
1
Copyright © Amnon Barak 2011

The MOSIX Algorithms for
Managing Cluster, Multi-Clusters,

GPU Clusters and Clouds

Prof. Amnon Barak
 Department of Computer Science

The Hebrew University of Jerusalem

http:// www . MOSIX . Org

2
Copyright © Amnon Barak 2011

Background
Most cluster and cloud packages evolved from batch

dispatchers	

•  View the cluster/Cloud as a set of independent nodes	

•  One user per node, cluster partition for multi-users	

•  Use static allocation of jobs to nodes	

•  Place the burden of management on the users 	

So far a cluster/Cloud OS has not been developed 	

•  Reasons: no industry standards, complexity of development,

massive investment, architecture and OS dependency	

3
Copyright © Amnon Barak 2011

The MOSIX project
R&D of a Multi-computer Operating System (MOS)	

•  Formally: multi-computers are distributed memory

(shared nothing) architectures: clusters, multi-
clusters, Clouds	

•  Geared for HPC	

•  Research emphasis: management algorithms 	

•  Development: infrastructure and tools 	

Goal: a production system that people can use	

4
Copyright © Amnon Barak 2011

The MOS for UNIX (MOSIX)
A multi-computer OS with decentralized management	

•  Based on Unix (Linux)	

•  Provides a single-systems image	

•  As if using one computer with multiple CPUs	

•  Geared to reduce the management complexity to users	

•  The user's "login-node" environment is preserved	

•  Automatic distribution of processes, e.g. load-balancing	

•  No need to "login" or copy files to remote nodes	

•  No need to link applications with special libraries	

•  Limited support for shared-memory	

5
Copyright © Amnon Barak 2011

MOSIX is a unifying management layer

MOSIX - OS

Mostly user-level
 implementation

MOSIX management

All the nodes
run like one
server with
many cores

Applications

SSI

Continuous
feedback about

the state of
resources

Dual
4Core 4Core 2Core

6
Copyright © Amnon Barak 2011

The main software components
1. Preemptive process migration	

•  Can migrate a running processes anytime	

•  Like a course-grain context switch	

•  Implication on caching, scheduling, resource utilization 	

2.  OS virtualization layer	

•  Allows a migrated process to run in remote nodes 	

3. On-line algorithms	

•  Attempt to optimize a given goal function by process migration	

•  Match between required and available resources	

•  Information dissemination – based on partial knowledge	

Note: features that are taken for granted in shared-
memory systems, are not easy to support in a cluster	

7
Copyright © Amnon Barak 2011

Process migration - the home node model

•  Process migration – move the process context to a remote node	

•  System context stay at “home” thus providing a single point of entry 	

•  Process partition preserves the user’s run-time environment	

•  Users need not care where their process are running	

Home node

MOSIX Link ���
reroute syscalls	

Remote node

OS Virtualization layer OS Virtualization layer

Linux Linux

A migrated
process

8
Copyright © Amnon Barak 2011

• A software layer that allows a migrated process to run in remote
nodes, away from its home node	

•  All system-calls are intercepted	

•  Site independent sys-calls are performed locally, others are sent home	

•  Migrated processes run in a sandbox	

• Outcome: 	

•  A migrated process seems to be running in its home node	

•  The cluster seems to the user as one computer	

•  Run-time environment of processes are preserved - no need to change or

link applications with any library, copy files or login to remote nodes	

• Drawback: increased (reasonable) communication overhead	

The OS virtualization layer

9
Copyright © Amnon Barak 2011

Reasonable overhead:
Linux vs. migrated MOSIX process times (Sec.), 1Gbit-Ethernet

1.39% 1.16% 1.47% 0.32%

1.67% 1.18% 1.85% 0.5%
621.8 608.3 639.5 727.0 Migrated process to another

cluster (1Km away) slowdown

620.1
476

611.6
BLAT

608.2
206

601.2
JEL

637.1
90
627.9

SW

725.7 Migrated process- same cluster
slowdown

0 Total I/O (MB)
723.4 Local - Linux process (Sec.)

RC Application

Sample applications:

RC = CPU-bound job SW = Proteins sequences
JEL = Electron motion BLAT = Protein alignments

10
Copyright © Amnon Barak 2011

On-line management algorithms
•  Competitive algorithms for initial assignment of processes to the best available���

 nodes (2 papers in IEEE PDS)	

•  Gossip algorithm to support a distributed bulletin board (Concurrency P&E)	

•  Process migration	

•  For load-balancing and from slower to faster nodes (several papers) 	

•  From nodes that run out of free memory, IPC optimizations	

•  Administration of a multi-cluster (CCGrid05) 	

•  Parallel compression of correlated files (Cluster07)	

