
Advanced Systems Programming: Quick Poll

Website: http://www.inf.tu-dresden.de/index.php?node_id=1842

This workshop provides preparation for the programming tasks in the 
practical courses of the Operating Systems Advanced Studies.
Attendance is especially advised for students wanting to brush up their 
programming skills before taking one of the following courses: 

• Microkernel-Based Operating Systems
• Microkernel Construction
• Complex Lab

Possible Dates for Advanced Systems Programming:
• Pfingsten/Whitsun (14.6.-17.6.)
• After Summer Semester (18.7.-22.7. or around that time)
• Before Winter Semester (26.9.-30.9. or around that time)

Next week we will ask you about your preferred time frame!
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Chip Multi-Processor (CMP), Multicore
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Symmetric Multi-Threading (SMT), Hyperthreading
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Non-Uniform Memory Access (NUMA)
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Multi-Processor Systems and Shared Memory

• Multiple processors share memory

• Memory managed by one or more memory controllers
– UMA (Uniform Memory Access)
– NUMA (Non-Uniform Memory Access)

• What is memory behavior under concurrent data access?
– Reading a memory location should return last value written
– „Last value written“ not clearly defined under concurrent access

• Defined by system‘s memory consistency model
– Defines in which order processors perceive concurrent accesses
– Based on ordering, not timing of accesses

Udo Steinberg, SS 2011
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Memory Consistency Models

• Different memory consistency models exist
– Some platforms (e.g., SPARC) support multiple models

• More complex models attempt to expose more performance

• Terminology:
– Program Order (of a processor‘s operations)

• per-processor order of memory accesses determined by 
program (software)

– Visibility Order (of all operations)
• order of memory accesses observed by one or more 

processors
• every read from a location returns value of most recent write

Udo Steinberg, SS 2011
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Most Intuitive Model: Sequential Consistency

• A multiprocessor system is sequentially consistent if the result of 
any execution is the same as if the operations of all the processors 
were executed in some sequential order, and the operations of each 
individual processor appear in this sequence in the order specified 
by its program. (Lamport 1979)

• Program Order Requirement
– each CPU issues memory operations in program order

• Atomicity Requirement
– Memory services operations one-at-a-time
– all memory operations appear to execute atomically with 

respect to other memory operations

Udo Steinberg, SS 2011
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Examples for Sequential Consistency

(u,v) = (1,1) sequentially consistent
» example visibility order: a1,b1,a2,b2

(u,v) = (1,0) sequentially inconsistent
» example visibility order: b1,a2,b2,a1

This visibility order violates program order on CPU1

No visibility order exists that satisfies program order on all CPUs 
and produces (u,v) = (1,0) result

CPU1

[A] = 1; (a1)
[B] = 1; (b1)

CPU2

u = [B]; (a2)
v = [A]; (b2)

[A],[B] ... Memory
u,v ... Registers

Udo Steinberg, SS 2011
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Examples for Sequential Consistency

(u,v) = (1,1) sequentially consistent
» example visibility order: a1,a2,b1,b2

(u,v) = (0,0) sequentially inconsistent
» example visibility order: b1,b2,a1,a2

This visibility order violates program order on CPU1/2

No visibility order exists that satisfies program order on all CPUs 
and produces (u,v) = (0,0) result

CPU1

[A] = 1; (a1)
u = [B]; (b1)

CPU2

[B] = 1; (a2)
v = [A]; (b2)

Udo Steinberg, SS 2011



Store Buffer

• Store buffer allows writes to memory 
and/or caches to be saved to optimize 
interconnect accesses

• CPU can continue execution before 
write to cache/memory is complete

• Some writes can be combined, e.g. 
video memory

• Store forwarding allows reads from 
local CPU to see pending writes in the 
store buffer

• Store buffer invisible to remote CPUs

Memory Consistency & Cache Coherency 12
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Sequential Consistency vs. Architecture Optimizations

• Relaxing the Program Order:
– Out-of-order execution may reorder operations (b2,a2)
– Write Buffer may reorder writes (b1,a1)
– produces sequentially inconsistent result (u,v) = (1,0)

