
Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Distributed Operating Systems
Side-Channels

Marcus Hähnel

02.07.2018

1 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

What is a Side-Channel?

Visual side-channel

Which call has a positive connotation?

2 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

What is a Side-Channel?

Visual side-channel

Which call has a positive connotation?

2 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Definition

Side-Channel

A side-channel is an unintended information source which enables the extraction of
information that is processed through a means of communication or computation.

Phone example

Primary source Audio signal

Unintended source Visual information
(e.g. facial expression, lip movement)

3 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Definition

Side-Channel

A side-channel is an unintended information source which enables the extraction of
information that is processed through a means of communication or computation.

Phone example

Primary source Audio signal

Unintended source Visual information
(e.g. facial expression, lip movement)

3 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Channel usage

Malicious

Extracting ...

... other customers data across virtual machines

... crypto keys from applications in different address spaces

... data from inaccessible processors

Benign

... detecting rootkits

... detecting hardware trojans

5 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Channel usage

Malicious

Extracting ...

... other customers data across virtual machines

... crypto keys from applications in different address spaces

... data from inaccessible processors

Benign

... detecting rootkits

... detecting hardware trojans

5 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Channel usage

Malicious

Extracting ...

... other customers data across virtual machines

... crypto keys from applications in different address spaces

... data from inaccessible processors

Benign

... detecting rootkits

... detecting hardware trojans

5 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Channel usage

Malicious

Extracting ...

... other customers data across virtual machines

... crypto keys from applications in different address spaces

... data from inaccessible processors

Benign

... detecting rootkits

... detecting hardware trojans

5 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Channel usage

Malicious

Extracting ...

... other customers data across virtual machines

... crypto keys from applications in different address spaces

... data from inaccessible processors

Benign

... detecting rootkits

... detecting hardware trojans

5 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Typical Side-Channels

What is a suitable side-channel

Any measureable parameter of the system and of its individual operations that changes
depending on the processed data.

Example parameters

Time (Duration)

Error behavior (Out of memory? No more file handles?)

Microarchitectural state

Power usage

Radiation (Heat, EM-Radiation)

Unexpected persistence of data (Cold-boot, memory re-use)

6 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing Channels

Attack vector

The duration of an attacker observable operation depends on the
data processed by the victim

Example - Graphics Processing

Convert to png: 1 s vs. 17 s

7 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing Channels

Attack vector

The duration of an attacker observable operation depends on the
data processed by the victim

Example - Graphics Processing

Convert to png: 1 s vs. 17 s

7 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing Channels

Attack vector

The duration of an attacker observable operation depends on the
data processed by the victim

Example - Graphics Processing

Convert to png: 1 s vs. 17 s

7 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing Channels

Attack vector

The duration of an attacker observable operation depends on the
data processed by the victim

Example - Graphics Processing

Convert to png: 1 s vs. 17 s

7 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Cache Side-Channel

L1I L1D

Thr 1 Thr 2
Core 1

L2 Cache

L1I L1D

Thr 1 Thr 2
Core 2

L2 Cache

L3 Cache

CPU

DRAM Memory

Level Size Cycles

L1D 32 KiB 4
L1I 32 KiB 4

L2 256 KiB 12
L3 3 MiB 36

DRAM large 250

8 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Cache Side-Channel

L1I L1D

Thr 1 Thr 2
Core 1

L2 Cache

L1I L1D

Thr 1 Thr 2
Core 2

L2 Cache

L3 Cache

CPU

DRAM Memory

Level Size Cycles

L1D 32 KiB 4
L1I 32 KiB 4

L2 256 KiB 12
L3 3 MiB 36

DRAM large 250

8 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Concept

Fill cache with known data (Prime)

Repeatedly measure how long it takes to access this data

Longer duration means cache-line was ”stolen”

9 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Example (Victim)

s t r u c t Person {
char name [5 6] ;
double account ;

} A l i c e , Bob ;

vo id t r a n s a c t (Person& p) {
p . account += 4000 ;

}

t r a n s a c t (A l i c e) ;

