Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion

Distributed Operating Systems

Side-Channels

Marcus Hähnel

02.07.2018

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
What is a	Side-Channel?				

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
What is a	Side-Channel?				

Visual side-channel

Which call has a positive connotation?

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Definition					

Side-Channel

A side-channel is an *unintended* information source which enables the *extraction* of information that is processed through a means of communication or computation.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Definition					

Side-Channel

A side-channel is an *unintended* information source which enables the *extraction* of information that is processed through a means of communication or computation.

Phone example

Primary source Audio signal

Unintended source Visual information

(e.g. facial expression, lip movement)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Side-Chan	nel usage				

Extracting ...

• ... other customers data across virtual machines

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Side-Char	nel usage				

Extracting ...

• ... other customers data across virtual machines

E)

• ... crypto keys from applications in different address spaces

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Side-Chan	nel usage				

Extracting ...

- ... other customers data across virtual machines
- ... crypto keys from applications in different address spaces
- ... data from inaccessible processors

5

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Side-Chan	nel usage				

Extracting ...

- ... other customers data across virtual machines
- ... crypto keys from applications in different address spaces
- ... data from inaccessible processors

Benign

• ... detecting rootkits

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Side-Char	nel usage				

Extracting ...

- ... other customers data across virtual machines
- ... crypto keys from applications in different address spaces
- ... data from inaccessible processors

Benign

- ... detecting rootkits
- ... detecting hardware trojans

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Typical S	Side-Channels				

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical S	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

Example parameters

• Time (Duration)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

- Time (Duration)
- Error behavior (Out of memory? No more file handles?)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

- Time (Duration)
- Error behavior (Out of memory? No more file handles?)
- Microarchitectural state

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

- Time (Duration)
- Error behavior (Out of memory? No more file handles?)
- Microarchitectural state
- Power usage

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

- Time (Duration)
- Error behavior (Out of memory? No more file handles?)
- Microarchitectural state
- Power usage
- Radiation (Heat, EM-Radiation)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Typical 9	Side-Channels				

Any measureable parameter of the system and of its individual operations that changes depending on the processed data.

- Time (Duration)
- Error behavior (Out of memory? No more file handles?)
- Microarchitectural state
- Power usage
- Radiation (Heat, EM-Radiation)
- Unexpected persistence of data (Cold-boot, memory re-use)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Timing (Channels				

The duration of an attacker observable operation depends on the data processed by the victim

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Timing (Channels				

The duration of an attacker observable operation depends on the data processed by the victim

Example - Graphics Processing

Holidays Day 1

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Timing (Channels				

The duration of an attacker observable operation depends on the data processed by the victim

Example - Graphics Processing

Holidays Day 1

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Timing (Channels				

The duration of an attacker observable operation depends on the data processed by the victim

Example - Graphics Processing

Holidays Day 1

Convert to png: 1s vs. 17s

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Cache Sie	de-Channel				

DRAM Memory

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Cache Si	de-Channel				

DRAM Memory

Level	Size	Cycles
L1D	32 KiB	4
L1I	32 KiB	4
L2	256 KiB	12
L3	3 MiB	36
DRAM	large	250

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Prime &	Probe				

Concept

- Fill cache with known data (Prime)
- Repeatedly measure how long it takes to access this data
- Longer duration means cache-line was "stolen"

Introduction		Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
	^ D					

Prime & Probe

Example (Victim)

```
struct Person {
    char name[56];
    double account;
} Alice, Bob;
void transact(Person& p) {
    p.account += 4000;
}
```

```
transact(Alice);
```

L1D 8-way set cache			
Tag (20)	Index (6)	Offset (6)	
(Alice)	0	56	
(Bob)	1	56	

Attacker

Indices

Indices

Offset (6)

56

56


```
struct Person {
    char name[56];
    double account;
} Alice, Bob;
```


Attacker

Prime, Probe

Indices

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Prime &	Probe				

Example (Victim)

```
struct Person {
    char name[56];
    double account;
} Alice, Bob;
```


Attacker

Prime, Probe, Detect

Indices

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
	000000000000000				

Results of prime-probe observations for 20 distinct words (rows). Darker fields indicate more evicted ways within an 8-way associativity set. Vertical lines identify cache addresses evicted in every observation.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Evict &	Time				