• Maintaining Program Order:
– May still produce sequentially inconsistent results

• CPU1 issues a1,b1 in program order
• but a1 misses and b1 hits in the cache (non-blocking cache)

CPU1

[A] = 1; (a1)
[B] = 1; (b1)

CPU2

u = [B]; (a2)
v = [A]; (b2)

Udo Steinberg, SS 2011
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Causality

• Relaxing the Atomicity of Writes:

1. CPU1 writes [A] = 1, sends update message to CPU2 and CPU3

2. CPU2 receives update message for [A] from CPU1

3. CPU2 writes [B] = 1, sends update message to CPU3

4. CPU3 receives update message for [B] from CPU2

5. CPU3 prints [A] = 0
6. CPU3 receives update message for [A] from CPU1

– Sequentially inconsistent result, because write to [A] not atomic 
wrt. other memory operations (e.g., write to [B])

CPU1

[A] = 1;
CPU2

while ([A] == 0);
[B] = 1;

CPU3

while ([B] == 0);
print [A]

Udo Steinberg, SS 2011
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Compiler Optimizations

Programmer‘s Code Compiler-Generated Code

• Compiler optimizations such as
– register allocation and value caching
– code motion
– common sub-expression elimination
– loop interchange

can reorder memory operations similar to architecture optimizations 
or even eliminate memory operations completely

CPU1

[A] = 1;
[Flag] = 1;

CPU2

while ([Flag] == 0);
u = [A];

CPU1

[A] = 1;
[Flag] = 1;

CPU2

r = [Flag];
while (r == 0);
u = [A];

Udo Steinberg, SS 2011
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Relaxing Write-to-Read or Write-to-Write Order

• Write-to-Read (later reads can bypass earlier writes):
– Write followed by a read can execute out-of-order
– Typical hardware usage: Write Buffer

• Writes must wait for ownership of cache line
• Reads can bypass writes in the write buffer
• Hides write latency

• Write-to-Write (later writes can bypass earlier writes) :
– Write followed by another write can execute out-of-order
– Typical hardware usage: Non-Blocking Cache, Write Coalescing

• Writes must wait for ownership of cache line
• Latency for obtaining ownership depends on hop count to 

cache line owner

Udo Steinberg, SS 2011
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IBM-370 (zSeries)

• In-order memory operations:
– Read-to-Read
– Read-to-Write
– Write-to-Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• unless both are to the same memory location
• breaks Dekker‘s algorithm for mutual exclusion

– Write-to-Read to same location must execute in-order
• no forwarding of pending writes from the write buffer

Udo Steinberg, SS 2011
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Dekker‘s Algorithm on IBM-370 (zSeries)

CPU #0
P: flag0 = true;        // Buffered

while (flag1) {
if (turn == 1) {

flag0 = false;
goto P;

}
}
// critical section
flag0 = false;
turn = 1;

CPU #1
P: flag1 = true;        // Buffered

while (flag0) {
if (turn == 0) {

flag1 = false;
goto P;

}
}
// critical section
flag1 = false;
turn = 0;

bool flag0 = false, flag1 = false; // intention to enter crit. section
int turn = 0; // whose turn is it?

Udo Steinberg, SS 2011
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SPARC V8 Total Store Order (TSO)

• In-order memory operations:
– Read-to-Read
– Read-to-Write
– Write-to-Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Forwarding of pending writes in the write buffer to 
successive read operations of the same location

– Writes become visible to writing processor first

• Breaks Peterson‘s algorithm for mutual exclusion

Udo Steinberg, SS 2011
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Peterson‘s Algorithm on SPARC V8 TSO

CPU #0
flag0 = true; // Buffered
turn = 1; // Buffered
while (turn == 1 && flag1) {};
// critical section
flag0 = false;

CPU #1
flag1 = true; // Buffered
turn = 0; // Buffered
while (turn == 0 && flag0) {};
// critical section
flag1 = false;

bool flag0 = false, flag1 = false; // intention to enter crit. section
int turn = 0; // whose turn is it?

