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NOTES TO STUDENTS

Exams: July 17, August 22,  
(and probably September) 

watch out for  
“Systems Programming Lab” in Fall !!!
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MODELS IN GENERAL

abstract from details 

concentrate on functionality, properties, ... that are 
considered important for a specific system/application 

use model to analyze, prove, predict, ... system 
properties  
and to establish fundamental insights  

models in engineering disciplines very common,  
increasingly in CS as well 

we'll see many models in “Real-Time Systems” class
�3



TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

THE GENERAL  IDEA

Reasoning: 

Common sense 

Formal Verification 

Careful Inspection 

Mathematics  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THE GENERAL  IDEA

Reasoning: 

Common sense 

Formal Verification 

Careful Inspection 

Mathematics  

“Refinement”: 

Abstraction 
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MODEL EXAMPLES  IN GENERAL 

Model        Objective/Question 

Failure Trees    are all failure combinations taken  
           into account 

statics models    does a house eventually fall down 
          what kind of vehicles on a bridge  

control laws     stability of controllers 

Ohm’s Law     behavior of circuits
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WELL KNOWN EXAMPLES FOR MODELS
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MODEL EXAMPLES COMPUTER SCIENCE

Model         Objective/Question 

Turing Machine    Decidability 

Amdahl’s Law     Scalability 

Logic        Correctness, Precision, … 

Real-Time “tasks”   can all timing requirements be met 

Byzantine Agreement  Consensus 
Two Army      Consensus
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MODELS IN DOS

Objective of lecture:  
understand the power of models and the need for their 
careful understanding 

Intuition, No proofs
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THIS LECTURE’S QUESTIONS

Q1: Is it possible to build arbitrarily reliable Systems out 
of unreliable components? 

Q2: Can we achieve consensus in the presence of faults 
(consensus: all non-faulty components agree on action)? 

Q3: Is there an algorithm to determine for a system with 
a given setting of access control permissions, whether or 
not a Subject A can obtain a right on Object B? 

2 Models per Question ! 

All questions/answers/models -> published 1956 - 1982 !!!
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LIMITS OF RELIABILITY

Q1: Can we build arbitrarily reliable Systems out of 
unreliable components ?  

How to build reliable systems from less reliable 
components 

Fault(Error, Failure, Fault, ....) 
terminology in this lecture synonymously used for 
“something goes wrong” 
(more precise definitions and types of faults in SE)
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 DEFINITIONS 

Reliability: 

R(t): probability for a system to survive time t 

Availability: 

A: fraction of time a system works
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INGREDIENTS

Fault detection and confinement 

Recovery 

Repair 

Redundancy 

Information 

time 

structural 

functional 
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WELL KNOWN EXAMPLE 
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Q1/MODEL1: LIMITS OF RELIABILITY

�15
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Q1/MODEL1: LIMITS OF RELIABILITY
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Parallel-Serial-Systems  

(Pfitzmann/Härtig 1982)
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Q1/MODEL1: LIMITS OF RELIABILITY
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Parallel-Serial-Systems  

(Pfitzmann/Härtig 1982)
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Q1/MODEL1: LIMITS OF RELIABILITY
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Q1/MODEL1: ABSTRACT RELIABILITY MODEL 
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Q1/MODEL1: ABSTRACT MODEL
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Q1/MODEL1: ABSTRACT MODEL
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Q1/MODEL1: LIMITS OF RELIABILITY
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Q1/MODEL1: CONCRETE MODEL  

�23

Fault Model 

„Computer-Bus-Connector“  
can fail such that Computer and/or Bus also fail 

=>  
conceptual  separation of components into 

Computer, Bus: can fail per se 

CC:  Computer-Connector 
  fault also breaks the Computer 

  BC: Bus-Connector 
   fault also breaks Bus

Computer

Bu
s

CC

BC
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Q1/MODEL1: CONCRETE MODEL  
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Q1/MODEL1: CONCRETE MODEL  

