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Overview

The Issaquah Challenge

Parallelism and the Laws of Physics

Special Case for Parallel Updates

The Issaquah Challenge: Second Solution
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Atomic Multi-Structure Update: Issaquah Challenge
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solutions “need not apply”
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Issaquah Update: History

N4037 (May 2014): Crude first solution

CPPCON (September 2014): Some scalability

LCA (January 2015): Decent scalability, minor modifications 
to textbook algorithms to enable complex atomic updates, OK 
reliability

ACM Applicative Conference (June 2016):
–Fewer levels of indirection, courtesy of Dmitry Vyukov
–Wrapper architecture allows RCU-enabled concurrent data structures 

to be used unchanged
–Cleanup after atomic update now automated, as is cleanup after 

backout operation
–But starting from ground zero on scalability and reliability!
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But Aren't Parallel Updates A Solved Problem?
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Parallel-Processing Workhorse: Hash Tables
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Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!
In theory, anyway...In theory, anyway...
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Read-Mostly Workloads Scale Well,
Update-Heavy Workloads, Not So Much...

And the horrible thing?  Updates are all locking ops!
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But Hash Tables Are Partitionable!  # of Buckets?
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Hardware Structure and Laws of Physics

Electrons move at 0.03C to 0.3C in transistors and, so need locality of referenceElectrons move at 0.03C to 0.3C in transistors and, so need locality of reference
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Two Problems With Fundamental Physics...
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Problem With Physics #1: Finite Speed of Light

Observation by Stephen Hawking
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Problem With Physics #2: Atomic Nature of Matter

Observation by Stephen Hawking
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Read-Mostly Access Dodges The Laws of Physics!!!
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Read-only data remains replicated in all cachesRead-only data remains replicated in all caches
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Updates, Not So Much...
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Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!
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Updates, Not So Much...  Must Leverage Locality!
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Each CPU operates on its own “shard” of the data,Each CPU operates on its own “shard” of the data,
preserving cache locality and performancepreserving cache locality and performance
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Dodging the Laws of Physics for Updates

Do not write to shared memory unless you absolutely must
–Read-only traversal of search structures is very rewarding

Give each CPU a separate data shard (with high probability)
–Not always easy with hash tables, but straightforward with many tree-

like data structures
–Too bad about concurrent rebalancing

• Which is one reason to pay close attention to skiplists!
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Read-Only Traversal To Location Being Updated
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Why Read-Only Traversal To Update Location?

Consider a binary search tree

Classic locking methodology would:
1) Lock root
2) Use key comparison to select descendant
3) Lock descendant
4) Unlock previous node
5) Repeat from step (2)

The lock contention on the root is not going to be pretty!
–And we won't get contention-free moves of independent elements, so 

this cannot be a solution to the Issaquah Challenge
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

Quick overview, references at end of slideset.
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

Quick overview, references at end of slideset.
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, OLFIT reader-updater interaction, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

 But how can something that does not affect machine state possibly be 
used as a synchronization primitive???

Quick overview, references at end of slideset.
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RCU Addition to a Linked Structure
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RCU Safe Removal From Linked Structure
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 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())
– Writer waits for all readers to finish (synchronize_rcu())
– Writer can then free the cat's element (kfree())

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???
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RCU Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections

RCU is therefore synchronization via social engineering
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Access shared variables only while holding the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use 

lightweight code in addition to social engineering
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RCU Is Specialized, And Will Need Help...

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)
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Read-Only Traversal To Update Location
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Deletion-Flagged Read-Only Traversal

 for (;;)
–rcu_read_lock()
–Start at root without locking
–Use key comparison to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If to-be-updated location's “removed” flag is not set:

• Break out of “for” loop
–Release locks on update location
–rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()



© 2016 IBM Corporation34

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–David et al., “Asynchronized Concurrency: The Secret to Scaling 

Concurrent Search Data Structures”, Apr 2015 SIGPLAN Notices
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an 

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal, 

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University 

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary 

Search Trees”, ACM TODS, September, 1980
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Issaquah Challenge: One Solution
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Synchronization Regions for Binary Search Tree

In many cases, can implement existence as simple wrapper!

. . . . . .

. . .. . . . . .

RCU RCU

Locking Locking

Existence
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Possible Upsets While Acquiring Locks...

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!
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Possible Upsets While Acquiring Locks...
But Independent of Atomic Moves!