Udo Steinberg, SS 2011
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Total Store Order (TSO) vs. SC and IBM-370

• (u,v,w,x) = (1,1,0,0)
– not possible with Sequential Consistency (SC) and IBM-370
– but possible with Total Store Order (TSO)

• Example total order: b1,b2,c1,c2,a1,a2

• b1 reads A=1 from write buffer
• b2 reads B=1 from write buffer

CPU1

[A] = 1; (a1)
u = [A]; (b1)
w = [B];(c1)

CPU2

[B] = 1; (a2)
v = [B]; (b2)
x = [A]; (c2)

Udo Steinberg, SS 2011
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Processor Consistency (PC)

• Similar to Total Store Order (TSO)

• But model additionally supports multiple cached memory copies
– Relaxed atomicity for write operations

• Each write operation broken into sub-operations to update 
cached copies of other CPUs

– Non-unique write order, requires per-CPU visibility order

– Additional Coherency Requirement:
• All writes sub-operations to the same memory location 

complete in the same order across all memory copies (or in 
other words: every processor should see writes to the same 
location in the same order)

• If one CPU observes writes to X in the order W1(X) before 
W2(X), another CPU must not see W2(X) before W1(X)

Udo Steinberg, SS 2011
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Processor Consistency (PC) vs. SC, IBM-370 and TSO

• (u,v,w) = (1,1,0)
– not possible with SC, IBM-370 and TSO
– but possible with Processor Consistency (PC)

• CPU1 sets [A] = 1, sends W1(A) to other CPUs
• CPU2 sees W1(A), sets [B] = 1, sends W2(B) to other CPUs
• CPU3 sees W2(B) ... but has not yet received W1(A)

– Single memory bus enforces single visibility order
– Multiple visibility orders possible with other topologies

CPU1

[A] = 1; (a1)
CPU2

u = [A]; (a2)
[B] = 1; (b2)

CPU3

v = [B]; (a3)
w = [A];(b3)
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SPARC V8 Partial Store Order (PSO)

• In-order memory operations:
– Read-to-Read
– Read-to-Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Forwarding of pending writes in the write buffer to 
successive read operations of the same location

– Write-to-Write (later writes can bypass earlier writes)
• unless both are to the same memory location
• breaks Producer-Consumer Code

• Write Atomicity is maintained -> single visibility order

Udo Steinberg, SS 2011
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Partial Store Order (PSO) vs. SC, IBM-370, TSO and PC

• (u,v) = (0,0) or (0,1) or (1,0)
– not possible with SC, IBM-370, TSO and PC
– but possible with Partial Store Order (PSO)

• Example total order: c1,a2,b2,c2,b1,a1

• Store barrier (STBAR) before c1 ensures sequentially 
consistent result (u,v) = (1,1)

CPU1

[A] = 1; (a1)
[B] = 1; (b1)
[Flag] = 1; (c1)

CPU2

while ([Flag] == 0); (a2)
u = [A]; (b2)
v = [B]; (c2)

Udo Steinberg, SS 2011



Memory Consistency & Cache Coherency 26

Relaxing all Program Orders

• In addition to previous relaxations:
– Read-to-Read (later reads can bypass earlier reads) :

• Read followed by a read can execute out-of-order
– Read-to-Write (later writes can bypass earlier reads):

• Read followed by a write can execute out-of-order

• Examples:
– Weak Ordering (WO)
– Release Consistency (RC)
– DEC Alpha
– SPARC V9 Relaxed Memory Order (RMO)
– PowerPC
– Itanium (IA64)

Udo Steinberg, SS 2011
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Weak Ordering (WO)

• Conceptually similar to Processor Consistency (PC)
– including coherency requirement

• Classifies memory operations into two categories:
– data operations
– synchronization operations

• Reordering of memory accesses between synchronization operations 
typically does not affect correctness of a program

• Program order only maintained at synchronization points
– between synchronization operations

Udo Steinberg, SS 2011
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Release Consistency (RC)

• Distinguishes memory operations as
– ordinary (data)
– special

• sync (synchronization)
• nsync (asynchronous data)

• Sync operations classified as
– acquire

• read operation for gaining access to a shared resource
• e.g., spinning on a flag to be set