L1D 8-way set cache
Tag (20) Index (6) Offset (6)
(Alice) 0 56
(Bob) 1 56

10 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Example (Victim)

s t r u c t Person {
char name [5 6] ;
double account ;

} A l i c e , Bob ;

L1D 8-way set cache
Tag (20) Index (6) Offset (6)
(Alice) 0 56
(Bob) 1 56

Attacker

S
et

Indices

11 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Example (Victim)

s t r u c t Person {
char name [5 6] ;
double account ;

} A l i c e , Bob ;

L1D 8-way set cache
Tag (20) Index (6) Offset (6)
(Alice) 0 56
(Bob) 1 56

Attacker

Prime

S
et

Indices

11 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Example (Victim)

s t r u c t Person {
char name [5 6] ;
double account ;

} A l i c e , Bob ;

L1D 8-way set cache
Tag (20) Index (6) Offset (6)
(Alice) 0 56
(Bob) 1 56

Attacker

Prime, Probe

S
et

Indices

11 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Prime & Probe

Example (Victim)

s t r u c t Person {
char name [5 6] ;
double account ;

} A l i c e , Bob ;

L1D 8-way set cache
Tag (20) Index (6) Offset (6)
(Alice) 0 56
(Bob) 1 56

Attacker

Prime, Probe, Detect

S
et

Indices

11 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Cache Fingerprint

 0 10 20 30 40 50 60

Associativity Set

 0

 5

 10

 15

W
or

d

 0

 1

 2

 3

 4

 5

 6

 7

 8

E
vi

ct
io

ns

Results of prime-probe observations for 20 distinct words (rows). Darker fields indicate more evicted
ways within an 8-way associativity set. Vertical lines identify cache addresses evicted in every
observation.

12 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Evict & Time

Prime & Probe shortcomings

Hard with smart caches

Probing is prone to many false positives

Alternative: Evict & Time

Possible if execution of victim code is under attacker control

Evict cache (by filling with known data)

Run victim and measure runtime

Evict most of the cache

Run victim again and measure time

Time difference tells if victim used non-evicted cache-line

13 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

S
et

Indices

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

S
et

Indices

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

S
et

Indices

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

S
et

Indices

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Challenges

Smart Caches

Smart Caches ”reserve” parts of the L3 cache for individual cores. This makes priming
hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to
false-negative.

Scheduling

May evict primed data leading to ’blind times’

14 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Pagefault Side-Channel

Assumption

Removing the OS from the TCB

Scenario: Shielding Systems

InkTag: Hypervisor / paging based isolation between OS and Application

Intel SGX: Hardware-based isolation through read-protected memory

Vulnerability

These systems don’t trust OS but use it to configure hardware

OS makes a powerful adversary

15 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Pagefault Side-Channel

Assumption

Removing the OS from the TCB

Scenario: Shielding Systems

InkTag: Hypervisor / paging based isolation between OS and Application

Intel SGX: Hardware-based isolation through read-protected memory

Vulnerability

These systems don’t trust OS but use it to configure hardware

OS makes a powerful adversary

15 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Pagefault Side-Channel

Assumption

Removing the OS from the TCB

Scenario: Shielding Systems

InkTag: Hypervisor / paging based isolation between OS and Application

Intel SGX: Hardware-based isolation through read-protected memory

Vulnerability

These systems don’t trust OS but use it to configure hardware

OS makes a powerful adversary

15 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Pagefault Side-Channel

Assumption

Removing the OS from the TCB

Scenario: Shielding Systems

InkTag: Hypervisor / paging based isolation between OS and Application

Intel SGX: Hardware-based isolation through read-protected memory

Vulnerability

These systems don’t trust OS but use it to configure hardware

OS makes a powerful adversary

15 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Controlled Channel Attacks

First attack vector against Intel SGX

Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems

Yuanzhong Xu, Weidong Cui, and Marcus Peinado, MSR

System Model

OS cannot directly observe memory or registers of application

OS controls virtual memory

16 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 0

!

Stack 0

Attackers Knowledge

Length = 0

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 0

!

Stack 0

Attackers Knowledge

Length = 0

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 0

!

