
TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

NOTES TO STUDENTS

Exams: July 17, August 22,  
(and probably September)

watch out for  
“Systems Programming Lab” in Fall !!!

�1

HERMANN HÄRTIG, DISTRIBUTED OPERATING SYSTEMS, SS2018

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

MODELING DISTRIBUTED SYSTEMS

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

MODELS IN GENERAL

abstract from details

concentrate on functionality, properties, ... that are
considered important for a specific system/application

use model to analyze, prove, predict, ... system
properties  
and to establish fundamental insights

models in engineering disciplines very common,  
increasingly in CS as well

we'll see many models in “Real-Time Systems” class
�3

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

THE GENERAL IDEA

Reasoning:

Common sense

Formal Verification

Careful Inspection

Mathematics  

�4

…

Model

Property

Reasoning OK?

System

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

THE GENERAL IDEA

Reasoning:

Common sense

Formal Verification

Careful Inspection

Mathematics  

“Refinement”:

Abstraction

�5

…

Model

Model M

Model L

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

MODEL EXAMPLES IN GENERAL

Model Objective/Question

Failure Trees are all failure combinations taken
 into account

statics models does a house eventually fall down 
 what kind of vehicles on a bridge

control laws stability of controllers

Ohm’s Law behavior of circuits

�6

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

WELL KNOWN EXAMPLES FOR MODELS

�7

I=V/R

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

MODEL EXAMPLES COMPUTER SCIENCE

Model Objective/Question

Turing Machine Decidability

Amdahl’s Law Scalability

Logic Correctness, Precision, …

Real-Time “tasks” can all timing requirements be met

Byzantine Agreement Consensus 
Two Army Consensus

�8

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

MODELS IN DOS

Objective of lecture:  
understand the power of models and the need for their
careful understanding

Intuition, No proofs

�9

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

THIS LECTURE’S QUESTIONS

Q1: Is it possible to build arbitrarily reliable Systems out
of unreliable components?

Q2: Can we achieve consensus in the presence of faults
(consensus: all non-faulty components agree on action)?

Q3: Is there an algorithm to determine for a system with
a given setting of access control permissions, whether or
not a Subject A can obtain a right on Object B?

2 Models per Question !

All questions/answers/models -> published 1956 - 1982 !!!
�10

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

LIMITS OF RELIABILITY

Q1: Can we build arbitrarily reliable Systems out of
unreliable components ?  

How to build reliable systems from less reliable
components

Fault(Error, Failure, Fault,) 
terminology in this lecture synonymously used for
“something goes wrong” 
(more precise definitions and types of faults in SE)

�11

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

 DEFINITIONS

Reliability:

R(t): probability for a system to survive time t

Availability:

A: fraction of time a system works

�12

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

INGREDIENTS

Fault detection and confinement

Recovery

Repair

Redundancy

Information

time

structural

functional

�13

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

WELL KNOWN EXAMPLE

�14

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

�15

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

�16

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

�17

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

�18

...

. .
 .

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT RELIABILITY MODEL

�19

R
1

R
2

R
m

Each component must work for the whole system to work.

Serial-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT MODEL

�20

R
1

R
2

R
m

One component must work for the whole system to work.

Each component must fail for the whole system to fail.

Parallel-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT MODEL

�21

R
1,1

R
1,2

R
1,m

R
n,1

R
n,2

R
n,m

R
2,1

R
2,2

R
2,m

Serial-Parallel-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

�22

...

. .
 .