�25

Computer 1

CC
 1,1

Computer 2

CC
 2,1

Bu
s 1

BC 2,1
BC 1,1

1 Buses 

2 Computers



TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL  
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Q1/MODEL1: CONCRETE MODEL  
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Q1/MODEL1: CONCRETE MODEL  
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Q1/MODEL1: CONCRETE MODEL FOR N,M 
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Q1/MODEL2: LIMITS OF RELIABILITY

System built of Synapses (John von Neumann, 1956) 

Computation and Fault Model : 
Synapses deliver „0“ or „1” 
Synapses deliver with R > 0,5: 

with probability R correct result 
with (1-R) wrong result 

Then we can build systems that deliver correct result for 
any  (arbitrarily high) probability R 
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Q2: CONSENSUS

Q2:  Can we achieve consensus in the presence of faults  
  all non-faulty components agree on action?  

all correctly working units agree on result/action 

agreement non trivial (based on exchange of messages)
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Q2/MODEL 1:  “2 ARMY PROBLEM”

p,q processes 
communicate using messages 
messages can get lost 
no upper time for message delivery known  
do not crash, do not cheat 

p,q to agree on action (e.g. attack, retreat, ...) 

how many messages needed ?  

first mentioned: Jim Gray 1978

�32



TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 1:  “2 ARMY PROBLEM”

Result: there is no protocol with finite messages 

Prove by contradiction:  
assume there are finite protocols ( mp--> q, mq --> p )* 
choose the shortest protocol MP,  
last message MX:  mp --> q or  mq --> p  
MX can get lost  
=> must not be relied upon =>  can be omitted 
=> MP not the shortest protocol. 
=> no finite protocol 
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Q2/MODEL 2: “BYZANTINE AGREEMENT”

n processes, f traitors, n-f loyals 

communicate by reliable and timely messages 
(synchronous messages) 

traitors lye, also cheat on forwarding messages 

try to confuse  loyals
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Q2/MODEL 2: “BYZANTINE AGREEMENT”

Goal: 

loyals try to agree on non-trivial action (attack, retreat) 

non-trivial more specific: 

one process is commander 

if commander is loyal and gives an order, loyals follow the 
order otherwise loyals agree on arbitrary action 
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Q2/MODEL 2: “BYZANTINE AGREEMENT”

�36

3 Processes: 1 traitor, 2 loyals

Commander

Lieutenant Lieutenant

attack attack

he said: retreat
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Q2/MODEL 2: “BYZANTINE AGREEMENT”

�37

Commander

Lieutenant Lieutenant

attack retreat

he said: retreat

3 Processes: 1 traitor, 2 loyals

=> 3 processes not sufficient to tolerate 1 traitor
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Q2/MODEL 2: “BYZANTINE AGREEMENT”

�38

4 Processes Commander

Lieutenant 1 Lieutenant

attack attack

Lieutenant

attack

He said:
attack

He said:
retreat
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Q2/MODEL 2: “BYZANTINE AGREEMENT”
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Commander

Lieutenant 1 Lieutenant 3

x z

Lieutenant 2

y

He said:
y

He said:
z

all lieutenant receive x,y,z  =>  can decide 

General result:   3 f + 1 processes needed to tolerate f traitors

4 Processes
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NEXT WEEK

Q3: Is there an algorithm to determine for a system with 
a given setting of access control permissions, whether or 
not a Subject A can obtain a right on Object B?
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THE QUESTION
Q3: Is there an algorithm to determine for a system with a 
given setting of access control permissions, whether or not 
a Subject A can obtain a right on Object B?  

Given a System of Entities (“Objects”) 
acting as Subjects and/or Objects 

with clearly-defined limited access rights among 
themselves 

can we achieve clearly-defined  Security Objectives ?
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TOPICS OF LECTURE
Definition and Example of “higher-Level”  
Security Policies (Security Policy Models) 
(Bell La Padula, Chinese Wall) 

Mechanisms to express/set clearly-defined access rights:  
Access Control Matrix, ACL, and Capabilities 

Q3 “formalized” in 2 Models: “ACM-based” & “Take Grant” 

Decidable ? 