Stack 0

Attackers Knowledge

Length = 0

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

! Heap 0

!

Stack 0

Attackers Knowledge

Length = 0

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 1

!

Stack 0

Attackers Knowledge

Length = 0

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 1

! Stack 0

Attackers Knowledge

Length = 1

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 0

!

Stack 1

Attackers Knowledge

Length = 1

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

! Heap 0

!

Stack 1

Attackers Knowledge

Length = 1

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 1

!

Stack 0

Attackers Knowledge

Length = 1

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 1

! Stack 0

Attackers Knowledge

Length = 2

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example: string length

Example (Source, simplified)

// s t r on heap
i n t s t r l e n (char ∗ s t r) {

i n t l e n = 0 ; // Stack
whi le (∗ (s t r ++) != ’ \0 ’)

l e n ++;
re tu rn l e n ;

}

Heap not present

Stack not present

Phys-Addr other Flags P

!

Heap 0

!

Stack 1

Attackers Knowledge

Length = 2

17 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example Results (PF vs. Cache Channel)

18 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example Results (PF vs. Cache Channel)

18 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example Results (PF vs. Cache Channel)

18 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Microarchitectural Channels

Meltdown

Leaking speculative CPU-state
to attackers Moritz Lipp, Michael

Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel

Genkin, Yuval Yarom, Mike
Hamburg Examples and figures

taken from the Meltdown paper Spectre

19 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Effects of Out-of-Order execution

Toy Example

s l o w c o d e ;
// code below execu t ed out−of−o r d e r
o t h e r c o d e ;

Constraints

Raising the exception should be slow

Accessing the array should be fast

20 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Effects of Out-of-Order execution

Toy Example

r a i s e e x c e p t i o n () ;
// code below shou ld neve r
be execu ted
o t h e r c o d e ;

Constraints

Raising the exception should be slow

Accessing the array should be fast

20 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Effects of Out-of-Order execution

Toy Example

r a i s e e x c e p t i o n () ;
// the l i n e below i s neve r r eached
a c c e s s (p r o b e a r r a y [data ∗4 0 9 6]) ;

Constraints

Raising the exception should be slow

Accessing the array should be fast

20 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Effects of Out-of-Order execution

Toy Example

Constraints

Raising the exception should be slow

Accessing the array should be fast

20 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Side-Effects of Out-of-Order execution

Toy Example

Constraints

Raising the exception should be slow

Accessing the array should be fast

20 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Meltdown example code

; r c x = k e r n e l a dd r e s s
; rbx = probe a r r a y
r e t r y :
MOV AL , byte [RCX]
SHL RAX, 12
JZ r e t r y

MOV RBX, qword [RBX + RAX]

21 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Power channels

Features

Requires no capability to run code

Hard to detect

In theory usable remotely

Requirements

(very) high-resolution power measurement

physical access to power supply

detailed knowledge about exact processor used

22 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Power channels

Features

Requires no capability to run code

Hard to detect

In theory usable remotely

Requirements

(very) high-resolution power measurement

physical access to power supply

detailed knowledge about exact processor used

22 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example

Example (Square-And-Multiply)

i n t exp (i n t base , i n t e) {
i n t r e s = 1 ;
wh i l e (e != 0) {

r e s ∗= r e s ; // squa r e
i f (e & 1) r e s ∗= base ; // mu l t i p l y
e >>= 1 ;

}
r e t u r n r e s ;

}

Source: https://commons.wikimedia.org/wiki/File:Power_attack.png

23 / 41

https://commons.wikimedia.org/wiki/File:Power_attack.png

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example

Example (Square-And-Multiply)

i n t exp (i n t base , i n t e) {
i n t r e s = 1 ;
wh i l e (e != 0) {

r e s ∗= r e s ; // squa r e
i f (e & 1) r e s ∗= base ; // mu l t i p l y
e >>= 1 ;

}
r e t u r n r e s ;