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�23

Fault Model

„Computer-Bus-Connector“  
can fail such that Computer and/or Bus also fail

=>  
conceptual separation of components into

Computer, Bus: can fail per se

CC: Computer-Connector 
 fault also breaks the Computer

 BC: Bus-Connector 
 fault also breaks Bus

Computer

Bu
s

CC

BC

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�24

Computer 1

CC
 1,1

Bu
s 1

BC 1,1

1 Buses

1 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�25

Computer 1

CC
 1,1

Computer 2

CC
 2,1

Bu
s 1

BC 2,1
BC 1,1

1 Buses

2 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�26

Computer 1

CC
 1,1

Computer 2

CC
 2,1

Computer n

CC
 n,1

Bu
s 1

BC n,1

BC 2,1
BC 1,1

1 Buses

N Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�27

Computer 1

CC
 1,1

CC
 1,2

CC
 1,m

Bu
s 1

BC 1,1

Bu
s m

BC 1,m

M Buses

1 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

�28

Computer 1

CC
 1,1

CC
 1,2

CC
 1,m

Computer 2

CC
 2,1

CC
 2,2

CC
 2,m

Computer n

CC
 n,1

CC
 n,2

CC
 n,m

Bu
s 1

BC n,1

BC 2,1
BC 1,1

Bu
s m

BC n,m

BC 2,m
BC 1,m

M Buses

N Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL FOR N,M

�29

CC 1,m Com. 1CC 1,1 CC 1,2BC 2,1 BC n,1Bus 1 BC 1,1

CC 2,m Com. 2CC 2,1 CC 2,2BC 2,2 BC n,2Bus 2 BC 1,2

CC n,m Com. nCC n,1 CC n,2BC 2,m BC n,mBus m BC 1,m

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q1/MODEL2: LIMITS OF RELIABILITY

System built of Synapses (John von Neumann, 1956)

Computation and Fault Model :
Synapses deliver „0“ or „1”
Synapses deliver with R > 0,5:

with probability R correct result
with (1-R) wrong result

Then we can build systems that deliver correct result for
any (arbitrarily high) probability R

�30

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2: CONSENSUS

Q2: Can we achieve consensus in the presence of faults  
 all non-faulty components agree on action?

all correctly working units agree on result/action

agreement non trivial (based on exchange of messages)

�31

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 1: “2 ARMY PROBLEM”

p,q processes
communicate using messages
messages can get lost
no upper time for message delivery known
do not crash, do not cheat

p,q to agree on action (e.g. attack, retreat, ...)

how many messages needed ?  

first mentioned: Jim Gray 1978

�32

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 1: “2 ARMY PROBLEM”

Result: there is no protocol with finite messages

Prove by contradiction:
assume there are finite protocols (mp--> q, mq --> p)*
choose the shortest protocol MP,
last message MX: mp --> q or mq --> p
MX can get lost
=> must not be relied upon => can be omitted
=> MP not the shortest protocol.
=> no finite protocol

�33

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

n processes, f traitors, n-f loyals

communicate by reliable and timely messages 
(synchronous messages)

traitors lye, also cheat on forwarding messages

try to confuse loyals

�34

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

Goal:

loyals try to agree on non-trivial action (attack, retreat)

non-trivial more specific:

one process is commander

if commander is loyal and gives an order, loyals follow the
order otherwise loyals agree on arbitrary action

�35

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

�36

3 Processes: 1 traitor, 2 loyals

Commander

Lieutenant Lieutenant

attack attack

he said: retreat

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

�37

Commander

Lieutenant Lieutenant

attack retreat

he said: retreat

3 Processes: 1 traitor, 2 loyals

=> 3 processes not sufficient to tolerate 1 traitor

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

�38

4 Processes Commander

Lieutenant 1 Lieutenant

attack attack

Lieutenant

attack

He said:
attack

He said:
retreat

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

�39

Commander

Lieutenant 1 Lieutenant 3

x z

Lieutenant 2

y

He said:
y

He said:
z

all lieutenant receive x,y,z => can decide

General result: 3 f + 1 processes needed to tolerate f traitors

4 Processes

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

NEXT WEEK

Q3: Is there an algorithm to determine for a system with
a given setting of access control permissions, whether or
not a Subject A can obtain a right on Object B?