•  Fair (proportional) share node allocation (CCGrid07)	

•  Cloud economy (AAMAS2008, GECON2008, Grid2008)	

•  Job migration by combining process and VM migration (Cluster08)	

•  Research in progress	

•  GPU cluster computing	

11
Copyright © Amnon Barak 2011

Resource discovery by a “gossip algorithm”
•  All the nodes disseminate information about relevant

resources: CPU speed, load, memory, IPC, I/O local/
remote	

•  Info exchanged in a random fashion - to support scalable

configurations and overcome node failures	

•  Useful for initial allocation and process migration 	

•  Example: a compilation farm - assign the next job to least

loaded node	

•  Main research issues: 	

•  How much/often info should be circulated	

•  How long to use old information (Mitzenmacher)	

•  How it scales up	

12
Copyright © Amnon Barak 2011

Distributed bulletin board

•  An n node cluster/Cloud system
–  Decentralized control
–  Nodes can fail at any time

•  Each node maintains a data structure (vector) with an
entry about selected (or all) the nodes

•  Each entry contains:
–  State of the resources of the corresponding node, e.g. load
–  Age of the information (tune to the local clock)

•  The vector is used by each node as a distributed bulletin
board
–  Provides information about allocation of new processes

13
Copyright © Amnon Barak 2011

Information dissemination algorithm

• Each time unit:	

• Update the local information	

• Find all vector entries that are

up to age t (a window)	

• Choose a random node	

• Send the window to that node	

• Upon receiving a window	

• Update the received entries age	

• Update the entries in which the

newly received information is
newer 	

A:0 B:12 C:2 D:4 E:11

A:0 C:2 D:4

A:0 B:12 C:2 D:4 E:11

B:1 C:3 E:3

Node:Age

14
Copyright © Amnon Barak 2011

Main results

•  The number of entries that poses
information about node N with age
up to T

•  The expected average age of vector
(Aw expected age of the window)

•  The expected maximal age

•  The expected number of entries
with age below t :

For an n node system we showed how to find

Outcome: we can guarantee age properties of the vector entries

15
Copyright © Amnon Barak 2011

Load-balancing

Heuristics: reduce variance between pairs of nodes	

•  Decentralized - pair-wise decisions	

•  Responds to load imbalances	

•  Migrate from over-loaded to under-loaded nodes ���

or form slower to faster nodes	

•  Competitive with the optimal allocation	

•  Near optimal performance	

•  Greedy, can get to a local minimum	

•  Why: placement problem is NP-hard	

16
Copyright © Amnon Barak 2011

Load balancing algorithms

•  When - Load difference between a pair of nodes is
above a threshold value	

•  Which - Oldest process (assumes past-repeat)	

•  Where - To the known node with the lowest load	

•  Many other heuristics ���

•  Performance: our online algorithm is only ~2%
slower than the optimal algorithm (which has
complete information about all the processes)	

17
Copyright © Amnon Barak 2011

Memory ushering

•  Heuristics: initiate process migration from a node with
no free memory to a node with available free memory	

•  Useful: when non-uniform memory usage (many users) ���
or nodes with different memory sizes	

•  Overrides load-balancing ���

•  Recall: placement problem is NP-hard	

18
Copyright © Amnon Barak 2011

Memory ushering algorithm

•  When - free memory drops below a threshold	

•  Where - the node with the lowest load, to avoid

unnecessary follow-up migrations	

•  Which - smallest process that brings node under

threshold	

•  To reduce the communication overhead ���

19
Copyright © Amnon Barak 2011

IPC optimizations

•  Reduce the communication overhead by migrating
data intensive processes “near” the data	

•  Reduce IPC by migrating communicating processes
to the same node (IPC via shared-memory) 	

20
Copyright © Amnon Barak 2011

Administrating a multi-cluster
Model: a federation of clusters, servers and workstations

whose owners wish to cooperate from time to time	

•  Collectively administrated	

•  Each owner maintains its private cluster	

•  Determine the priorities vs. other clusters	

•  Clusters can join or leave at any time	

•  Dynamic partition of nodes to private virtual clusters	

•  Users of a group access the Cloud via their private cluster and

workstations	

Outcome: each cluster and the whole Cloud perform
like a single computer with many processors 	

21
Copyright © Amnon Barak 2011

The priority scheme

•  Cluster owners can assign priorities
to processes from other clusters	

•  Local and higher priority processes

force out lower priority processes	

•  Pairs of clusters could be shared,

symmetrically(C1-C2) or asymmetrically(C3-C4)	

•  A cluster could be shared (C6) among
other clusters (C5, C7) or blocked for
migration from other clusters (C7)	

