
WS 2018/19

Real-Time Systems

Hermann Härtig

Event-Driven Scheduling

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �2

Outline

• mostly following Jane Liu, Real-Time Systems

• Principles

• Scheduling

• EDF and LST as dynamic scheduling methods

• Fixed Priority schedulers

• Admission based on utilization

• A few multi-processor insights (more later)

• Anomalies

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �3

Principles

Important Properties
• scheduling decisions are triggered by events 

(not time instants)

• events are release, completion, blocking, unblocking of jobs

• event triggers: scheduler calls, interrupts, timers, …

• scheduling decisions are made online

• scheduling must therefore be simple

• admission is online or offline

• work-conserving schedulers never leave a resource idle

intentionally

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �4

Restrictions of Time-Driven Systems

some restrictive assumptions of time-driven systems are relaxed:

• fixed inter-release times 
→	 minimum inter-release times

• fixed number of real-time tasks 
→ 	number of real-time and non real-time tasks can vary

• a priori fairly well known parameters 
→ 	overload, schedule non-RT in the background, …

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �5

Principles

At Admission Time
• select scheduler (may depend on the OS)

• check if feasible schedule exists for the selected scheduler

• assign jobs a value as a simple selection criterion: priorities

Scheduling / Dispatching
• at event, select highest prioritized job

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �6

Comparing Schedulers

How good are schedulers?
• shorter response times

• more task sets

• higher utilization of resources

Optimality of Schedulers
• 	A scheduling method X is called optimal in a class of scheduling

methods, if X produces a feasible schedule whenever there exists
a scheduling method Y in this class that produces a feasible
schedule.

• 	X is called optimal, if X produces a feasible schedule whenever
there exists such a schedule (no matter which method produced
it).

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �7

Earliest Deadline First

Assign priorities at time when jobs are released: 
“the earlier the deadline the higher the priority”

Optimality
• one processor,

• jobs are preemptable,

• jobs do not contend for passive resources,

• jobs have arbitrary release times, deadlines,

• then: EDF is optimal 

(i.e. if there is a feasible schedule, there is also one with EDF)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �8

EDF Example

T1: (2,0.9) T2: (5,2.3)

0 2 4 6 8 10

T1

0 2 4 6 8 10

T2

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �9

EDF Optimality

Proof (informal)
• assume a feasible, non EDF schedule

• systematically transform it to an EDF schedule (3 steps)

Non
EDF

Ji Jk

1. Ji JkJk

2. Jk JiJk

3. JiJkJk

Jk Ji

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �10

[Least/Minimum] [Slack Time/Laxity] First

Slack Time / Laxity
• time to deadline -  

remaining execution time required to reach deadline

• d − x − t

• d	 absolute deadline

• x	 remaining execution time of a job

• t	 current time

Scheduling Based on Slack
• priority dynamic per job (see example)

• strict version is optimal

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �11

Least Slack Time First

scheduler checks slacks of all ready jobs and runs the job with the
least slack

Two Versions:

• Strict: slacks are computed at all times

• each instruction (prohibitively slow)

• each timer tick

• Non-strict: slacks are computed only at events 
(release, completion)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �12

Example: Non-strict LST

Job: (release time, execution time, deadline)

0 1 2 3 4 5 6

t = 0: J1 released and scheduled

t = 1: J2 released;

 L(J1) = 3.5 – 1 – 1 = 1.5; L(J2) = 5 – 3 – 1 = 1 → J2 scheduled

 t = 3.5: J1 deadline miss

!

EDF schedules both jobs successfully!

J1 : (0, 2, 3.5) J2 : (1, 3, 5)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �13

Example: Strict LST

Job: (release time, execution time, deadline)

0 1 2 3 4 5 6

t = 0: J1 released and scheduled

t = 1: J2 released;

 L(J1) = 3.5 – 1 – 1 = 1.5; L(J2) = 5 – 3 – 1 = 1 → J2 scheduled

 t = 1.5: L(J1) = 3.5 – 1 – 1.5 = 1; L(J2) = 5 – 2.5 – 1.5 = 1 →

	 	 J1, J2 are scheduled and executed in parallel (at half speed)

t = 3.5: J1 completes → J2 continued at full speed

 t = 5: J2 completes

J1 : (0, 2, 3.5) J2 : (1, 3, 5)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �14

Latest Release Time (LRT)

Rationale
• no need to complete real-time jobs before deadline

• use time for other activities

Idea
• backwards scheduling 

(Deadline <-> Release, turn around 
precedence graph, EDF)

• run as late as possible

• use latest possible release times

• optimal (analog EDF and strict LST)

J1, 3 [0,6]

J3, 2 [2,7]

J2, 2 [5,8]

0 3 6 9 12

J1 J2J3

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �15

EDF and Non - Preemptivity

Job: (release time, execution time, deadline)

EDF is not optimal if jobs are not preemptable

J1: (0,3,10) J2: (2,6,14) J3: (4,4,12)

0 3 6 9 12

J1 J2 J3EDF

0 3 6 9 12

J1 J2J3feasible

release time J3 J3missed Deadline

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �16

0 3 6

EDF and Multiple Processors

Job: (release time, execution time, deadline)

• easy for time driven schedulers

• EDF is not optimal for multiprocessor systems

J1: (0,1,2) J2: (0,1,2) J3: (0,5,5)

0 3 6

J3

EDF

J1

J2

0 3 6

0 3 6

J3

feasible

J1 J2

P2

P1

P2

P1

J3missed Deadline

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �17

Assumptions for Next Algorithms

Set of periodic tasks with these properties:

• tasks are independent

• one processor

• no aperiodic tasks

• preemptable, context switch overhead is negligibly small

• period = minimum inter-release time  

(release times are not fixed but at least one period apart)

Since tasks are independent, tasks can be added (if admitted) and
deleted at any time without causing deadline misses.