• Hard with smart caches

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Evict &	Time				

- Hard with smart caches
- Probing is prone to many false positives

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Evict &	Time				

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

• Possible if execution of victim code is under attacker control

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Evict & ⁻	Time				

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

- Possible if execution of victim code is under attacker control
- Evict cache (by filling with known data)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Evict & ⁻	Time				

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

- Possible if execution of victim code is under attacker control
- Evict cache (by filling with known data)
- Run victim and measure runtime
| Introduction | Internal Attack Vectors | External Attack Vectors
000000 | Data remanence
0000 | Defense | Conclusion |
|----------------------|-------------------------|-----------------------------------|------------------------|---------|------------|
| Evict & ⁻ | Time | | | | |

Prime & Probe shortcomings

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

- Possible if execution of victim code is under attacker control
- Evict cache (by filling with known data)
- Run victim and measure runtime
- Evict most of the cache

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Evict &	Time				

Prime & Probe shortcomings

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

- Possible if execution of victim code is under attacker control
- Evict cache (by filling with known data)
- Run victim and measure runtime
- Evict most of the cache
- Run victim again and measure time

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Evict &	Time				

Prime & Probe shortcomings

- Hard with smart caches
- Probing is prone to many false positives

Alternative: Evict & Time

- Possible if execution of victim code is under attacker control
- Evict cache (by filling with known data)
- Run victim and measure runtime
- Evict most of the cache
- Run victim again and measure time
- Time difference tells if victim used non-evicted cache-line

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Challenges					

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Challenges					

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Challenges					

Smart Caches

Smart Caches "reserve" parts of the L3 cache for individual cores. This makes priming hard.

Prefetchers

Detect access patterns. Probing may cause prefetch of evicted line leading to false-negative.

Scheduling

May evict primed data leading to 'blind times'

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Pagefault	Side-Channel				

Removing the OS from the TCB

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Pagefault	Side-Channel				

Removing the OS from the TCB

Scenario: Shielding Systems

• InkTag: Hypervisor / paging based isolation between OS and Application

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Pagefault	Side-Channel				

Removing the OS from the TCB

Scenario: Shielding Systems

- InkTag: Hypervisor / paging based isolation between OS and Application
- Intel SGX: Hardware-based isolation through read-protected memory

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Pagefault	Side-Channel				

Removing the OS from the TCB

Scenario: Shielding Systems

- InkTag: Hypervisor / paging based isolation between OS and Application
- Intel SGX: Hardware-based isolation through read-protected memory

Vulnerability

- These systems don't trust OS but use it to configure hardware
- OS makes a powerful adversary

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Controlled	Channel Attacks				

First attack vector against Intel SGX

Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems

Yuanzhong Xu, Weidong Cui, and Marcus Peinado, MSR

System Model

- OS cannot directly observe memory or registers of application
- OS controls virtual memory

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

```
//str on heap
int strlen(char* str) {
    int len = 0; //Stack
    while (*(str++) != '\0')
        len++;
    return len;
}
```

• Heap not present

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Example:	string length				

```
//str on heap
int strlen(char* str) {
    int len = 0; //Stack
    while (*(str++) != '\0')
        len++;
    return len;
}
```

- Heap not present
- Stack not present

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			0
Stack			0

Attackers Knowledge

Length = 0

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
! Heap			0
Stack			0

Attackers Knowledge

 $\mathsf{Length}=\mathbf{0}$

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			1
Stack			0

Attackers Knowledge

Length = 0

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			1
! Stack			0

Attackers Knowledge

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			0
Stack			1

Attackers Knowledge

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
! Heap			0
Stack			1

Attackers Knowledge

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			1
Stack			0

Attackers Knowledge

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			1
! Stack			0

Attackers Knowledge

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example:	string length				

- Heap not present
- Stack not present

	Phys-Addr	other Flags	Р
Heap			0
Stack			1

Attackers Knowledge

Length = 2

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example R	esults (PF vs. Ca	che Channel)			

Introduction Internal Attack Vectors External Attack Vectors Data remanence Defense Conclusion oco Example Results (PF vs. Cache Channel)

	000000000000000000000000000000000000000							
Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion			

Microarchitectural Channels

Meltdown

Leaking speculative CPU-state to attackers Moritz Lipp, Michael

Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg Examples and figures

taken from the Meltdown paper

Spectre

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
	000000000000000000000000000000000000000				

