
© 2016 IBM Corporation

High-Performance and Scalable Updates:
The Issaquah Challenge

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

TU-Dresden Distributed Operating Systems, June 6, 2016

© 2016 IBM Corporation2

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Overview

The Issaquah Challenge

Parallelism and the Laws of Physics

Special Case for Parallel Updates

The Issaquah Challenge: Second Solution

© 2016 IBM Corporation3

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Atomic Multi-Structure Update: Issaquah Challenge

© 2016 IBM Corporation4

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree

© 2016 IBM Corporation5

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!

© 2016 IBM Corporation6

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solutions “need not apply”

© 2016 IBM Corporation7

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Issaquah Update: History

N4037 (May 2014): Crude first solution

CPPCON (September 2014): Some scalability

LCA (January 2015): Decent scalability, minor modifications
to textbook algorithms to enable complex atomic updates, OK
reliability

ACM Applicative Conference (June 2016):
–Fewer levels of indirection, courtesy of Dmitry Vyukov
–Wrapper architecture allows RCU-enabled concurrent data structures

to be used unchanged
–Cleanup after atomic update now automated, as is cleanup after

backout operation
–But starting from ground zero on scalability and reliability!

© 2016 IBM Corporation8

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

But Aren't Parallel Updates A Solved Problem?

© 2016 IBM Corporation9

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Parallel-Processing Workhorse: Hash Tables

Lock

Lock

Lock

Lock

Lock

Lock

A

B

E

G

F

C D

Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!
In theory, anyway...In theory, anyway...

© 2016 IBM Corporation10

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Mostly Workloads Scale Well,
Update-Heavy Workloads, Not So Much...

And the horrible thing? Updates are all locking ops!

© 2016 IBM Corporation11

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

But Hash Tables Are Partitionable! # of Buckets?

S
o

m
e

im
p

ro
ve

m
en

t,
 b

u
t.

..

© 2016 IBM Corporation12

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Hardware Structure and Laws of Physics

Electrons move at 0.03C to 0.3C in transistors and, so need locality of referenceElectrons move at 0.03C to 0.3C in transistors and, so need locality of reference

S
O

L
 R

T
 @

 2
G

H
z

S
O

L
 R

T
 @

 2
G

H
z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

© 2016 IBM Corporation13

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Two Problems With Fundamental Physics...

© 2016 IBM Corporation14

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Problem With Physics #1: Finite Speed of Light

Observation by Stephen Hawking

© 2016 IBM Corporation15

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Problem With Physics #2: Atomic Nature of Matter

Observation by Stephen Hawking

© 2016 IBM Corporation16

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Mostly Access Dodges The Laws of Physics!!!
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all cachesRead-only data remains replicated in all caches

© 2016 IBM Corporation17

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Updates, Not So Much...
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!

© 2016 IBM Corporation18

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Updates, Not So Much... Must Leverage Locality!
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Each CPU operates on its own “shard” of the data,Each CPU operates on its own “shard” of the data,
preserving cache locality and performancepreserving cache locality and performance

© 2016 IBM Corporation19

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Dodging the Laws of Physics for Updates

Do not write to shared memory unless you absolutely must
–Read-only traversal of search structures is very rewarding

Give each CPU a separate data shard (with high probability)
–Not always easy with hash tables, but straightforward with many tree-

like data structures
–Too bad about concurrent rebalancing

• Which is one reason to pay close attention to skiplists!

© 2016 IBM Corporation20

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Only Traversal To Location Being Updated

© 2016 IBM Corporation21

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Why Read-Only Traversal To Update Location?

Consider a binary search tree

Classic locking methodology would:
1) Lock root
2) Use key comparison to select descendant
3) Lock descendant
4) Unlock previous node
5) Repeat from step (2)

The lock contention on the root is not going to be pretty!
–And we won't get contention-free moves of independent elements, so

this cannot be a solution to the Issaquah Challenge

© 2016 IBM Corporation22

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

Quick overview, references at end of slideset.