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!
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Existence Structures
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Existence Structures

Solving yet another computer-science problem by adding an 
additional level of indirection...
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Example Existence Structure Before Switch
(LCA 2015 Implementation)
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Example Existence Structure After Switch
(LCA 2015 Implementation)

Existence

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch
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0
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Data
Structure A

Data
Structure B
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0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence
Switch 0/1

Data
Structure A

Data
Structure B
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0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence

Switch 0

Data
Structure A

Data
Structure B
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0

1

Example Existence Structure: Dmitry's Approach

Existence | 0

Existence | 1

Existence

Switch 1

Data
Structure A

Data
Structure B
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Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.
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Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

First tree contains 1,2,3, second tree contains 2,3,4.

0

1
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Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

0

1
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Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic!  (But lookups need barriers in this case.)

1

0
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Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

Unlink old nodes and existence structure
(Now automated!)

0

0

1
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Abbreviated Allegiance Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!
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Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Pointer tag indicates outgoing (0) or incoming (1)
• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!
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Existence Data Structures

struct existence_group {

        uintptr_t eg_state;

        struct cds_list_head eg_outgoing;

        struct cds_list_head eg_incoming;

        struct rcu_head eg_rh;

};

struct existence_head {

        uintptr_t eh_egi;

        struct cds_list_head eh_list;

        int (*eh_add)(struct existence_head *ehp);

        void (*eh_remove)(struct existence_head *ehp);

        void (*eh_free)(struct existence_head *ehp);

        int eh_gone;

        spinlock_t eh_lock;

        struct rcu_head eh_rh;

};
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Existence APIs

 void existence_init(struct existence_group *egp);

 uintptr_t existence_group_outgoing(struct existence_group *egp);

 uintptr_t existence_group_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence_head *ehp);

 int existence_exists_relaxed(struct existence_head *ehp);

 int existence_head_init_incoming(struct existence_head *ehp,

                                 struct existence_group *egp,

                                 int (*eh_add)(struct existence_head *ehp),

                                 void (*eh_remove)(struct existence_head *ehp),

                                 void (*eh_free)(struct existence_head *ehp))

 int existence_head_set_outgoing(struct existence_head *ehp,

                                struct existence_group *egp)

 void existence_flip(struct existence_group *egp);

 void existence_backout(struct existence_group *egp)
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Existence Data Structures: Multiple Membership

Data Structure
Header

existence_head
structure

User Pointer

existence_group
structure

Data Structure
Header

existence_head
structure

User Pointer

Data Structure 1 Data Structure 2

User Data
Element

User data element atomically moving from data structure 1 to 2,
which can be different types of data structures
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Pseudo-Code for Atomic Move

 Allocate and initialize existence_group structure (existence_group_init())

 Add outgoing existence structure to item in source tree 
(existence_head_set_outgoing())

–If operation fails, existence_backout() and report error to caller
–Or maybe retry later

 Insert new element (with source item's data pointer) to destination tree 
existence_head_init_incoming())

–If operation fails, existence_backout() and error to caller
–Or maybe retry later

 Invoke existence_flip() to flip incoming and outgoing
–And existence_flip() automatically cleans up after the operation
–Just as existence_backout() does after a failed operation
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Rotate 3 Elements Through 3 Hash Tables (1/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

EL 1 EL 2 EL 3
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Rotate 3 Elements Through 3 Hash Tables (2/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 0
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Rotate 3 Elements Through 3 Hash Tables (3/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 1
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Rotate 3 Elements Through 3 Hash Tables (4/4)

HT 1 HT 2 HT 3

incoming incoming  incoming

EL 1 EL 2 EL 3
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Data to Rotate 3 Elements Through 3 Hash Tables

struct keyvalue {

        unsigned long key;

        unsigned long value;

        atomic_t refcnt;

};

struct hash_exists {

        struct ht_elem he_hte;

        struct hashtab *he_htp;

        struct existence_head he_eh;

        struct keyvalue *he_kv;

};
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Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
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Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
Works with an RCU-protected hash table that knows nothing of atomic move!!!
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Existence Structures: Performance and Scalability

100% lookups
Super-linear as expected based on range partitioning

(Hash tables about 3x faster)

80.5x

89.8x

CPPCON

LCA
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Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

40.0x

CPPCON

LCA
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Existence Structures: Performance and Scalability

100% moves (worst case)

7.1x
6.4x

3.7x

CPPCON

LCA

N4037
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Existence Structures: Performance and Scalability

100% moves: Still room for improvement! 
But at least we are getting positive scalability...