Side-Effects of Out-of-Order execution

Toy Example

slow_code;
//code below executed out-of-order
other_code;

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
	000000000000000000000000000000000000000				

Side-Effects of Out-of-Order execution

Toy Example

```
raise_exception();
//code below should never
be executed
other_code;
```

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
	000000000000000000000000000000000000000				

Side-Effects of Out-of-Order execution

Toy Example

raise_exception();
// the line below is never reached
access(probe_array[data*4096]);

Constraints

- Raising the exception should be slow
- Accessing the array should be fast

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
	00000000000000				

Meltdown example code

```
; rcx = kernel address
; rbx = probe array
retry:
MOV AL, byte [RCX]
SHL RAX, 12
JZ retry
MOV RBX, qword [RBX + RAX]
```
Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Power ch	annels				

Features

- Requires no capability to run code
- Hard to detect
- In theory usable remotely

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Power ch	annels				

Features

- Requires no capability to run code
- Hard to detect
- In theory usable remotely

Requirements

- (very) high-resolution power measurement
- physical access to power supply
- detailed knowledge about exact processor used

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
		00000			

Example

Example (Square-And-Multiply)

```
int exp(int base, int e) {
    int res = 1;
    while (e != 0) {
        res *= res; //square
        if (e & 1) res *= base; //multiply
        e >>= 1;
    }
    return res;
}
```

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
		00000			

Example

Example (Square-And-Multiply)

```
int exp(int base, int e) {
    int res = 1;
    while (e != 0) {
        res *= res; //square
        if (e & 1) res *= base; //multiply
        e >>= 1;
    }
    return res;
}
```


Source: https://commons.wikimedia.org/wiki/File:Power_attack.png

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Acoustic	channels				

Features

- Requires no capability to run code
- Hard to detect
- Usable remotely, bugs

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Acoustic	channels				

Features

- Requires no capability to run code
- Hard to detect
- Usable remotely, bugs

Requirements

- Good audio equipement
- Reliable audio filters
- Knowledge about typing style
- Knowledge about hardware used

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example					

Password typing attack

Keyboard Acoustic Emanations Revisited Li Zhuang, Feng Zhou, J. D. Tygar University of California, Berkeley

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example					

Password typing attack

Keyboard Acoustic Emanations Revisited Li Zhuang, Feng Zhou, J. D. Tygar University of California, Berkeley

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Example					

Password typing attack

Keyboard Acoustic Emanations Revisited Li Zhuang, Feng Zhou, J. D. Tygar University of California, Berkeley

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
		000000			

Results

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Results					

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Electro N	Agnetic (EM) R	adiation			

Features

- Requires no capability to run code
- Hard to detect
- No "wire-cutting" needed

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Electro N	Magnetic (EM) R	adiation			

Features

- Requires no capability to run code
- Hard to detect
- No "wire-cutting" needed

Requirements

- Expensive detection equipement (antenna, scope)
- Detailed knowledge about hardware used

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion 000
Data Rem	anence				

Warning

- NOT a classical side-channel
- $\bullet\,$ no indirect observance of data $\rightarrow\,$ direct

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence	Defense	Conclusion
Data Rem	nanence				

Warning

- NOT a classical side-channel
- $\bullet\,$ no indirect observance of data $\rightarrow\,$ direct
- is still interesting

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence	Defense	Conclusion 000
Data Rem	anence				

Warning

- NOT a classical side-channel
- $\bullet\,$ no indirect observance of data $\rightarrow\,$ direct
- is still interesting

Features

- Access to data you thought is gone
- Usually if you get data it is pretty good

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ●○○○	Defense	Conclusion
Examples	/ Software				

```
void secret() {
    char* buf = (char*)malloc(1024);
    // put sth. secret into buf
    free(buf);
}
```

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ●○○○	Defense	Conclusion 000
Examples	/ Software				

```
void secret() {
    char* buf = (char*)malloc(1024);
    // put sth. secret into buf
    free(buf);
}
```

Problem

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ●○○○	Defense	Conclusion 000
Examples	/ Software				

```
void secret() {
    char* buf = (char*)malloc(1024);
    // put sth. secret into buf
    memset(buf, '\0',1024);
    free(buf);
}
```

Problem

What if someone gets the same memory?