}

Source: https://commons.wikimedia.org/wiki/File:Power_attack.png
23 / 41

https://commons.wikimedia.org/wiki/File:Power_attack.png

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Acoustic channels

Features

Requires no capability to run code

Hard to detect

Usable remotely, bugs

Requirements

Good audio equipement

Reliable audio filters

Knowledge about typing style

Knowledge about hardware used

24 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Acoustic channels

Features

Requires no capability to run code

Hard to detect

Usable remotely, bugs

Requirements

Good audio equipement

Reliable audio filters

Knowledge about typing style

Knowledge about hardware used

24 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example

Password typing attack

Keyboard Acoustic Emanations Revisited
Li Zhuang, Feng Zhou, J. D. Tygar

University of California, Berkeley

25 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example

Password typing attack

Keyboard Acoustic Emanations Revisited
Li Zhuang, Feng Zhou, J. D. Tygar

University of California, Berkeley

25 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Example

Password typing attack

Keyboard Acoustic Emanations Revisited
Li Zhuang, Feng Zhou, J. D. Tygar

University of California, Berkeley

25 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Results

26 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Results

26 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Electro Magnetic (EM) Radiation

Features

Requires no capability to run code

Hard to detect

No ”wire-cutting” needed

Requirements

Expensive detection equipement (antenna, scope)

Detailed knowledge about hardware used

27 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Electro Magnetic (EM) Radiation

Features

Requires no capability to run code

Hard to detect

No ”wire-cutting” needed

Requirements

Expensive detection equipement (antenna, scope)

Detailed knowledge about hardware used

27 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data Remanence

Warning

Not a classical side-channel

no indirect observance of data → direct

is still interesting

Features

Access to data you thought is gone

Usually if you get data it is pretty good

28 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data Remanence

Warning

Not a classical side-channel

no indirect observance of data → direct

is still interesting

Features

Access to data you thought is gone

Usually if you get data it is pretty good

28 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data Remanence

Warning

Not a classical side-channel

no indirect observance of data → direct

is still interesting

Features

Access to data you thought is gone

Usually if you get data it is pretty good

28 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Examples / Software

Example (Your friend, the compiler)

vo id s e c r e t () {
char ∗ buf = (char ∗) ma l l o c (1 024) ;
// put s th . s e c r e t i n t o buf

f r e e (buf) ;
}

Problem

29 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Examples / Software

Example (Your friend, the compiler)

vo id s e c r e t () {
char ∗ buf = (char ∗) ma l l o c (1 024) ;
// put s th . s e c r e t i n t o buf

f r e e (buf) ;
}

Problem

?

29 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Examples / Software

Example (Your friend, the compiler)

vo id s e c r e t () {
char ∗ buf = (char ∗) ma l l o c (1 024) ;
// put s th . s e c r e t i n t o buf
memset (buf , ’ \0 ’ , 1 024) ;
f r e e (buf) ;

}

Problem

What if someone gets the same memory?

29 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Examples / Software

Example (Your friend, the compiler)

vo id s e c r e t () {
char ∗ buf = (char ∗) ma l l o c (1 024) ;
// put s th . s e c r e t i n t o buf
memset (buf , ’ \0 ’ , 1 024) ;
f r e e (buf) ;

}

Problem

?

29 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Examples / Software

Example (Your friend, the compiler)

vo id s e c r e t () {
char ∗ buf = (char ∗) ma l l o c (1 024) ;
// put s th . s e c r e t i n t o buf
memset (buf , ’ \0 ’ , 1 024) ;
f r e e (buf) ;

}

Problem

The compiler could optimize the memset out

29 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Cold Boot

Lest We Remember: Cold Boot Attacks on Encryption Keys

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.
Calandrino , Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten
Princeton University, Electronic Frontier Foundation, Wind River Systems

30 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Performance

Seconds
w/o power

Error % at
operating temp.

Error %
at -50 ◦C

A 60 41 (no errors)
300 50 0.000095

B 360 50 (no errors)
600 50 0.000036

C 120 41 0.00105
360 42 0.00144

D 40 50 0.025
80 50 0.18

31 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Performance

Seconds
w/o power

Error % at
operating temp.