© 2016 IBM Corporation23

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

Quick overview, references at end of slideset.

© 2016 IBM Corporation24

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

 But how can something that does not affect machine state possibly be
used as a synchronization primitive???

Quick overview, references at end of slideset.

© 2016 IBM Corporation25

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

RCU Addition to a Linked Structure

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

q
=

 r
cu

_d
er

ef
er

en
ce

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readerp p p

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!
rc

u_
as

si
gn

_p
oi

nt
er

(c
pt

r,p
)

© 2016 IBM Corporation26

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

RCU Safe Removal From Linked Structure

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())
– Writer waits for all readers to finish (synchronize_rcu())
– Writer can then free the cat's element (kfree())

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

kf
re

e(
)

© 2016 IBM Corporation27

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

RCU Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat

© 2016 IBM Corporation28

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to
change machine state

–Instead, they act on the developer, who must avoid blocking within
RCU read-side critical sections

© 2016 IBM Corporation29

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to
change machine state

–Instead, they act on the developer, who must avoid blocking within
RCU read-side critical sections

RCU is therefore synchronization via social engineering

© 2016 IBM Corporation30

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to
change machine state

–Instead, they act on the developer, who must avoid blocking within
RCU read-side critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Access shared variables only while holding the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use

lightweight code in addition to social engineering

© 2016 IBM Corporation31

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

RCU Is Specialized, And Will Need Help...

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

© 2016 IBM Corporation32

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Only Traversal To Update Location

© 2016 IBM Corporation33

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Deletion-Flagged Read-Only Traversal

 for (;;)
–rcu_read_lock()
–Start at root without locking
–Use key comparison to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If to-be-updated location's “removed” flag is not set:

• Break out of “for” loop
–Release locks on update location
–rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()

© 2016 IBM Corporation34

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–David et al., “Asynchronized Concurrency: The Secret to Scaling

Concurrent Search Data Structures”, Apr 2015 SIGPLAN Notices
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal,

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary

Search Trees”, ACM TODS, September, 1980

© 2016 IBM Corporation35

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Issaquah Challenge: One Solution

© 2016 IBM Corporation36

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Synchronization Regions for Binary Search Tree

In many cases, can implement existence as simple wrapper!

.

.

RCU RCU

Locking Locking

Existence

© 2016 IBM Corporation37

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Possible Upsets While Acquiring Locks...

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!

© 2016 IBM Corporation38

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Possible Upsets While Acquiring Locks...
But Independent of Atomic Moves!

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!

© 2016 IBM Corporation39

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures

© 2016 IBM Corporation40

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures

Solving yet another computer-science problem by adding an
additional level of indirection...

© 2016 IBM Corporation41

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Example Existence Structure Before Switch
(LCA 2015 Implementation)

Data
Structure A

Existence

Data
Structure B

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

© 2016 IBM Corporation42

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Example Existence Structure After Switch
(LCA 2015 Implementation)

Existence

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

Data
Structure A

Data
Structure B

© 2016 IBM Corporation43

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence
Switch 0/1

Data
Structure A

Data
Structure B

© 2016 IBM Corporation44

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence

Switch 0

Data
Structure A

Data
Structure B

© 2016 IBM Corporation45

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence

Switch 1

Data
Structure A

Data
Structure B

© 2016 IBM Corporation46

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.

© 2016 IBM Corporation47

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

First tree contains 1,2,3, second tree contains 2,3,4.

0

1

© 2016 IBM Corporation48

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

0

1

© 2016 IBM Corporation49

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic! (But lookups need barriers in this case.)

1

0

© 2016 IBM Corporation50

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

Unlink old nodes and existence structure
(Now automated!)

0

0

1

© 2016 IBM Corporation51

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Abbreviated Allegiance Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!

© 2016 IBM Corporation52

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Pointer tag indicates outgoing (0) or incoming (1)
• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!

