
WS 2018/19

Real-Time Systems

Hermann Härtig

Real-Time Operating Systems

Real-Time Systems: Operating SystemsWS 2018/19 �2

Outline

• Introduction

• Basic variants of RTOSes

• Real-Time paradigms

• Common requirements for all RTOSes

• High level resources

• Non-Real-Time on RTOS

• Scheduling

• Memory Management

• Example

• POSIX and Real-Time

Real-Time Systems: Operating SystemsWS 2018/19 �3

Basic Variants of RTOSes

Cyclic Executive
• Only one task as infinite loop

• Time driven, polling for external events

Set of Interrupt Handlers
• Event driven

• Handlers usually have priorities

• Stacked execution: see stack-based priority ceiling protocol

Real-Time Systems: Operating SystemsWS 2018/19 �4

Basic Variants of RTOSes

Thread Packages: iRMX, FreeRTOS, eCos, …
• Use a form of scheduling

• Preemptive or cooperative

• Priorities

• Provide synchronization primitives (e.g., semaphores)

• Some with priority inheritance/ceiling

• No address-space protection, no virtual memory

Real-Time Systems: Operating SystemsWS 2018/19 �5

Basic Variants of RTOSes

Microkernels: QNX, VxWorks, L4/Fiasco, …
• Memory protection: address spaces

• With or without virtual memory

• More robustness (fault isolation)

• Extensive functionality provided by services

Real-Time Systems: Operating SystemsWS 2018/19 �6

Basic Variants of RTOSes

Monolithic RTOS: LynxOS, MontaVista Linux, …
• Monolithic kernel with RT API, like POSIX RT

• Often non-real-time APIs as well, e.g., Linux compatibility

• Device drivers etc. usually run in privileged mode

• Real-time applications usually run in user mode

Monolithic with RT executive underneath: 
RTLinux, RTAI, XtratuM, …
• Combination of a legacy OS with some form of an RT thread

package, usually without memory protection

• Real-time applications run in kernel mode

Real-Time Systems: Operating SystemsWS 2018/19 �7

Basic Variants of RTOSes

Partitioned System
• All resources are statically allocated to partitions:  

CPU, Memory, Devices

• Isolation in space and time

• Multiple threads/processes in a partition

• Scheduling:

• Partitions: time driven

• Threads/processes: any local scheduling scheme possible

• ARINC 653-1 standard for avionics

Real-Time Systems: Operating SystemsWS 2018/19 �8

ARINC 653-1 standard for avionics

Statically partitioned system (time-driven scheduling)

● Execution in one partition must not influence execution in
another partition (strict isolation)

● Strictly time-driven scheduling of partitions

● No transfer of idle CPU time among partitions

● Additionally defines

! System health monitoring

! Intra/inter-partition communication

! Time management

n+1

1

time

2 3

tt n t
n+2

Real-Time Systems: Operating SystemsWS 2018/19 �9

Virtual Machines and RT

• Hypervisor provides virtual machines with Guest OS

• Used as partitioned system

• Address space isolation within virtual machines

• Sometimes virtual machine is just marketing-speak for virtual

memory

• Used to co-locate existing systems

• Can RT-Properties of Guest OS be preserved?

• No global scheduling, but hierarchical

• Enlightened VMs can use hints to influence global schedule

Real-Time Systems: Operating SystemsWS 2018/19 �10

Common Requirement for RT

Time as First Class Citizen
• Periodic processes or absolute timeouts

• POSIX Interface: clock_gettime, clock_getres

• High clock resolution necessary

• Special CPU event counters

• Linux: some clocks readable without system call

• Time synchronization

Real-Time Systems: Operating SystemsWS 2018/19 �11

High-Level Resources

• RT is often reduced to CPU scheduling and latencies

• There are more resources to give guarantees about: 

Disk, Video, Network, …

Operating systems addressing these are

• Linux/RK (resource kernel)

• Redline

• L4/DROPS

• …

Real-Time Systems: Operating SystemsWS 2018/19 �12

Non-Real-Time on RTOS

Non-RT API on RT kernel
• Unix emulation on QNX

• Linux emulation on LynxOS

Run Non-RT OS on RT kernel
• Xtratum

• Radisys (Windows-NT)

• RT-MACH

• L4Linux on L4

Real-Time Systems: Operating SystemsWS 2018/19 �13

Scheduling in Real-Time OSes

• Priorities

• Priority inversion and countermeasures

• Time budgets

• Interrupt / event latencies

Real-Time Systems: Operating SystemsWS 2018/19 �14

Real-Time Scheduling

Fixed Priorities
• Sufficient priority levels (e.g., RMS 256 priorities)

• Events/messages with priorities

• Higher priority events arrive first

• On some systems priority is donated to the receiver

• Signals are queued (predictability)

Real-Time Systems: Operating SystemsWS 2018/19 �15

Real-Time Scheduling

Dynamic Priorities
• Application based: set_priority
• Good for mode changes

• Not suitable for EDF

• OS-driven EDF scheduling

Real-Time Systems: Operating SystemsWS 2018/19 �16

Scheduling – Priority Inversion

Priority Ceiling
• Set priority of lock

• Critical sections as parameter for process creation

Priority Inheritance
• Borrowing of CPU time (priority)

• Non-preemptive critical sections

Real-Time Systems: Operating SystemsWS 2018/19 �17

Scheduling – Budgets

What if processes abuse their priorities?