•  Dynamic partitions of nodes to private
virtual clusters	

Outcome: flexible use of nodes in
shared clusters	

c1 c2

c3 c4

c7

Symmetrically

A-symmetrically

c6 c5

22
Copyright © Amnon Barak 2011

When priorities are needed
•  Scenario 1: one cluster, some users run many jobs,

depriving other users from their fair share	

•  Scenario 2: some users run long jobs while other user

need to run short jobs	

•  Scenario 3: several groups share a common cluster	

•  Solution: partition the cluster to several sub-clusters and allow

each user to login to only one sub-cluster	

•  Processes of local users (in each sub-cluster) has higher
priority over all guest processes from other sub-clusters	

•  Users in each sub-cluster can still benefit from idle nodes
in other sub-clusters	

23
Copyright © Amnon Barak 2011

Support disruptive configuration
When a private cluster is disconnected: 	

•  All guest processes move out	

•  To available nodes or to the home cluster 	

•  All migrated processes from that cluster move back	

•  Returning processes are frozen (image stored) on disks	

•  Try to do that for 100 jobs of 2GB each	

•  Frozen processes are reactivated gradually	

Goal:	

•  Preserve long running processes	

24
Copyright © Amnon Barak 2011

Parallel compression of correlated files
•  Method 1: concurrent serial compressors -

simultaneously compress the memory images at
each node, then send to the repository	

•  Problem: takes longer to compress and send a

memory image than sending it uncompressed	

•  Method 2: Assumption: memory images of a

parallel job are correlated: 	

•  The processes use the same code and libraries	

•  Typically, these processes share the same database 	

•  There are large substrings common to these images	

•  Idea: Eliminate inter-file redundancy	

25
Copyright © Amnon Barak 2011

Parallel algorithm
•  For each memory image:

–  Partition the file into equal chunks
–  Obtain hash value for each chunk
–  Exchange hash values with the other

nodes to find duplicate chunks

–  Compress the file, replacing
duplicate chunks with pointers
•  Advantage: no need to transfer the whole

file to compare chunks, just the hash values
•  The basis of the rsync protocol

•  Improvement: use serial
compressors on results to further
compress each file

0xB6C…

0xA4F…

…
0xBEE… 0xB6C… 0x87F…

0x321…

…

26
Copyright © Amnon Barak 2011

Example: RxRySpace compression ratios
•  Medical application creates 2D projections of 3D CT data
•  Average image size: 509MB, Total size 99GB
•  Run on 64 dual-core nodes with 2GB RAM

27
Copyright © Amnon Barak 2011

Fair-share node allocation

•  Most cluster and Cloud management systems do
not provide adequate means for fair share
allocation, e.g. as in multi-core systems	

•  New users may need to wait a long time until

scheduled to run	

•  We developed on-line algorithms and a runtime

environment for fair share scheduling in a cluster	

28
Copyright © Amnon Barak 2011

Single-node Fair-Share (FS) scheduling
• A scheduling strategy for proportional allocation of the

CPU to users 	

• Users get a predefined percentage of the CPU	

•  As opposed to the OS default which is equal distribution among processes	

• Lottery and Stride are two well known algorithms for FS

scheduling in a single-node	

• VMware & Xen supports proportional share scheduling of VMs	

User A User B User D User D User D

29
Copyright © Amnon Barak 2011

Cluster FS by time-sharing (Horizontal Partitioning)

• Cluster-wide proportional resource allocation to all users	

• Time sharing [Arpaci-Dusseau et al PDPTA 1997]	

•  Resources are allocated proportionally within each node using a single node
scheduler (like stride)	

•  Based on the desired proportions and the current allocation, ���
a supervisor algorithm determines the local proportion allocated to each user
on each machine	

User A

User B

User C

User A

User C

User B

User C

User A

User B

User C

n1 n2 n3 n4

30
Copyright © Amnon Barak 2011

Cluster FS by space-sharing (vertical partitioning)

• Proportional allocation of disjoint sets of nodes to users
(one user per node)	

• Non-preemptive: size of sets can be changed only when jobs

are started or finished	

•  Common in batch systems 	

• Preemptive space-sharing: size of sets can be dynamically

changed while jobs are running.	