© 2016 IBM Corporation53

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Data Structures

struct existence_group {

 uintptr_t eg_state;

 struct cds_list_head eg_outgoing;

 struct cds_list_head eg_incoming;

 struct rcu_head eg_rh;

};

struct existence_head {

 uintptr_t eh_egi;

 struct cds_list_head eh_list;

 int (*eh_add)(struct existence_head *ehp);

 void (*eh_remove)(struct existence_head *ehp);

 void (*eh_free)(struct existence_head *ehp);

 int eh_gone;

 spinlock_t eh_lock;

 struct rcu_head eh_rh;

};

© 2016 IBM Corporation54

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence APIs

 void existence_init(struct existence_group *egp);

 uintptr_t existence_group_outgoing(struct existence_group *egp);

 uintptr_t existence_group_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence_head *ehp);

 int existence_exists_relaxed(struct existence_head *ehp);

 int existence_head_init_incoming(struct existence_head *ehp,

 struct existence_group *egp,

 int (*eh_add)(struct existence_head *ehp),

 void (*eh_remove)(struct existence_head *ehp),

 void (*eh_free)(struct existence_head *ehp))

 int existence_head_set_outgoing(struct existence_head *ehp,

 struct existence_group *egp)

 void existence_flip(struct existence_group *egp);

 void existence_backout(struct existence_group *egp)

© 2016 IBM Corporation55

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Data Structures: Multiple Membership

Data Structure
Header

existence_head
structure

User Pointer

existence_group
structure

Data Structure
Header

existence_head
structure

User Pointer

Data Structure 1 Data Structure 2

User Data
Element

User data element atomically moving from data structure 1 to 2,
which can be different types of data structures

© 2016 IBM Corporation56

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Pseudo-Code for Atomic Move

 Allocate and initialize existence_group structure (existence_group_init())

 Add outgoing existence structure to item in source tree
(existence_head_set_outgoing())

–If operation fails, existence_backout() and report error to caller
–Or maybe retry later

 Insert new element (with source item's data pointer) to destination tree
existence_head_init_incoming())

–If operation fails, existence_backout() and error to caller
–Or maybe retry later

 Invoke existence_flip() to flip incoming and outgoing
–And existence_flip() automatically cleans up after the operation
–Just as existence_backout() does after a failed operation

© 2016 IBM Corporation57

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Rotate 3 Elements Through 3 Hash Tables (1/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

EL 1 EL 2 EL 3

© 2016 IBM Corporation58

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Rotate 3 Elements Through 3 Hash Tables (2/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 0

© 2016 IBM Corporation59

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Rotate 3 Elements Through 3 Hash Tables (3/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 1

© 2016 IBM Corporation60

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Rotate 3 Elements Through 3 Hash Tables (4/4)

HT 1 HT 2 HT 3

incoming incoming incoming

EL 1 EL 2 EL 3

© 2016 IBM Corporation61

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Data to Rotate 3 Elements Through 3 Hash Tables

struct keyvalue {

 unsigned long key;

 unsigned long value;

 atomic_t refcnt;

};

struct hash_exists {

 struct ht_elem he_hte;

 struct hashtab *he_htp;

 struct existence_head he_eh;

 struct keyvalue *he_kv;

};

© 2016 IBM Corporation62

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible

© 2016 IBM Corporation63

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
Works with an RCU-protected hash table that knows nothing of atomic move!!!

© 2016 IBM Corporation64

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Performance and Scalability

100% lookups
Super-linear as expected based on range partitioning

(Hash tables about 3x faster)

80.5x

89.8x

CPPCON

LCA

© 2016 IBM Corporation65

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

40.0x

CPPCON

LCA

© 2016 IBM Corporation66

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Performance and Scalability

100% moves (worst case)

7.1x
6.4x

3.7x

CPPCON

LCA

N4037

© 2016 IBM Corporation67

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Performance and Scalability

100% moves: Still room for improvement!
But at least we are getting positive scalability...

12.7x

29.2x

CPPCON

LCA

© 2016 IBM Corporation68

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Performance and Scalability of New-Age Existence
Structures?

