Right-Weight Kernels: an off-the-shelf alternative to custom Light-Weight Kernels

Minnich, Sottile, Choi, Hendriks, McKie @ Department of Energy’s (DOE), Los Alamos National Laboratory (LANL), IBM

January 20, 2010
Introduction

- HPC folks, mission and early result paper
Introduction

- HPC folks, mission and early result paper
- Parallel system with large number of nodes running parallel application
- Desire: application want to own nodes
- Any Interference can cause poor performance
Interference

- Any non-application activity on nodes reducing peak performance
- Delay of one processor out of 1000 wreak havoc to parallel performance

Figure: x: time, y: amount of work
Examples

- ASCI Red: replacing OSF/1-MK ADh from Intel by OS with fewer features
- IBM SP/2: making simple local scheduling decisions
- ASCI Q: removing unnecessary daemons
- IBM, Red Storm, CPlant machines, ...
Clusters and other distributed machines

▶ Group of nodes dedicated to application
 ▶ Claim: don’t eliminate interference
 ▶ Internal activity triggered by clock interrupts
 ▶ Daemons becoming active when network packets arrive
Clusters and other distributed machines

- Group of nodes dedicated to application
 - Claim: don’t eliminate interference
 - Internal activity triggered by clock interrupts
 - Daemons becoming active when network packets arrive

- Cluster community approach
 - Bypass parts of kernel regarding networking
 - Application directly access hardware

Light-Weight Kernel (LWK)
- Elimination of almost all capabilities of a kernel
- Application after start take over node
- LWK provides basic function for I/O
- no file system, no sockets, no virtual memory, no security model

Minnich, Sottile, Choi, Hendriks, McKie @ Department of Energy’s (DOE), Los Alamos National Laboratory (LANL), IBM

Right-Weight Kernels: an off-the-shelf alternative to custom LWK
Clusters and other distributed machines

- Group of nodes dedicated to application
 - Claim: don’t eliminate interference
 - Internal activity triggered by clock interrupts
 - Daemons becoming active when network packets arrive
- Cluster community approach
 - Bypass parts of kernel regarding networking
 - Application directly access hardware
- Light-Weight Kernel (LWK)
 - Elimination of almost all capabilities of a kernel
 - Application after start take over node
 - LWK provides basic function for I/O
 - no file system, no sockets, no virtual memory, no security model
Right-Weight Kernels

- LWKs go to far ?! anecdotal evidence
- Discrepancy:
 - Users want the os ”out of the way” vs.
 - Convenient: shared lib, reliable file system, sockets, security, app fault management and debug support
- LANL assumptions:
 - LWK not necessary, use adapted off-the-shelf OSes, simulation tools
 - Candidates: Linux and Plan 9
 - Linux: make it more light-weight to avoid interferences
 - Plan 9: Designed as distributed system, Used in hard-real-time environments (routers)
Pink, 1024 node BProc cluster

BProc (Beowulf Distributed Process Space): set of Linux kernel patches

Single-system process space across entire cluster

Application processes on slave nodes show up in the process table of the master node

Per compute(slave) node one BProc daemon running

(Expected) significant interruptions by:
 - Periodic timer interrupts
 - Kernel threads for internal book keeping, flushing blocks...
Plan 9

- By Bell Laps since 1990’s
- Hybrid of LWK and commodity OS
- Kernel: devices, process management, network protocol stack
- Server: file system, ...
- Customization: server free placeable by user at nodes
Conclusion and Discussion

"We hope to learn how to configure a kernel that is the right weight for HPC - i.e. a Right-Weight Kernel"
"We hope to learn how to configure a kernel that is the right weight for HPC - i.e. a Right-Weight Kernel"

- Requirements they seem to have ...
 - Customizable OS
 - Strict placing of processes and services
 - Transparent (what is running when and where)

- Questions:
 - General (non-solvable) issue ? Trading performance vs usability/maintain vs security vs ... ?
 - Bad ? : periodic/aperiodic work, batching, daemons, flushing, network ...