No proofs (in 2018)
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“Reasoning”: 
Common sense 
Formal Verification 
Careful Inspection 
Mathematics  

“Refinement”: 
Abstraction 
Implementation 
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THE GENERAL APPROACH

Modeling Distributed Systems, SS 2018

…

Model 

Model M

Model L

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System 



“Reasoning”: 
Common sense 
Formal Verification 
Careful Inspection 
Mathematics 
“Common Criteria Assurance” 

“Refinement”: 
Abstraction 
Implementation 
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SECURITY MODELS

…

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System 



Definiton: Policy  

Examples: 
Higher-Level Policies 
(very short): 

Bell La Padula 
Chinese Wall
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IN THIS LECTURE

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System 



Operating Sys. Mechanisms: 
Access Control List 
Capabilities 

Explain Q3 and  
formalize per model! 

Models: 
based on Access Control Matrix 
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IN THIS LECTURE
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SECURITY POLICY
Security Policy 
A security policy P is a statement that partitions the states 
S of a system into a set of authorized (or secure) states 
(e.g., Σsec := { σ ∈ Σ | P(σ) }) and a set of unauthorized (or 
non-secure) states. 

Secure System  
A secure system is a system that starts in an authorized 
state and that cannot enter an unauthorized state  
(i.e., Σreachable ⊆ Σsec) 
Reference: Matt Bishop: Computer Security Art and Science 

�47ref MB: page 95
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CONFIDENTIALITY./.INTEGRITY./.(AVAILABILITY)

Definitions: 

Information or data I is confidential  

with respect to a set of entities X if no member of X can 
obtain information about I.  

Information I or data is integer if (2 definitions in text 
books) 

(1) it is current, correct and complete 

(2) it is either is current, correct, and complete or it is 

�48



Model for Confidentiality 

Secrecy Levels: 
Classification (documents) 
Clearance (persons) 
The higher the level the 
more sensitive the data 
totally ordered 
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INFORMAL BELL LAPADULA

top secret

secret

confidential

unclassified

information

X

X

X

top secret

secret

confidential

unclassified

read

operations

write

readwrite

readwrite

X

X

X

X

X

X
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EXAMPLES BLP(TANENBAUM)

categories: NATO, Nuclear  
levels/clearance: top secret, secret, confidential, unclassified 

document: Nato, secret 

person clearance:  read 
secret, Nato    -> allowed 
secret, Nuclear  -> not allowed 
confidential, Nato -> not allowed
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CHINESE WALL POLICY
Confidentiality & Integrity 

Subjects 

Objects: pieces of information of a company 

CD: Company Data Sets 
objects related to single company 

COI: Conflict of Interest class 
data sets of competing companies 

Sanitized Objects  
version of object that does not contain critical information

�51Ref MB: Chapter 7.1



TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, EXAMPLE

�52
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CHINESE WALL, RULES
PR(S): set of Objects previously read by S 

S can read O, if any of the following holds  

first-time read 

∀ O, O’ ∊ PR(S) => COI(O) = COI(O’)  

O is a sanitized Object 
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CHINESE WALL, EXAMPLE
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CHINESE WALL, RULES

PR(S): set of Objects read by S 

S can write O, if 

“S can read O” 

∀ unsanitized O’, “S can read O’” => CD(O) = CD(O’)
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CHINESE WALL, EXAMPLE
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Operating Sys. Mechanisms: 
Access Control List 
Capabilities 

Explain Q3 and  
formalize per model! 
Models: 

based on Access Control Matrix 
“take grant” model
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MECHANISMS

…
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Subjects: S 
Objects: O 
Entities: E = S ∪ O 

Rights: {read, write, own,…} 
Matrix: S x E x R 

Simple ACM Operations: 
create subject / object 
destroy subject / object 
enter / delete R into cell (s,o)
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MECHANISMS: ACCESS CONTROL MATRIX

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2



ACM 

Access Control List 
(ACL) 
 

Capabilities

!59TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

OS MECHANISMS: ACL & CAPS

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2
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Q3/MODEL 1: ACL & “LEAKAGE”

Define Protection Mechanisms of an Operating System  
in terms of primitive ACM operations 

only the defined mechanism provided by the OS can 
used

�60ref MB: chapter 2.2
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Q3/MODEL 1: ACL & “LEAKAGE”

“Leakage”:  
an access right is placed into S/O that has not been 
there before  
it does not matter whether or not that is allowed 

Is leakage decidable ?

