

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

BASIC INTRO: COMPUTER SECURITY MODELS

HERMANN HÄRTIG, MARCUS VÖLP, 2017 **CLOSELY FOLLOWING PRESENTATION IN** MB: MATT BISHOP "COMPUTER SECURITY ART AND SCIENCE" (2003)

Subject A can obtain a right on Object B?

Given a System of Entities ("Objects") acting as Subjects and/or Objects

- with clearly-defined limited access rights among themselves
- can we achieve clearly-defined Security Objectives ?

TU Dresden: Hermann Härtig, Marcus Völp

THE QUESTION

- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a

- Definition and Example of "higher-Level" Security Policies (Security Policy Models) (Bell La Padula, Chinese Wall)
- Mechanisms to express/set clearly-defined access rights: Access Control Matrix, ACL, and Capabilities
- Q3 "formalized" in 2 Models: "ACM-based" & "Take Grant"
- Decidable ?
- No proofs (in 2017)

TU Dresden: Hermann Härtig, Marcus Völp

TOPICS OF LECTURE

- "Reasoning":
- Common sense
- Formal Verification
- Careful Inspection
- Mathematics
- "Refinement":
- Abstraction
- Implementation
 - Formal Refinement

TU Dresden: Hermann Härtig, Marcus Völp

THE GENERAL APPROACH Property Model → Reasoning Refinement ·····> Model M → Reasoning -----> Refinement Model L → Reasoning System

Modeling Distributed Systems

"Reasoning":

- Common sense
- Formal Verification
- Careful Inspection
- Mathematics
- "Common Criteria Assurance"

<u>"Refinement":</u>

- Abstraction
- Implementation
- Formal Refinement

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Definiton: Policy

Examples: Higher-Level Policies (very short): Bell La Padula Chinese Wall

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Operating Sys. Mechanisms: Access Control List Capabilities

Explain Q3 and formalize per model!

Models:

- based on Access Control Matrix
 - "take grant" model

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Security Policy secure) states.

<u>Secure System</u> and that cannot enter an unauthorized state (i.e., Σ reachable $\subseteq \Sigma$ sec)

<u>Reference: Matt Bishop: Computer Security Art and Science</u>

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

SECURITY POLICY

A security policy P is a statement that partitions the states S of a system into a set of authorized (or secure) states (e.g., Sec := { $\sigma \in \Sigma | P(\sigma)$ } and a set of unauthorized (or non-

A secure system is a system that starts in an authorized state

ref MB: page 95

CONFIDENTIALITY./.INTEGRITY./.(AVAILABILITY)

Definitions:

- Information or data l is **confidential**
- obtain information about I.
- (1) it is current, correct and complete
- (2) it is either is current, correct, and complete or it is

with respect to a set of entities X if no member of X can

Information I or data is **integer** if (2 definitions in text books)

possible to detect that these properties do not hold.

INFORMAL BELL LAPADULA

Model for Confidentiality

Secrecy Levels:

- Classification (documents)
- Clearance (persons)
- The higher the level the more sensitive the data
- totally ordered
- Categories

TU Dresden: Hermann Härtig, Marcus Völp

information

operations

Modeling Computer Security

- categories: NATO, Nuclear
- document: Nato, secret
- person clearance: read -> allowed secret, Nato -> not allowed secret, Nuclear confidential, Nato -> not allowed

TU Dresden: Hermann Härtig, Marcus Völp

EXAMPLES BLP(TANENBAUM)

levels/clearance: top secret, secret, confidential, unclassified

<u>Confidentiality & Integrity</u>

- Subjects
- Objects: pieces of information of a company
- CD: Company Data Sets objects related to single company
- COI: Conflict of Interest class data sets of competing companies
- Sanitized Objects version of object that does contain critical information

CHINESE WALL POLICY

Ref MB: Chapter 7.1 12 Modeling Computer Security

Subject

TU Dresden: Hermann Härtig, Marcus Völp

CHINESE WALL, EXAMPLE

PR(S): set of Objects previously read by S

- S can read O, if any of the following holds
- first-time read
- $\forall O', O' \in PR(S) => COI(O) \neq COI(O')$
- O is a sanitized Object

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

CHINESE WALL, RULES

VW Objects-Sanitized O

Subject

TU Dresden: Hermann Härtig, Marcus Völp

PR

..........

CHINESE WALL, EXAMPLE

PR(S): set of Objects read by S

S can write O, if

- "S can read O"
- \forall unsanitized O', "S can read O'' => CD(O) = CD(O')

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

CHINESE WALL, RULES

VW

Sanitized O

Subject

Objects-

TU Dresden: Hermann Härtig, Marcus Völp

PR

..........

