018/19 �10

Weakness Flavors

Specification needed for:

• Results, deadlines AND

• “Importance” of certain deadlines OR

• How many deadlines per time period may be missed OR

• Mapping of time to values of results OR …

A saying by Doug Jensen (?): 
Hard real-time systems are hard to build, 
soft real-time systems even harder.

Real-Time Systems: IntroductionWS 2018/19 �11

Hard, Firm, Soft

hard real-time systems

• deadlines are strict: missing has fatal consequences for the

controlled object or humans

• must work under peak load

firm real-time systems

• deadlines are strict: late results have no benefit

soft real-time systems

• deadlines should be met

• value of results decreases with time

• graceful degradation under peak load is acceptable

Real-Time Systems: IntroductionWS 2018/19 �12

Design Process

• Model load and desired outcome

• Load: resource requirements like CPU

• Outcome: deadlines or other (hard/firm/soft) timing requirements

• Load depends on software (algorithm) and hardware (CPU speed)

• Compiler maps high-level code to machine code

• May involve algorithmic flexibility (approximation)

• May involve other (shared) resources

• Scheduling

• Test for feasibility (mathematical analysis)

• allocate resources (OS scheduling API)

• enforce allocations

Real-Time Systems: IntroductionWS 2018/19 �13

Context

system

real world

work

system

real world

recurring output

work

input reaction

Real-Time Systems: IntroductionWS 2018/19 �14

Simple Digital Control System

controlled
system

external influences

control

actuators sensors

diff

operator

u(t) e(t)

y(t)

D
/
A

D
/
A

periodic sampling

Real-Time Systems: IntroductionWS 2018/19 �15

PID Controller

Continuous formula:

Approximation by periodic sampling (rate T)

Integral via Simpson's Rule:

Differential:

Then:

With

u(t) = kpe(t) + ki ∫
t

τ=0
e(τ)dτ + kd

de(t)
dt

T
3

* (ek−2 + 4ek−1 + ek)

ek − ek−1

T
uk = uk−2 + aek + bek−1 + cek−2

a = kp +
kiT
3

+
kd

T
, b =

4kiT
3

−
kd

T
, c =

kiT
3

Real-Time Systems: IntroductionWS 2018/19 �16

Digital Controllers

sample period depends on:

• reactivity of person (<100 ms)

• reactivity of controlled object

at every period time units do  
 read y and compute e 
 uk := uk-2 + a*ek + b*ek-1 + c*ek-2 
 write u 
done

Real-Time Systems: IntroductionWS 2018/19 �17

Interfaces

Timing requirements on both interfaces

Person Controlled
Object

Real-Time
Computer
System

Real-Time Systems: IntroductionWS 2018/19 �18

Layers of Control

Multiple stages may induce different times

NavigationPilot AircraftPilot
Interface

Fly by
Wire

Real-Time Systems: IntroductionWS 2018/19 �19

Control Example

Controlling Computer System

steam

operator

valve

Controlled
Object

Example following [Kopetz]

Real-Time Systems: IntroductionWS 2018/19 �20

Times

• rise time: 10% or other small
neighborhood

• object delay: inertia of control
process

• computation delay and jitter: 
< sample period

• deadtime: object delay +
computation delay

• sampling period: rule of thumb 
< 1/10 to 1/20 rise time

• shorter sampling periods result
in: smoother operation, less
oscillation, more resources used

90%

10%

wallclock 
time

tempe-
rature

current

target

steam

object delay

rise time
[Kopetz]

Real-Time Systems: IntroductionWS 2017/18 �21

Complications of Simple Model: Internal State

• Complete state of controlled object is not represented in sampled
data, example: robot arm

• Keep internal copy (“digital twin”) of believed state

• Dangerous situations when internal and real-world state disagree

initialize state
at every period timeunits do
 read input
 compute
 output and new state
 Use: samples and current state
 write output
done

Real-Time Systems: IntroductionWS 2018/19 �22

Stateful Control System

controlled
system

control

actuators sensors

state
model

diffu(t)

y(t)

trajectory
generator

Real-Time Systems: IntroductionWS 2018/19 �23

Modifications of Simple Model

• multiple sensors, actuators, and state variables

• different sampling rates: multi-rate controller

• often the larger are integer multiples of smaller rates: 

harmonic rates

• example: rotation, temperature (engine control)

• method (successive loop closure):

• start with highest rate sensor

• integrate it in system and consider it part of the controlled object

• determine next rates (as multiples of fastest)

Real-Time Systems: IntroductionWS 2018/19 �24

Summary

• real-time system: time matters

• hard/firm/soft, and other delineating attributes

• system context: contact with the real world

• control systems