�40

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

THE QUESTION
Q3: Is there an algorithm to determine for a system with a
given setting of access control permissions, whether or not
a Subject A can obtain a right on Object B?

Given a System of Entities (“Objects”) 
acting as Subjects and/or Objects

with clearly-defined limited access rights among
themselves

can we achieve clearly-defined Security Objectives ?

�41

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

TOPICS OF LECTURE
Definition and Example of “higher-Level”  
Security Policies (Security Policy Models) 
(Bell La Padula, Chinese Wall)

Mechanisms to express/set clearly-defined access rights:
Access Control Matrix, ACL, and Capabilities

Q3 “formalized” in 2 Models: “ACM-based” & “Take Grant”

Decidable ?

No proofs (in 2018)

�42

“Reasoning”:
Common sense
Formal Verification
Careful Inspection
Mathematics  

“Refinement”:
Abstraction
Implementation

!43TU Dresden: Hermann Härtig, Marcus Völp

THE GENERAL APPROACH

Modeling Distributed Systems, SS 2018

…

Model

Model M

Model L

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

“Reasoning”:
Common sense
Formal Verification
Careful Inspection
Mathematics
“Common Criteria Assurance” 

“Refinement”:
Abstraction
Implementation

!44TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

SECURITY MODELS

…

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

Definiton: Policy

Examples:
Higher-Level Policies
(very short):

Bell La Padula
Chinese Wall

!45TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

IN THIS LECTURE

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

Operating Sys. Mechanisms:
Access Control List
Capabilities

Explain Q3 and
formalize per model!

Models:
based on Access Control Matrix

!46TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

IN THIS LECTURE

…

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

SECURITY POLICY
Security Policy 
A security policy P is a statement that partitions the states
S of a system into a set of authorized (or secure) states
(e.g., Σsec := { σ ∈ Σ | P(σ) }) and a set of unauthorized (or
non-secure) states.

Secure System  
A secure system is a system that starts in an authorized
state and that cannot enter an unauthorized state  
(i.e., Σreachable ⊆ Σsec) 
Reference: Matt Bishop: Computer Security Art and Science

�47ref MB: page 95

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CONFIDENTIALITY./.INTEGRITY./.(AVAILABILITY)

Definitions:

Information or data I is confidential

with respect to a set of entities X if no member of X can
obtain information about I.

Information I or data is integer if (2 definitions in text
books)

(1) it is current, correct and complete

(2) it is either is current, correct, and complete or it is

�48

Model for Confidentiality

Secrecy Levels:
Classification (documents)
Clearance (persons)
The higher the level the
more sensitive the data
totally ordered

!49TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

INFORMAL BELL LAPADULA

top secret

secret

confidential

unclassified

information

X

X

X

top secret

secret

confidential

unclassified

read

operations

write

readwrite

readwrite

X

X

X

X

X

X

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

EXAMPLES BLP(TANENBAUM)

categories: NATO, Nuclear  
levels/clearance: top secret, secret, confidential, unclassified

document: Nato, secret

person clearance: read 
secret, Nato -> allowed 
secret, Nuclear -> not allowed 
confidential, Nato -> not allowed

�50

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL POLICY
Confidentiality & Integrity

Subjects

Objects: pieces of information of a company

CD: Company Data Sets 
objects related to single company

COI: Conflict of Interest class 
data sets of competing companies

Sanitized Objects  
version of object that does not contain critical information

�51Ref MB: Chapter 7.1

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, EXAMPLE

�52

COI

CD

Objects

Sanitized O

Subject

VW BMW

D

intel
ARM

S

x x

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, RULES
PR(S): set of Objects previously read by S

S can read O, if any of the following holds

first-time read

∀ O, O’ ∊ PR(S) => COI(O) = COI(O’)

O is a sanitized Object

�53

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, EXAMPLE

�54

COI

CD

Objects

Sanitized O

Subject

VW BMW

D

x

S

intel
ARM

xX

read requestPR
write request

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, RULES

PR(S): set of Objects read by S

S can write O, if

“S can read O”