CHINESE WALL, EXAMPLE

Operating Sys. Mechanisms: Access Control List Capabilities

Explain Q3 and formalize per model!

Models:

- based on Access Control Matrix
 - "take grant" model

TU Dresden: Hermann Härtig, Marcus Völp

NECHANISMS

Modeling Computer Security

- Subjects: S Objects: \bigcirc $E = S \cup O$ Entities: Rights: {read, write, own,...} S x E x R Matrix:
- Simple ACM Operations: create subject / object destroy subject / object enter / delete R into cell (s,o)

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

MECHANISMS: ACCESS CONTROL MATRIX

ref MB: chapter 2.2

ACM

Access Control List (ACL)

Capabilities

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

OS MECHANISMS: ACL & CAPS

	01	02	S1	S2	
S1	r,w,own	r,w	r,w,own		
S2	r,w	r,w,own	_	r,w,own	
S3	r,w	r	W		r,w

ref MB: chapter 2.2

in terms of primitive ACM operations only the defined mechanism provided by the OS can used

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

03/MODEL 1: ACM & "LEAKAGE"

Define Protection Mechanisms of an Operating System

ref MB: chapter 2.2

21

"Leakage": an access right is placed into S/O that has not been there before it does not matter whether or not that is allowed Is leakage decidable ?

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Q3/MODEL 1: ACM & "LEAKAGE"

ref MB: chapter 3

Examples for OS-Mechanisms defined by ACM-Operations:

UNIX create file (S1,F) create object enter own into A(S1,F) enter read into A(S1,F) enter write into A(S1,F)

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Q3/MODEL 1: ACM & "LEAKAGE"

ref MB: chapter 2.2

Examples for OS-Mechanisms defined by ACM-Operations:

UNIX chmod -w (S2,F) if own ∈ A(caller,F) then delete w in A(S2,F)

Q3: Given an OS with a ACM-based description of protection mechanisms is "Leakage" decidable for any R in A(x,y) ?

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Q3/MODEL 1: ACM & "LEAKAGE"

ref MB: chapter 2.2

Decidable

no subjects/objects can be created

or only one primitive ACM operation per OS-Mechanism by exhaustive search !

Q3 in general: undecidable (proof: reduction to Turing machine)

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Q3/MODEL 1: DECIDABILITY OF LEAKAGE

ref MB: chapter 3

Directed Graph: Subjects: ● Objects: ● Either S or O: ⊗

x has capability with set of rights α on y:

TU Dresden: Hermann Härtig, Marcus Völp

Q3/MODEL 2: "TAKE GRANT"

take right x has cap with set of rights τ that includes t

g grant right
x has cap with set of rights
γ that includes g

Rules:

take rule ($\alpha \subseteq \beta$) a takes (α to y) from z

grant rule ($\alpha \subseteq \beta$) Z grants (α to y) to x

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

03/2: TAKE GRANT RULES

ref MB: chapter 3.3

Rules:

create rule

x create (α to new vertex) y

remove rule

x removes (α to) y

Application of rules \vdash^* creates sequences of Graphs Gi

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

03/2: TAKE GRANT RULES

ref MB: chapter 3.3

<u>CanShare(α, x, y, G_0):</u>

there exists a sequence of $G_0 \dots G_n$ with $G_0 \vdash^* G_n$ and there is an edge in Gn:

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

03/N2: FORMALIZED

ref MB: chapter 3.3

29

Question:

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Χ

Х

ref MB: chapter 3.3

create rule

z takes (g to v) from x

z grants (α to y) to v

x takes (α to y) from v

TU Dresden: Hermann Härtig, Marcus Völp

03/2: CAREFUL: LEMMA

<u>CanShare(α, x, y, G₀):</u>

there exists a sequence of $G_0 \dots G_n$ with $G_0 \vdash^* G_n$

and there is an edge:

CanShare decidable in linear time !

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

03/N2: FORMALIZED

ref MB: chapter 3.3

32

three questions, 2 models per question, different answers !!! modeling is powerful need to look extremely carefully into understanding models !!!

TU Dresden: Hermann Härtig, Marcus Völp

Modeling Computer Security

Q1/M1:

vol 54. Springer, Berlin, Heidelberg (in German only) Q1/M2:

FROM UNRELIABLE COMPONENTS.

- Q2: most textbooks on distributed systems Q3: textbook: Matt Bishop, Computer Security, Art and Science, Addison Wesley 2002

REFERENCES

- Pfitzmann A., Härtig H. (1982) Grenzwerte der Zuverlässigkeit von Parallel-Serien-Systemen. In: Nett E., Schwärtzel H. (eds) Fehlertolerierende Rechnersysteme. Informatik-Fachberichte,
- John v. Neuman, PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE. ORGANISMS