– release
• write operation for granting permission to a shared resource
• e.g., setting a synchronization flag

Udo Steinberg, SS 2011
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Flavors of Release Consistency (RC)

• RCSC
– Sequential consistency between special operations
– Program order enforced between:

• acquire -> all
• all -> release
• special -> special

• RCPC
– Processor consistency between special operations
– Program order enforced between:

• acquire -> all
• all -> release
• special -> special

– except special write followed by special read
– can use read-modify-write instruction to achieve effect

Udo Steinberg, SS 2011
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Enforcing Ordering: Synchronization Instructions 

• IA32/AMD64:
– lfence (load fence), sfence (store fence), mfence (memory fence)

• Alpha:
– mb (memory barrier), wmb (write memory barrier)

• SPARC (PSO)
– stbar (store barrier)

• SPARC (RMO)
– membar (4-bit encoding for r-r, r-w, w-r, w-w ordering)

• PowerPC
– sync (similar to Alpha mb, except for r-r), lwsync

Udo Steinberg, SS 2011
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Cache Coherency

• Caching leads to presence of multiple copies for a memory location

• Cache coherency is a mechanism for keeping copies up-to-date
– locate all cached copies of a memory location
– eliminate stale copies (invalidate/update)

• Requirements:
– Write Propagation: Writes must eventually become visible to all 

processors
– Write Serialization: Every processor should see the writes to the 

same location in the same order

Udo Steinberg, SS 2011
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Incoherency Example (1)

1.CPU0 reads X from memory
• stores X=0 into its cache

2.CPU1 reads X from memory
• stores X=0 into its cache

3.CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4.CPU1 reads X from its cache
• loads X=0 from its cache

Incoherent value for X on CPU1

CPU0 CPU1

WT-Cache WT-Cache

Memory
X=0

X=0 X=0X=1

X=1
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Incoherency Example (2)

1.CPU0 reads X from memory
• loads X=0 into its cache

2.CPU1 reads X from memory
• loads X=0 into its cache

3.CPU0 writes X=1
• stores X=1 in its cache

4.CPU1 writes X=2
• stores X=2 in its cache

5.CPU1 writes back cache line
• stores X=2 in memory

6.CPU0 writes back cache line
• stores X=1 in memory

Later store X=2 from CPU1 lost

CPU0 CPU1

WB-Cache WB-Cache

Memory
X=0

X=0 X=0X=2X=1

X=2X=1
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Cache Coherency: Problems and Solutions

• Problem 1:
CPU1 used stale value that had already been modified by CPU0

– Solution:
Invalidate all copies before allowing a write to proceed

• Problem 2:
Incorrect writeback order of modified cache lines
– Solution:

Disallow more than one modified copy

Udo Steinberg, SS 2011
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Coherency Protocol Approaches

• Invalidation-based
– all coherency-related traffic broadcast to all CPUs
– each processor snoops traffic and reacts accordingly

• invalidate lines written to by another CPU
• signal sharing for cache lines currently in cache

– straightforward solution for bus-based systems
– suited for small-scale systems

• Update-based
– Uses central directory for cache line ownership
– Write operation updates copies in other caches

• can update all other CPUs at once (less bus traffic)
• but: multiple writes cause multiple updates (more bus traffic)

– suited for large-scale systems

Udo Steinberg, SS 2011
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Invalidation vs. Update Protocols

• Invalidation-based
– only write misses hit the bus (suited for write-back caches)
– subsequent writes to same cache-line are write-hits
– Good for multiple writes to the same cache line by the same CPU

• Update-based
– all sharers of the cache line continue to hit in the cache after a 

write by one cache
– Good for large-scale producer-consumer code
– Otherwise lots of useless updates (wastes bandwidth)

• Hybrid forms are possible

Udo Steinberg, SS 2011
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MESI Cache Coherency Protocol

• Modified (M)
– No copies exist in other caches; local copy is modified
– Memory is stale

• Exclusive (E)
– No copies exist in other caches
– Memory is up-to-date

• Shared (S)
– Unmodified copies may exist in other caches
– Memory is up-to-date