Error %
at -50 ◦C

A 60 41 (no errors)
300 50 0.000095

B 360 50 (no errors)
600 50 0.000036

C 120 41 0.00105
360 42 0.00144

D 40 50 0.025
80 50 0.18

31 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Results

Image after 5, 30, 60 and 300 seconds

32 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Defense mechanisms

Approach

Make all behavior that is observable independent of the input data

Caveat

Complete independence is not always achievable
(Algorithmic requirements, some channels hard to control)

Alternative

Remove ability to observe the given aspect

33 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Defense mechanisms

Approach

Make all behavior that is observable independent of the input data

Caveat

Complete independence is not always achievable
(Algorithmic requirements, some channels hard to control)

Alternative

Remove ability to observe the given aspect

33 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Defense mechanisms

Approach

Make all behavior that is observable independent of the input data

Caveat

Complete independence is not always achievable
(Algorithmic requirements, some channels hard to control)

Alternative

Remove ability to observe the given aspect

33 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing channels

Blinding

Modify data computed on in such a way that operation always takes equal time

Requires inverse unblinding that can be performed after the operation

Noise injection

Branch elimination/equalisation

Removes changes in runtime due to different operations depending on data
Example: Move different data processed in different branch targets to same cacheline

Prevent statistical analysis

Avoid running the same algorithm on attacker observable data multiple times.
Challenge-response is prone to this!

34 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing channels

Blinding

Modify data computed on in such a way that operation always takes equal time

Requires inverse unblinding that can be performed after the operation

Noise injection

Branch elimination/equalisation

Removes changes in runtime due to different operations depending on data
Example: Move different data processed in different branch targets to same cacheline

Prevent statistical analysis

Avoid running the same algorithm on attacker observable data multiple times.
Challenge-response is prone to this!

34 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Timing channels

Blinding

Modify data computed on in such a way that operation always takes equal time

Requires inverse unblinding that can be performed after the operation

Noise injection

Branch elimination/equalisation

Removes changes in runtime due to different operations depending on data
Example: Move different data processed in different branch targets to same cacheline

Prevent statistical analysis

Avoid running the same algorithm on attacker observable data multiple times.
Challenge-response is prone to this!

34 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Page-Fault Channel / Fault channels

Detection

Given a reliable time-source constant page-faults can be detected as unusually
long program runtime

SGX v2 can notify the protected program of page-faults. It may chose not to
compute on secret data if such page-faults come unexpected

Prevention

Don’t use paging. Require all memory to be mapped

Avoid dynamic allocation of shared resources

35 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Page-Fault Channel / Fault channels

Detection

Given a reliable time-source constant page-faults can be detected as unusually
long program runtime

SGX v2 can notify the protected program of page-faults. It may chose not to
compute on secret data if such page-faults come unexpected

Prevention

Don’t use paging. Require all memory to be mapped

Avoid dynamic allocation of shared resources

35 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Meltdown / Spectre

Meltdown

KPTI - Kernel Page Table Isolation

HW: Don’t speculate across protection boundarys

Spectre

Speculation Fences

’Fix’ the hardware (might be impossible)

36 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Meltdown / Spectre

Meltdown

KPTI - Kernel Page Table Isolation

HW: Don’t speculate across protection boundarys

Spectre

Speculation Fences

’Fix’ the hardware (might be impossible)

36 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Power / Acoustic / EM

Power Channel

Use internal power source or high-capacitance in power path for sensitive
instructions (low pass effect)

Use same-complexity instructions for input-dependent code (mul instead of shift)

Acoustic

Counter-noise to mask real typing

Avoid typing sensitive information (on-screen keyboard)

Electro Magnetic Radiatiom

Use EM shielding on chips

Use EM shielding for case

37 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Power / Acoustic / EM

Power Channel

Use internal power source or high-capacitance in power path for sensitive
instructions (low pass effect)

Use same-complexity instructions for input-dependent code (mul instead of shift)

Acoustic

Counter-noise to mask real typing

Avoid typing sensitive information (on-screen keyboard)

Electro Magnetic Radiatiom

Use EM shielding on chips

Use EM shielding for case

37 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Power / Acoustic / EM

Power Channel

Use internal power source or high-capacitance in power path for sensitive
instructions (low pass effect)

Use same-complexity instructions for input-dependent code (mul instead of shift)

Acoustic

Counter-noise to mask real typing

Avoid typing sensitive information (on-screen keyboard)

Electro Magnetic Radiatiom

Use EM shielding on chips

Use EM shielding for case

37 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Data remanence

Zero memory

Like really zero it! (memset s for C11, SecureZeroMemory for Windows)

Remember copies of the data! (Stack? Heap?)

