Real-Time Systems

Introduction

Hermann Hartig

TECHNISCHE
@ UNIVERSITAT
DRESDEN

WS 2018/19



Examples of Real-Time-Systems

* video decoding and other multimedia

+ touch and haptic (force feed back) devices

* planes, trains, cars, e-bikes

« control systems (see later slide)

« alarm systems

« automatic trading systems (?)

- ABS, ESP, autonomous driving

- “Tactile Internet” (5G)

 robot: balancing (short term) and movement (longer term)

WS 2018/19 Real-Time Systems: Introduction 2



Surrounding Terminology

Embedded Systems

- Computers as part of something else

« Can be Real-Time Systems
Cyber-Physical Systems

* Interaction with physical environment

- Often Real-Time Systems
Safety-Critical Systems

 Humans in danger, mission in danger
General Purpose Systems

* Interactive Systems

- Smoothness and Responsiveness of Ul

WS 2018/19 Real-Time Systems: Introduction



Computer Science Areas

- Computer architecture

« Low Level I/O

- Communication

« Modeling techniques (Scheduling)
- Computer science theory

- Operations research

* Programming languages
 Parallel programming

 Fault tolerance

- Software engineering

WS 2018/19 Real-Time Systems: Introduction 4



Overview of Class

Basics

 Definitions, Models, and Terminology

- Time (Clocks, Synchronisation)

« Time-Driven + Event-Driven: Basic Scheduling
Advanced Scheduling

- Resource Sharing

« Multiprocessor Scheduling

 Probabilistic and Mixed Criticality Scheduling
More than just scheduling

« Hardware & Communication

« Programming Languages & Operating Systems

WS 2018/19 Real-Time Systems: Introduction



Course Material

Textbooks (available in library)

- [Kopetz]
Hermann Kopetz
Real-Time Systems (Kluwer)
« [Liu]
Jane Liu
Real-Time Systems (Prentice Hall)

Additional papers
« provided in lectures

WS 2018/19 Real-Time Systems: Introduction 6



Real-Time Systems

Definition (strict)

Systems, whose correctness depends
 (not only) on the correct logical results of computations
 (but also) on meeting all deadlines.

Deadlines are dictated by the environment of the system.

Results and deadlines must be specified.

WS 2018/19 Real-Time Systems: Introduction 7



Real-Time Systems

Definition (weaker)

Systems, whose quality depends
 (not only) on the logical results of computations
 (but also) on the time these results are produced.

Required timing characteristics originate from the environment
of the system.

WS 2018/19 Real-Time Systems: Introduction 8



Weakness Flavors

- Some deadlines are more important than others
(Later: imprecise computations, mixed criticality)

« Occasional misses of deadlines are OK. (e.g., 3in 10)

« Approximate values may be sufficient
(approximate computing, energy saving)

The value of a result depends on the time it becomes available:

- An imperfect result early may be better than a perfect result
(too) late.

- The more results can be obtained before a given deadline
the better.

- Explicit mapping of time to value

WS 2018/19 Real-Time Systems: Introduction 9



Weakness Flavors

Specification needed for:
* Results, deadlines AND
« “Importance” of certain deadlines OR
- How many deadlines per time period may be missed OR
- Mapping of time to values of results OR ...

A saying by Doug Jensen (?):
Hard real-time systems are hard to build,
soft real-time systems even harder.

WS 2018/19 Real-Time Systems: Introduction

10



Hard, Firm, Soft

hard real-time systems

« deadlines are strict: missing has fatal consequences for the
controlled object or humans

« must work under peak load
firm real-time systems

« deadlines are strict: late results have no benefit
soft real-time systems

+ deadlines should be met

+ value of results decreases with time

 graceful degradation under peak load is acceptable

WS 2018/19 Real-Time Systems: Introduction

11



Design Process

* Model load and desired outcome
Load: resource requirements like CPU
« Qutcome: deadlines or other (hard/firm/soft) timing requirements
- Load depends on software (algorithm) and hardware (CPU speed)
- Compiler maps high-level code to machine code
May involve algorithmic flexibility (approximation)
May involve other (shared) resources
« Scheduling
« Test for feasibility (mathematical analysis)
+ allocate resources (OS scheduling API)

 enforce allocations

WS 2018/19 Real-Time Systems: Introduction 12



Context

real world

input reaction

A

< >

system

real world

— R

recurring output

t t t
>

system

(i

WS 2018/19

Real-Time Systems: Introduction

13



Simple Digital Control System

external influences

controlled
> actuators sSensors
system
y(t)
D
/ control < diff
A u(t) e(t) T
periodic sampling operator
WS 2018/19 Real-Time Systems: Introduction 14



PID Controller

4
de(t
Continuous formula: u(r) = kye(r) + kiJ e(t)dr + k, d(t)
7=0
Approximation by periodic sampling (rate T)
Integral via Simpson's Rule: 3 ey +4e,_ + )
Differential: €k~ Ck-1
T
Then: W, = Uy_p + ae,+ be_| + ce_,
With a=k +£+ﬁ, bzﬂ_ﬁ, c:ﬂ
P T 3 T 3

WS 2018/19 Real-Time Systems: Introduction 15



Digital Controllers

at every period time units do
read y and compute e
Uk := Uk-2 + a*ex + b*ex-1 + Cex-2
write u

done

sample period depends on:
- reactivity of person (<100 ms)
* reactivity of controlled object

WS 2018/19 Real-Time Systems: Introduction 16



Interfaces

Timing requirements on both interfaces

Person giirT&:;? Cembellze
P E— Object

System

WS 2018/19 Real-Time Systems: Introduction 17



Layers of Control

Multiple stages may induce different times

== Ppjlot

= = Fly by
me=) Interface =)

Pil
llot m) Wire )

Navigation Aircraft

WS 2018/19 Real-Time Systems: Introduction 18



Control Example

operator

> Controlling Computer System

\ 4
I @
Controlled ‘ E ll: j steam

Object

valve

Example following [Kopetz]

WS 2018/19 Real-Time Systems: Introduction 19



Times

[Kopetz]
rise time
tempe-
rature
target
>
90%
steam
10%
>
current
>
| wallclock
object delay time

rise time: 10% or other small
neighborhood

object delay: inertia of control
process

computation delay and jitter:
< sample period

deadtime: object delay +
computation delay

sampling period: rule of thumb
< 1/10 to 1/20 rise time

shorter sampling periods result
In: smoother operation, less
oscillation, more resources used

WS 2018/19

Real-Time Systems: Introduction 20



Complications of Simple Model: Internal State

initialize state
at every period timeunits do
read input
compute
output and new state

Use: samples and current state
write output
done

- Complete state of controlled object is not represented in sampled
data, example: robot arm

- Keep internal copy (“digital twin”) of believed state

- Dangerous situations when internal and real-world state disagree

WS 2017/18 Real-Time Systems: Introduction 21



Stateful Control System

controlled
> E— —
actuators system sensors
y(t)
< state
control model <
u(t) diff

I

trajectory
generator

WS 2018/19 Real-Time Systems: Introduction 22



Modifications of Simple Model

- multiple sensors, actuators, and state variables
- different sampling rates: multi-rate controller

 often the larger are integer multiples of smaller rates:
harmonic rates

« example: rotation, temperature (engine control)
- method (successive loop closure):

- start with highest rate sensor
* integrate it in system and consider it part of the controlled object

- determine next rates (as multiples of fastest)

WS 2018/19 Real-Time Systems: Introduction 23



* real-time system: time matters

- hard/firm/soft, and other delineating attributes
« system context: contact with the real world

+ control systems

WS 2018/19 Real-Time Systems: Introduction

24