�61ref MB: chapter 3



Examples for OS-
Mechanisms defined by  
ACM-Operations: 

UNIX create file (S1,F) 
 create object  
 enter own into A(S1,F) 
 enter read into A(S1,F) 
 enter write into A(S1,F)
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Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

—

—

ref MB: chapter 2.2



Examples for OS-
Mechanisms defined by 
ACM-Operations: 
 
UNIX chmod -w  (S2,F) 
 if own ∊ A(caller,F)   
 then delete w in A(S2,F)
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Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

r,w

—

r,-

Q3:  
Given an OS with a ACM-based description of protection mechanisms  
is “Leakage” decidable for any R in A(x,y) ?

ref MB: chapter 2.2
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Q3/MODEL 1: DECIDABILITY OF LEAKAGE 

Decidable 

no subjects/objects can be created 

only one primitive ACM operation per OS-Mechanism  

by exhaustive search ! 

Q3 in general: 

undecidable (proof: reduction to Turing machine)

�64ref MB: chapter 3
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“Capabilities” 
an intuitive example 
- files: a privileged process 
- Photo: an untrusted process 
- Photo brings a small initial set 
of “capabilities” on installation 
- needs permission to edit a 
specific photo P
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Q3/MODEL 2: “TAKE GRANT”

request P

files

privilegierter Prozess: files

files:  
asks usr for permission  
         creates a capability for P

“grants” capability to Photo 

Photo

initiale 
Menge
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L4 CAPABILITIES 

�66

Alice

Carol

BobBotschaft



Directed Graph: 
Subjects:   
Objects: 
Either S or O: 

x has capability  
with set of rights 𝝰 on y:
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Q3/MODEL 2: “TAKE GRANT”

X

𝝰
x y

t  take right 
x has cap with set of rights  
𝞃 that includes t

t
x y

g
x y

g  grant right 
x has cap with set of rights  
𝝲 that includes g



Rules: 

take rule (𝝰⊆𝛃) 

a takes (𝛂 to y) from z 

grant rule (𝝰⊆𝛃) 

z grants (𝛂 to y) to x
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Q3/ 2: TAKE GRANT RULES

Xt
x yz

Xt
x y

𝝱
𝝰

𝝱 Xt
x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x z

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱

yz
Xg

x yz
Xg

x
𝝱 𝝱

𝝰

ref MB: chapter 3.3



Rules: 

create rule  

x create (𝛂 to new vertex) y 

remove rule 

x removes (𝛂 to) y 
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Q3/ 2: TAKE GRANT RULES

x x
𝝰 X

y

x y
𝝱

x y
𝝱-𝝰

ref MB: chapter 3.3
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Q3/M2: FORMALIZED

CanShare(𝛂, x, y, G0):  

there exists a sequence of G0 … Gn  with  G0 ⊢* Gn  

and there is an edge in Gn:      

�70

x y
𝝰

ref MB: chapter 3.3



take rule (𝝰⊆𝛃) 

a takes (𝛂 to y) from z 

grant rule (𝝰⊆𝛃) 

z grants (𝛂 to y) to x 
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Q3/ 2: CAREFUL: LEMMA  
Xt

x yz
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x y
𝝱

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x z

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱

Xg
x yz

Xg
x yz

𝝱 𝝱
𝝰

ref MB: chapter 3.3
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*
?



 

create rule 

z takes (g to v) from x 

z grants (𝛂 to y) to v 
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Q3/ 2: CAREFUL: LEMMA  
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𝛂
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t
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𝝱
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𝛂

𝛂

(𝝰⊆𝛃)

ref MB: chapter 3.3
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Q3/M2: FORMALIZED

CanShare(𝛂, x, y, G0):  

there exists a sequence of G0 … Gn  with  G0 ⊢* Gn  

and there is an edge:      

CanShare decidable in linear time !
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TAKE AWAY 

three questions, 2 models per question, different answers !!! 

modeling is powerful 

need to look extremely carefully into understanding 

models !!!
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