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ●○○○	Defense	Conclusion 000
Evamples	/ Software				

```
void secret() {
    char* buf = (char*)malloc(1024);
    // put sth. secret into buf
    memset(buf, '\0',1024);
    free(buf);
}
```

Problem

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ●○○○	Defense	Conclusion 000
Examples	/ Software				

```
void secret() {
    char* buf = (char*)malloc(1024);
    // put sth. secret into buf
    memset(buf, '\0',1024);
    free(buf);
}
```

Problem

The compiler could optimize the memset out

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence ○●○○	Defense	Conclusion
Cold Boot					

Lest We Remember: Cold Boot Attacks on Encryption Keys

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino , Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten Princeton University, Electronic Frontier Foundation, Wind River Systems

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ○○●○	Defense	Conclusion 000
Performa	nce				

	Seconds	Error % at	Error %
	w/o power	operating temp.	at -50 $^\circ C$
A	60	41	(no errors)
	300	50	0.000095
В	360	50	(no errors)
	600	50	0.000036
С	120	41	0.00105
	360	42	0.00144
D	40	50	0.025
	80	50	0.18

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ○○●○	Defense	Conclusion
Dest					

50 m

Seconds without Power

P	or	formai	
	CI	Unnai	ice

	Seconds	Error % at	Error %	45 * *
	w/o power	operating temp.	at -50 $^{\circ}$ C	40 0
A	60	41	(no errors)	35
	300	50	0.000095	30
В	360	50	(no errors)	
	600	50	0.000036	20-
С	120	41	0.00105	15
	360	42	0.00144	* AD
D	40	50	0.025	
	80	50	0.18	5
				0 50 100

150

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence ○00●	Defense	Conclusion 000
Results					

Image after 5, 30, 60 and 300 seconds

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Defense m	echanisms				

Approach

Make all behavior that is observable independent of the input data

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000	
Defense m	echanisms					

Approach

Make all behavior that is observable independent of the input data

Caveat

Complete independence is not always achievable (Algorithmic requirements, some channels hard to control)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Defense m	nechanisms				

Approach

Make all behavior that is observable independent of the input data

Caveat

Complete independence is not always achievable (Algorithmic requirements, some channels hard to control)

Alternative

Remove ability to observe the given aspect

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Timing c	hannels				

Blinding

- Modify data computed on in such a way that operation always takes equal time
- Requires inverse unblinding that can be performed after the operation
- Noise injection

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Timing ch	annels				

Blinding

- Modify data computed on in such a way that operation always takes equal time
- Requires inverse unblinding that can be performed after the operation
- Noise injection

Branch elimination/equalisation

Removes changes in runtime due to different operations depending on data Example: Move different data processed in different branch targets to same cacheline

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Timing ch	annels				

Blinding

- Modify data computed on in such a way that operation always takes equal time
- Requires inverse unblinding that can be performed after the operation
- Noise injection

Branch elimination/equalisation

Removes changes in runtime due to different operations depending on data Example: Move different data processed in different branch targets to same cacheline

Prevent statistical analysis

Avoid running the same algorithm on attacker observable data multiple times. Challenge-response is prone to this!

Introduction	Internal Attack Vecto	ors DO	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Page-Fault	Channel /	[/] Fault	channels			

Detection

- Given a reliable time-source constant page-faults can be detected as unusually long program runtime
- SGX v2 can notify the protected program of page-faults. It may chose not to compute on secret data if such page-faults come unexpected

Introduction			Internal Attack Vectors			External Attack Vectors		Data remane 0000	Defense		Conclusion		
D	_	1	<u></u>	• /	-								

Page-Fault Channel / Fault channels

Detection

- Given a reliable time-source constant page-faults can be detected as unusually long program runtime
- SGX v2 can notify the protected program of page-faults. It may chose not to compute on secret data if such page-faults come unexpected

Prevention

- Don't use paging. Require all memory to be mapped
- Avoid dynamic allocation of shared resources

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion 000
Meltdown	/ Spectre				

Meltdown

- KPTI Kernel Page Table Isolation
- HW: Don't speculate across protection boundarys

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Meltdown	/ Spectre				

Meltdown

- KPTI Kernel Page Table Isolation
- HW: Don't speculate across protection boundarys

Spectre

- Speculation Fences
- 'Fix' the hardware (might be impossible)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Power /	Acoustic / EM				