Overload situations?

Periodic threads and time quanta
• Assign budgets per period to threads: 

thread = (period, priority, budget)

• Control overuse of budgets:

• Periodic threads as first class object

• Watchdog timers to signal budget overruns

Real-Time Systems: Operating SystemsWS 2018/19 �18

Interrupt Latencies

Key Property of RTOSes:
Predictable and low interrupt latency

Interrupt Latency Reduction
• No interrupt blocking for synchronization (preemptivity)

• Short interrupt service routines (‘top halves’)

• Schedule more complex interrupt handling in a thread-like

fashion (Linux: tasklets)

• Partition data and instruction caches

• …

Real-Time Systems: Operating SystemsWS 2018/19 �19

Real-Time and Memory Management

Avoid demand paging/swaping
(disk access is orders of magnitude slower than main memory)

• However:

• Address space isolation useful for robustness/debugging

• Some scenarios need paging

• Interface

• mlock(…)	 	 lock pages in memory (prevent swaping)

• munlock(…)	 allow demand paging again

Real-Time Systems: Operating SystemsWS 2018/19 �20

Real-Time and Memory Management

Static Memory Allocation
• Good for predictability

• Inflexible

Dynamic memory management
• Use real-time capable memory allocator

• e.g. TLSF

Real-Time Systems: Operating SystemsWS 2018/19 �21

POSIX and Real-Time

POSIX (Portable OS Interface): IEEE 1003.1 
REALTIME extensions
• semaphores

• process memory locking

• priority scheduling

• realtime signal extension

• clocks/timers

• interprocess communication

• synchronized I/O

• asynchronous I/O

Real-Time Systems: Operating SystemsWS 2018/19 �22

POSIX: Memory Locking

• Memory ranges can be locked  
(excluded from swaping)

• Provide latency guarantees for memory accesses

Real-Time Systems: Operating SystemsWS 2018/19 �23

POSIX: Real-Time Scheduling

Multiple scheduling policies

• SCHED_FIFO: non-preemptive FIFO

• SCHED_RR: preemptive/time-sliced FIFO

• SCHED_SPORADIC: sporadic server with budget and

replenishment interval

• SCHED_OTHER: threads without RT policy

• At least 32 RT priorities

Real-Time Systems: Operating SystemsWS 2018/19 �24

POSIX: Real-Time Signals

Difference to non-realtime signals:
• Queued (also for the same signal number)

• Carry user data

• Ordered delivery

Specific properties
• RT signals are in the range SIGRTMIN to SIGRTMAX

• Handler gets siginfo_t with additional data

• Lowest pending signal (by number) is delivered first

Real-Time Systems: Operating SystemsWS 2018/19 �25

POSIX: Asynchronous I/O

• Initiate I/O

• aio_read(struct aiocb *aiocbp)

• aio_write(struct aiocb *aiocbp)

• POSIX signals for completion

• aio_suspend(…) to wait for completion

Real-Time Systems: Operating SystemsWS 2018/19 �26

POSIX: Asynchronous I/O

struct aiocbp {

 Int aio_filedes; /* file descriptor */

 off_t aio_offset; /* absolute file offset */

 Void *aio_buf; /* pointer to memory buffer */

 size_t aio_nbytes; /* number of bytes to I/O */

 Int aio_reqprio;	 /* prio of request */

 struct sigevent aio_sigevent; /* signal */

 Int aio_lio_opcode; /* opcode for lio_listio */

};

Real-Time Systems: Operating SystemsWS 2018/19 �27

POSIX: Real-Time Clocks

Clocks
• Minimum granularity of 20ms (clock_getres())

• Multiple clocks

• CLOCK_REALTIME (wall clock time)

• CLOCK_MONOTONIC (system-wide monotonic clock)

• CLOCK_PROCESS_CPUTIME_ID

• CLOCK_THREAD_CPUTIME_ID

Timers
• Associated to a specific clock (see Clocks)

• Per process timers (generate RT signals)

• Periodic timers supported (struct timespec)

Real-Time Systems: Operating SystemsWS 2018/19 �28

POSIX: Execution Time Monitoring

Clocks measuring thread/process execution time
• CLOCK_PROCESS_CPUTIME_ID

• CLOCK_THREAD_CPUTIME_ID

Timers connected to these clocks
• Signal deadline misses

Real-Time Systems: Operating SystemsWS 2018/19 �29

Real-Time Paradigms

Time driven
• Static partitioning in time slots

• Scheduler dispatches time slots in a fixed fashion 

(e.g., fixed cyclic scheduler)

Event driven
• Events: messages, signals, interrupts, …

• Priorities