12.7x

29.2x

CPPCON

LCA
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Performance and Scalability of New-Age Existence 
Structures?
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Performance and Scalability of New-Age Existence 
Structures?

For readers, as good as ever

For update-only triple-hash rotations, not so good!
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Triple-Hash Rotations are Pure Updates: Red Zone!

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Opportunity to improve the infrastructure!
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New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but 

I first heard of this a few years back and it still has not made its appearance
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New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but 

I first heard of this a few years back and it still has not made its appearance

 Fortunately, I have long experience with memory allocators
– McKenney & Slingwine, “Efficient Kernel Memory Allocation on Shared-Memory 

Multiprocessors”, 1993 USENIX
– But needed to complete implementation in one day, so chose quick hack
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Specialized Producer/Consumer Allocator

RCU Callbacks

Worker Threads

Lockless
Memory Queue

Lockless
Memory Queue

Lockless
Memory Queue
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New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• Lockless memory queue greatly reduces memory-allocator lock contention

– Userspace RCU callback handling appears to be the next bottleneck
• Perhaps some of techniques from the Linux kernel are needed in userspace
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Performance and Scalability of New-Age Existence 
Structures for Triple Hash Rotation?



© 2016 IBM Corporation76

Issaquah Challenge – TU-Dresden Distributed Operating Systems, June 6, 2016

Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management

 Existence-based exchange operations require linked structures that 
accommodate duplicate elements

– Current prototypes disallow duplicates, explicit check for hash tables

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention 
management

 Existence achieves semi-decent performance and scalability

 Flip/backout automation significantly eases memory management

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!
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When Might You Use Existence-Based Update?

We really don't know yet
–But similar techniques are used by Linux-kernel filesystems

Best guess is when one or more of the following holds and 
you are willing to invest significant developer effort to gain 
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single 

pointer update
–Read-mostly to amortize higher overhead of complex updates
–Need compatibility with hardware not supporting transactional memory

• Side benefit: Dispense with the need for software fallbacks!
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update
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Existence Structures: Production Readiness
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Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

LCA'15R&D Prototype

N4037

RCU

Current
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Existence Structures: Production Readiness

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances
Need this for Internet of Things,
Validation is a big unsolved problem

R&D Prototype

No, it is not production ready (but was getting there)

Current

N4037 Current

RCU
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Existence Structures: Known Antecedents

Fraser: “Practical Lock-Freedom”, Feb 2004
–Insistence on lock freedom: High complexity, poor performance
–Similarity between Fraser's OSTM commit and existence switch

McKenney, Krieger, Sarma, & Soni: “Atomically Moving List 
Elements Between Lists Using Read-Copy Update”, Apr 2006

–Block concurrent operations while large update is carried out

Triplett: “Scalable concurrent hash tables via relativistic 
programming”, Sept 2009

Triplett: “Relativistic Causal Ordering: A Memory Model for 
Scalable Concurrent Data Structures”, Feb 2012

–Similarity between Triplett's key switch and allegiance switch
–Could share nodes between trees like Triplett does between hash 

chains, but would impose restrictions and API complexity
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Summary
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Summary

Complex atomic updates can be applied to unmodified RCU-
aware concurrent data structures

–Need functions to add, remove, and free elements
–Free to use any synchronization mechanism
–Free to use any memory allocator

Flip/backout processing can be automated

High update rates encounter interesting bottlenecks in the 
infrastructure: Memory allocation and userspace RCU

–Read-mostly workloads continue to perform and scale well

Lots of opportunity for collaboration and innovation!
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To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf 

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281 
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5 
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal  
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf 
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/ 

– Turner et al: “PerCPU Atomics”
•  http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf
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To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4 
• http://lca2013.linux.org.au/schedule/30168/view_talk 

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcang

eli_html/index.html 
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/ 
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589 
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf 
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf 
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/
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To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227 

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/ 
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html 
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf 

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf 
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf 
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873 
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731 
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900 
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To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf 
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf 

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf 
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867 

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/ 

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating 

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf 

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf 
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf 
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
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Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.
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Questions?

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney
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