Power Channel

- Use internal power source or high-capacitance in power path for sensitive instructions (low pass effect)
- Use same-complexity instructions for input-dependent code (mul instead of shift)
| Introduction | Internal Attack Vectors | External Attack Vectors | Data remanence
0000 | Defense | Conclusion
000 |
|--------------|-------------------------|-------------------------|------------------------|---------|-------------------|
| Power / | Acoustic / EM | | | | |

Power Channel

- Use internal power source or high-capacitance in power path for sensitive instructions (low pass effect)
- Use same-complexity instructions for input-dependent code (mul instead of shift)

Acoustic

- Counter-noise to mask real typing
- Avoid typing sensitive information (on-screen keyboard)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Power /	Acoustic / EM				

Power Channel

- Use internal power source or high-capacitance in power path for sensitive instructions (low pass effect)
- Use same-complexity instructions for input-dependent code (mul instead of shift)

Acoustic

- Counter-noise to mask real typing
- Avoid typing sensitive information (on-screen keyboard)

Electro Magnetic Radiatiom

- Use EM shielding on chips
- Use EM shielding for case

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Data rema	nence				

• Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion
Data rem	anence				

- Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)
- Remember copies of the data! (Stack? Heap?)

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Data rema	anence				

- Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)
- Remember copies of the data! (Stack? Heap?)
- Not all copies are immediately obvious! Compilers may create additional ones

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Data rema	anence				

- Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)
- Remember copies of the data! (Stack? Heap?)
- Not all copies are immediately obvious! Compilers may create additional ones
- And of course you remembered the XMM registers, right?

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion
Data rema	anence				

- Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)
- Remember copies of the data! (Stack? Heap?)
- Not all copies are immediately obvious! Compilers may create additional ones
- And of course you remembered the XMM registers, right?

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion 000
Data rema	anence				

- Like really zero it! (memset_s for C11, SecureZeroMemory for Windows)
- Remember copies of the data! (Stack? Heap?)
- Not all copies are immediately obvious! Compilers may create additional ones
- And of course you remembered the XMM registers, right?

Cold Boot

- Combined with the above very hard! Use shut down and not hybernate / suspend. After a few seconds you should be fine.
- Idea: Write secret data to physical 0x7c00 0x7dFF! MBR is loaded there :)

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion ●○○
Summary					
Sidecha	nnels				

... are unintended information sources for extracting secret data

Introduction	Internal Attack Vectors	External Attack Vectors 000000	Data remanence 0000	Defense	Conclusion ●○○
Summary					

Sidechannels

... are unintended information sources for extracting secret data

Attacks

There are a plethora of side-channels in every normal system! We only touched on a few methods! Your imagination is the limit.

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence 0000	Defense	Conclusion ●○○
Summary					

Sidechannels

... are unintended information sources for extracting secret data

Attacks

There are a plethora of side-channels in every normal system! We only touched on a few methods! Your imagination is the limit.

Defense

... is very hard. The best way is to design algorithms from the ground up with side-channels in mind!

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusior
					000

Overview

• http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-3/physec/papers/physecpaper19.pdf

Cache Side-Channels

• https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

Page-fault Channel

- http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
- https://www.usenix.org/system/files/conference/atc17/atc17-hahnel.pdf

Microarchitectural Channels

- https://meltdownattack.com/meltdown.pdf
- https://spectreattack.com/spectre.pdf

Acoustic Channels

http://people.eecs.berkeley.edu/ tygar/papers/Keyboard_Acoustic_Emanations_Revisited/ccs.pdf

Introduction	Internal Attack Vectors	External Attack Vectors	Data remanence	Defense	Conclusion
					000

Cold Boot

https://www.usenix.org/event/sec08/tech/full_papers/halderman/halderman.pdf

Remanence

- http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
- http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html

Defense

- https://www.blackhat.com/presentations/bh-usa-08/McGregor/BH_US_08_McGregor_Cold_Boot_ Attacks.pdf
- http://fc16.ifca.ai/preproceedings/21_Anand.pdf
- https://www.semanticscholar.org/paper/ Software-mitigations-to-hedge-AES-against-cache-Brickell-Graunke/ 11c6fddeff9e2f95c8cf238ea9f12f8ffae7cf8c/pdf
- https://www.cc.gatech.edu/~slee3036/papers/shih:tsgx.pdf