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �18

Rate Monotonic Scheduling

Fixed Priority Scheduling
• the shorter the period the higher the priority 

(rate: inverse of period)

• example: (e, p); d = p

0 2 4 6 8 10 12 14 16 18

T1

T1: (1,4) T2: (2,5) T3: (5,20)

T1 T1 T1T3 T3 T3 T3 T1T2 T2 T2 T2T2

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �19

Deadline Monotonic Scheduling

Fixed Priority Scheduling
• the shorter the relative deadline the higher the priority

• example: (e, d, p)

Conclusion (no proof):  
RM not optimal but DM if d ≤ p for all tasks

0 1 2 3 4 5 6

T1: (1, 2, 3) T2: (0.5, 1, 6)

RM

0 1 2 3 4 5 6
DM

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �20

Optimality of Fixed Priority Schedulers

T: periodic tasks, independent, preemptable, one CPU

Deadline Monotonic Scheduling (DMS)
• relative deadlines ≤ periods, in phase

• if there is any feasible fixed priority schedule for T, 

then Deadline Monotonic is feasible as well

Rate Monotonic Scheduling (RMS)
• relative deadlines = periods

• if there is any feasible fixed priority schedule for T,  

then Rate Monotonic produces a feasible schedule as well

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �21

Admission Based on Utilization

Utilization
• a task (p,e) requires e/p of the capacity of a processor

• any scheduler can admit at most up to full capacity:

For a task set T1 … Tn: ∑ ei/pi ≤ m is a necessary but not
sufficient condition for m processors

Schedulable Utilization / Utilization Bound
• can we establish a maximum utilization bound X such that:

T1 … Tn: ∑ ei/pi ≤ X 
is sufficient?

• depends on the scheduling algorithm

• the higher the better

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �22

Utilization: RMS / EDF

RMS not optimal in general

T1: (2 , 1) T2: (5 , 2.5) U=1

0 3 6 9 12

T1 T2

T2 misses deadline

T1 T2 T1 T1 T2EDF T1

0 3 6 9 12

T1 T2 T1RMS T2 T1 T2 T1 T1

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �23

Some Schedulable Utilization (SU) Results

• independent tasks, preemptable,  
relative deadline = period, m = 1 processor

• n: 	 	 number of tasks

• EDF:	 SU = 1

• RMS:	 SU = n (21/n – 1) 	 n → ∞ : ln(2)

• RMS with harmonic periods: SU = 1

• harmonic periods (also called simply periodic): 

for all pairs of tasks Ti,Tj: if pi <= pj then pj = nij * pi

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �24

Schedulability Test for Fixed Priority Schedulers

for task sets with di ≤ pi (+ some other cases)

Critical Instant Analysis / Time Demand Analysis
• critical instant for task Ti:

release of jobs such that they have the maximum response time

• 1 CPU, preemptable, independent:

critical instant occurs when all tasks are released simultaneously

• it is sufficient to check schedulability for the simultaneous release

for the longest involved period

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �25

Fixed Priority Schedulability and Blocking

• Ti may have to wait for non-preemptable, lower priority task

• bi: longest non-preemptable portion of all lower priority jobs

• schedulable utilization with i tasks:

Ui = e1/p1 + e2/p2 + … + ei/pi

Ui + bi/pi ≤ SU(i)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �26

Non Negligible Context Switch Time

• For Job level fixed priority schedulers:

i.e. each job preempts at most one other job

• 2 context switches:

• release (when it preempts other)

• completion

• include context switch overhead in WCET:

WCETi’ := WCETi + 2 * context switches

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �27

Static and Dynamic Priority

If no new tasks arrive:

• Task static:	 	 task T does not change its priority, 

		 	 	 	 	 i.e. all jobs of T have same fixed priority

• Job static:	 	 jobs do not change their priorities

• Job dynamic:	 jobs change their priorities

Careful: job static is a dynamic priority system

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �28

Earliest Deadline First, priority assignment:

fixed per job, dynamic at task level: the closer the absolute deadline
of a job at release time, the higher the priority

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T2

T1 T1 T1

T2

T1T1 T1

T2 T2

T1: (0.9, 2) T2: (2.3, 5)

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �29

EDF and Overload, Examples

T1: (1, 2) T2: (3, 5) U=1.1

0 3 6 9 12

T1 T2

T1 misses

T1 T2 T1 T1 T2

T1: (0.8, 2) T2: (3.5, 5) U=1.1

0 3 6 9 12

T2

T1 and T2 misses

2.3

T2

T2

No easy way to determine which jobs miss deadline

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �30

EDF and Overload, Another Example

T1: (0.8, 2) T2: (4.0, 5) U=1.2

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T2

T1 T1

T2

T1T1

T2

T1

missed deadline

missed deadline

In fixed priority systems it is possible to predict which tasks are affected
by overruns

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �31

Predictable/Sustainable Execution

Informal Definition
• Given a set of periodic tasks with known minimal and maximal  

execution times and a scheduling algorithm.

• A schedule produced by the scheduler when the execution time

of each job has its maximum (minimum) value is called a
maximum (minimum) schedule.

• An execution is called predictable, if for each actual schedule the
start and completion times for each job are bound by these times
in the minimum and maximal schedules.

• The execution of every job in a set of independent, preemptable
jobs with fixed release times is predictable when scheduled in a
priority driven manner on one processor.

Real-Time Systems: Event-Driven SchedulingWS 2018/19 �32

Lessons Learned

• schedulers: static and dynamic priorities (RMS, EDF, LST)

• schedulability analysis: utilization, critical instant

• RMS and EDF are optimal under simplistic assumptions