• Invalid (I)
– Not in Cache

Udo Steinberg, SS 2011
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MESI Cache Coherency Protocol (Processor Transitions)

• State is I, CPU reads (PrRd)
– Generate bus read request (BusRd), other caches signal sharing
– If cache line in another cache go to S, otherwise transition to E

• State is S, E or M, CPU reads (PrRd)
– No bus transaction, cache line already cached

• State is I, CPU writes (PrWr)
– Generate bus read request for exclusive ownership (BusRdX)
– transition to M

• State is S, CPU writes (PrWr)
– Cache line already cached, but need to upgrade it for exclusive 

ownership (BusRdX*), transition to M
• State is E or M, CPU writes (PrWr)

– No bus transaction, cache line already exclusively cached
– transition to M

Udo Steinberg, SS 2011
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MESI Cache Coherency Protocol (Snoop Transitions)

• Receiving a read snoop (BusRd) for a cache line
– If cache line is in cache (E or S), tell the requesting cache that 

the line is going to be shared (HIT signal) and transition to S
– If cache line is modified in cache (M), write the cache line back 

to memory (WB) and transition to S

• Receiving a read for exclusive ownership snoop (BusRdX) for a 
cache line
– If cache line is modified in cache (M), write the cache line back 

to memory (WB), discard it and transition to I
– If cache line is unmodified (E or S), discard it and transition to I

Udo Steinberg, SS 2011
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M

SE

I

BusRdX -> WB

PrRd -> BusRd (!HIT) PrRd -> BusRd (HIT)

BusRd -> HIT

BusRd

BusRdX

BusRdX

PrRd

PrWr -> BusRdX*

PrRd

PrWr

PrRd

PrWr

BusRdX

BusRd -> HIT

BusRd -> WB

PrWr -> BusRdX

MESI Cache Coherency Protocol

Processor Transition
Snoop Transition
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MOESI Cache Coherency Protocol

• Modified (M) Modified-Exclusive
– No copies exist in other caches; local copy is modified
– Memory is stale; Cache supplies copy instead of memory

• Owner (O) Modified-Shared
– Unmodified copies may exist in other caches; local copy is modified
– Memory is stale; Cache supplies copy instead of memory

• Exclusive (E)
– No copies exist in other caches
– Memory is up-to-date

• Shared (S)
– Unmodified copies may exist in other caches
– Memory is up-to-date unless a processor holds copy in O state

• Invalid (I)
– Not in cache

Udo Steinberg, SS 2011
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MOESI Cache Coherency Protocol (Transitions)

• Similar to MESI, with some extensions

• Cache-to-Cache transfers of modified cache lines
– Cache in M or O state always transfers (XFER) cache line to 

requesting cache instead of memory supplying the cache line

• Avoids write-back to memory when another processor accesses the 
cache line
– Beneficial when cache-to-cache latency/bandwidth is better than 

cache-to-memory latency/bandwidth
– E.g., multi-core CPU with shared last-level cache

Udo Steinberg, SS 2011



Memory Consistency & Cache Coherency 43

M O

SE

I

PrRd PrRd  -> BusRd (!HIT) PrRd  -> BusRd (HIT) PrRd

PrRd

PrRd

PrWr

PrWr

PrWr -> BusRdX

PrWr -> BusRdX

PrWr  -> BusRdX*

BusRd -> HIT, XFER

BusRdX -> XFER

BusRd -> HIT

BusRdX

BusRd

BusRdX

BusRd -> HIT

BusRdX

BusRd -> HIT, XFER

BusRdX -> XFER

MOESI Cache Coherency Protocol

Processor Transition
Snoop Transition
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Coherency in Multi-Level Caches

• Bus only connected to last-level cache (e.g., L2)

• Problem:
– Snoop requests are relevant to inner-level caches (e.g, L1)
– Modifications made in L1 may not be visible to L2 (and the bus)

• L1 intervention:
– on BusRd check if cache line is M in L1 (may be E or S in L2)
– on BusRdX send invalidation to L1

• Some interventions not needed when L1 is write-through
– but causes more write traffic to L2

Udo Steinberg, SS 2011