Not all copies are immediately obvious! Compilers may create additional ones

And of course you remembered the XMM registers, right?

Cold Boot

Combined with the above very hard! Use shut down and not hybernate / suspend.
After a few seconds you should be fine.

Idea: Write secret data to physical 0x7c00 - 0x7dFF! MBR is loaded there :)

38 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Summary

Sidechannels

... are unintended information sources for extracting secret data

Attacks

There are a plethora of side-channels in every normal system! We only touched on a
few methods! Your imagination is the limit.

Defense

... is very hard. The best way is to design algorithms from the ground up with
side-channels in mind!

39 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Summary

Sidechannels

... are unintended information sources for extracting secret data

Attacks

There are a plethora of side-channels in every normal system! We only touched on a
few methods! Your imagination is the limit.

Defense

... is very hard. The best way is to design algorithms from the ground up with
side-channels in mind!

39 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Summary

Sidechannels

... are unintended information sources for extracting secret data

Attacks

There are a plethora of side-channels in every normal system! We only touched on a
few methods! Your imagination is the limit.

Defense

... is very hard. The best way is to design algorithms from the ground up with
side-channels in mind!

39 / 41

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Overview

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper19.pdf

Cache Side-Channels

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

Page-fault Channel

http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf

https://www.usenix.org/system/files/conference/atc17/atc17-hahnel.pdf

Microarchitectural Channels

https://meltdownattack.com/meltdown.pdf

https://spectreattack.com/spectre.pdf

Acoustic Channels

http://people.eecs.berkeley.edu/ tygar/papers/Keyboard Acoustic Emanations Revisited/ccs.pdf

40 / 41

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper19.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-hahnel.pdf
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion

Cold Boot

https://www.usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf

Remanence

http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html

http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html

Defense

https://www.blackhat.com/presentations/bh-usa-08/McGregor/BH_US_08_McGregor_Cold_Boot_

Attacks.pdf

http://fc16.ifca.ai/preproceedings/21_Anand.pdf

https://www.semanticscholar.org/paper/

Software-mitigations-to-hedge-AES-against-cache-Brickell-Graunke/

11c6fddeff9e2f95c8cf238ea9f12f8ffae7cf8c/pdf

https://www.cc.gatech.edu/~slee3036/papers/shih:tsgx.pdf

41 / 41

https://www.usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
https://www.blackhat.com/presentations/bh-usa-08/McGregor/BH_US_08_McGregor_Cold_Boot_Attacks.pdf
https://www.blackhat.com/presentations/bh-usa-08/McGregor/BH_US_08_McGregor_Cold_Boot_Attacks.pdf
http://fc16.ifca.ai/preproceedings/21_Anand.pdf
https://www.semanticscholar.org/paper/Software-mitigations-to-hedge-AES-against-cache-Brickell-Graunke/11c6fddeff9e2f95c8cf238ea9f12f8ffae7cf8c/pdf
https://www.semanticscholar.org/paper/Software-mitigations-to-hedge-AES-against-cache-Brickell-Graunke/11c6fddeff9e2f95c8cf238ea9f12f8ffae7cf8c/pdf
https://www.semanticscholar.org/paper/Software-mitigations-to-hedge-AES-against-cache-Brickell-Graunke/11c6fddeff9e2f95c8cf238ea9f12f8ffae7cf8c/pdf
https://www.cc.gatech.edu/~slee3036/papers/shih:tsgx.pdf

	Introduction
	Internal Attack Vectors
	Timing Channels
	Fault Channels
	Microarchitectural Channels

	External Attack Vectors
	Power channels
	Acoustic and Radiation

	Data remanence
	Software
	Hardware

	Defense
	Conclusion
	Summary
	References and Related Work