•  Requires process or VM migration	

User A User A User B User B User C User C

n1 n2 n3 n4 n5 n6

User D
User D

User D

31
Copyright © Amnon Barak 2011

A distributed dynamic proportional-share scheduler
•  A distributed, preemptive space-sharing scheduler was developed	

•  A central algorithm, maintains one queue for all the users	

•  Our distributed algorithm (without a single queue) 	

•  Each node continuously monitors the current allocation of nodes to users	

•  The nodes with the highest id that is already allocated to a user which is

using more nodes than its entitled share becomes a potential candidates to
be reallocated 	

•  This node adjust the local MOSIX priority, to allow users which deserve more

nodes to obtain nodes if in need	

•  In case of non integer shares, the algorithm circulate some nodes among

different users 	

•  2 users 3 nodes	

32
Copyright © Amnon Barak 2011 Time (min)0102030405060Number of nodes0102030405060P1P2P3P4P5

Example on a 60 nodes cluster
• Gradually adding up to 5 users	

•  Then gradually removing 2 partners at a time	

33
Copyright © Amnon Barak 2011

Reach the clouds
Cloud computing allows user to run applications

and store data on remote clusters/data-centers via
the internet	

•  Some providers: Amazon, Google, IBM	

•  Relevant issues: cost, convenience, trust	

•  The MOSIX “reach the clouds” (MRC) tools: 	

•  Users can run applications clouds, while still

using local files	

•  By exporting local file systems to remote clusters	

•  No need to store or copy files in the clouds	

34
Copyright © Amnon Barak 2011

Our campus multi-cluster (HUGI)
•  18 production MOSIX clusters ~730 nodes, ~950 CPUs	

•  In life-sciences, med-school, chemistry and computer science	

•  Priorities among users from different departments	

•  Sample applications:	

•  Nano-technology	

•  Molecular dynamics	

•  Protein folding, Genomics (BLAT, SW)	

•  Weather forecasting	

•  Navier-Stokes equations and turbulence (CFD) 	

•  CPU simulator of new hardware design (SimpleScalar)S	

35
Copyright © Amnon Barak 2011

Current project: MOSIX GPU cluster
•  Heterogeneous computing systems can dramatically increase the

performance of parallel applications	

•  Currently, applications that utilize GPU devices, run their device
code only on local devices, were they started	

•  The MOSIX Virtual OpenCL (VCL) cluster platform can run
unmodified OpenCL applications transparently on clusters with
many devices.	

•  VCL provides an OpenCL platform in which all the cluster
devices are seen as if they are located in the hosting-node	

• Benefits OpenCL applications that can use many devices
concurrently	

35

36
Copyright © Amnon Barak 2011

VCL highlights
• Geared for running applications on clusters	

• Applications can make use of both multi-core CPUs and many
GPUs	

• Especially benefits parallel applications that can use
multiple devices concurrently, e.g. HPC	

• Supports an OpenMP-like programming environment and MPI-
like concurrent access to cluster-wide devices	

• Provides a shared pool of devices for many users	

• Applications can even be started from workstations without
GPU devices	

36

37
Copyright © Amnon Barak 2011

The VCL run-time model
•  VCL is designed to run applications that combine a CPU

process with parallel computations on many GPUs	

•  The CPU process runs on a single “hosting” node	

• Responsible for the overall program flow	

• May perform some computation	

• Can be multi-threaded, to utilize available cores in the hosting node	

•  The GPU programs (kernels) can run on multiple devices,
e.g. GPUs, CPUs, APUs	

• The locations of the devices is transparent to the program	

37

38
Copyright © Amnon Barak 2011

Combines benefits of OpenMP and MPI
•  Applications benefit from:	

• Reduced programming complexity of a single computer, as in
OpenMP	

• Availability of shared-memory, multi-threads and lower level parallelism	

• Recall: development of parallel applications is simpler in OpenMP than in MPI 	

• Concurrent access to cluster-wide devices, as in MPI	

•  Outcome: 	

• Full benefit of VCL manifest with applications that utilize many
devices	

• The VCL model is particularly suitable for applications that can
make use of shared-memory on many-core computers	

38

39
Copyright © Amnon Barak 2011

CPU – GPU

APU

Using multiple GPUs in a cluster

39

CPU Process
uses local & remote devices

Hosting node

GPU Device

Backend daemon

VCL Library

Broker

Remote node

GPU Device

Backend daemon

Broker

40
Copyright © Amnon Barak 2011

SHOC - FFT performance on a cluster
•  256 MB buffer, 1000 – 8000 iterations on 1, 4 and 8 nodes	

40

Number	

 of
Iterations	

Native
OpenCL���

Time
(Sec.)	

no VCL	

VCL - 4 Nodes	
 VCL - 8 Nodes	

Time
(Sec.)	

Speedup	
 Time
(Sec.)	

Speedup	

1000	
 42.34	
 19.27	
 2.19	
 16.29	
 2.60	

2000	
 82.25	
 30.11	
 2.73	
 22.03	
 3.73	

4000	
 162.17	
 52.58	
 3.08	
 33.37	
 4.86	

8000	
 321.91	
 97.53	
 3.29	
 55.95	
 5.74	