© 2016 IBM Corporation69

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Performance and Scalability of New-Age Existence
Structures?

For readers, as good as ever

For update-only triple-hash rotations, not so good!

© 2016 IBM Corporation70

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Triple-Hash Rotations are Pure Updates: Red Zone!

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Opportunity to improve the infrastructure!

© 2016 IBM Corporation71

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but

I first heard of this a few years back and it still has not made its appearance

© 2016 IBM Corporation72

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but

I first heard of this a few years back and it still has not made its appearance

 Fortunately, I have long experience with memory allocators
– McKenney & Slingwine, “Efficient Kernel Memory Allocation on Shared-Memory

Multiprocessors”, 1993 USENIX
– But needed to complete implementation in one day, so chose quick hack

© 2016 IBM Corporation73

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Specialized Producer/Consumer Allocator

RCU Callbacks

Worker Threads

Lockless
Memory Queue

Lockless
Memory Queue

Lockless
Memory Queue

© 2016 IBM Corporation74

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• Lockless memory queue greatly reduces memory-allocator lock contention

– Userspace RCU callback handling appears to be the next bottleneck
• Perhaps some of techniques from the Linux kernel are needed in userspace

© 2016 IBM Corporation75

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Performance and Scalability of New-Age Existence
Structures for Triple Hash Rotation?

© 2016 IBM Corporation76

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management

 Existence-based exchange operations require linked structures that
accommodate duplicate elements

– Current prototypes disallow duplicates, explicit check for hash tables

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention
management

 Existence achieves semi-decent performance and scalability

 Flip/backout automation significantly eases memory management

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!

© 2016 IBM Corporation77

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

When Might You Use Existence-Based Update?

We really don't know yet
–But similar techniques are used by Linux-kernel filesystems

Best guess is when one or more of the following holds and
you are willing to invest significant developer effort to gain
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single

pointer update
–Read-mostly to amortize higher overhead of complex updates
–Need compatibility with hardware not supporting transactional memory

• Side benefit: Dispense with the need for software fallbacks!
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update

© 2016 IBM Corporation78

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Production Readiness

© 2016 IBM Corporation79

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

LCA'15R&D Prototype

N4037

RCU

Current

© 2016 IBM Corporation80

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Production Readiness

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances
Need this for Internet of Things,
Validation is a big unsolved problem

R&D Prototype

No, it is not production ready (but was getting there)

Current

N4037 Current

RCU

© 2016 IBM Corporation81

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Structures: Known Antecedents

Fraser: “Practical Lock-Freedom”, Feb 2004
–Insistence on lock freedom: High complexity, poor performance
–Similarity between Fraser's OSTM commit and existence switch

McKenney, Krieger, Sarma, & Soni: “Atomically Moving List
Elements Between Lists Using Read-Copy Update”, Apr 2006

–Block concurrent operations while large update is carried out

Triplett: “Scalable concurrent hash tables via relativistic
programming”, Sept 2009

Triplett: “Relativistic Causal Ordering: A Memory Model for
Scalable Concurrent Data Structures”, Feb 2012

–Similarity between Triplett's key switch and allegiance switch
–Could share nodes between trees like Triplett does between hash

chains, but would impose restrictions and API complexity

© 2016 IBM Corporation82

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Summary

© 2016 IBM Corporation83

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Summary

Complex atomic updates can be applied to unmodified RCU-
aware concurrent data structures

–Need functions to add, remove, and free elements
–Free to use any synchronization mechanism
–Free to use any memory allocator

Flip/backout processing can be automated

High update rates encounter interesting bottlenecks in the
infrastructure: Memory allocation and userspace RCU

–Read-mostly workloads continue to perform and scale well

Lots of opportunity for collaboration and innovation!

© 2016 IBM Corporation84

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/

– Turner et al: “PerCPU Atomics”
• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf

© 2016 IBM Corporation85

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcang

eli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2016 IBM Corporation86

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2016 IBM Corporation87

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf

© 2016 IBM Corporation88

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2016 IBM Corporation89

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Questions?

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