∀ unsanitized O’, “S can read O’” => CD(O) = CD(O’)

�55

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

CHINESE WALL, EXAMPLE

�56

COI

CD

Objects

Sanitized O

Subject

VW BMW

D

x

S

intel
ARM

xX

read requestPR
write request

X

X

Operating Sys. Mechanisms:
Access Control List
Capabilities

Explain Q3 and
formalize per model!
Models:

based on Access Control Matrix
“take grant” model

!57TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

MECHANISMS

…

Policy

Mechanisms

Code

Property

Refinement

Refinement

Reasoning

Reasoning

Reasoning

OK?

OK?

OK?

System

Subjects: S
Objects: O
Entities: E = S ∪ O

Rights: {read, write, own,…}
Matrix: S x E x R

Simple ACM Operations:
create subject / object
destroy subject / object
enter / delete R into cell (s,o)

!58TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

MECHANISMS: ACCESS CONTROL MATRIX

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2

ACM 

Access Control List 
(ACL) 
 

Capabilities

!59TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

OS MECHANISMS: ACL & CAPS

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 1: ACL & “LEAKAGE”

Define Protection Mechanisms of an Operating System  
in terms of primitive ACM operations

only the defined mechanism provided by the OS can
used

�60ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 1: ACL & “LEAKAGE”

“Leakage”:  
an access right is placed into S/O that has not been
there before  
it does not matter whether or not that is allowed

Is leakage decidable ?

�61ref MB: chapter 3

Examples for OS-
Mechanisms defined by  
ACM-Operations:

UNIX create file (S1,F)
 create object  
 enter own into A(S1,F)
 enter read into A(S1,F)
 enter write into A(S1,F)

!62TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

—

—

ref MB: chapter 2.2

Examples for OS-
Mechanisms defined by
ACM-Operations:
 
UNIX chmod -w (S2,F)
 if own ∊ A(caller,F)  
 then delete w in A(S2,F)

!63TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

r,w

—

r,-

Q3:  
Given an OS with a ACM-based description of protection mechanisms  
is “Leakage” decidable for any R in A(x,y) ?

ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 1: DECIDABILITY OF LEAKAGE

Decidable

no subjects/objects can be created

only one primitive ACM operation per OS-Mechanism

by exhaustive search !

Q3 in general:

undecidable (proof: reduction to Turing machine)

�64ref MB: chapter 3

or

“Capabilities”
an intuitive example
- files: a privileged process
- Photo: an untrusted process
- Photo brings a small initial set
of “capabilities” on installation
- needs permission to edit a
specific photo P

!65TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 2: “TAKE GRANT”

request P

files

privilegierter Prozess: files

files:  
asks usr for permission
 creates a capability for P

“grants” capability to Photo

Photo

initiale
Menge

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2018 Modeling Distributed Systems

L4 CAPABILITIES

�66

Alice

Carol

BobBotschaft

Directed Graph:
Subjects:
Objects:
Either S or O:

x has capability  
with set of rights 𝝰 on y:

!67TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/MODEL 2: “TAKE GRANT”

X

𝝰
x y

t take right 
x has cap with set of rights  
𝞃 that includes t

t
x y

g
x y

g grant right 
x has cap with set of rights  
𝝲 that includes g

Rules:

take rule (𝝰⊆𝛃) 

a takes (𝛂 to y) from z

grant rule (𝝰⊆𝛃) 

z grants (𝛂 to y) to x

!68TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/ 2: TAKE GRANT RULES

Xt
x yz

Xt
x y

𝝱
𝝰

𝝱 Xt
x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x z

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱

yz
Xg

x yz
Xg

x
𝝱 𝝱

𝝰

ref MB: chapter 3.3

Rules:

create rule  

x create (𝛂 to new vertex) y

remove rule 

x removes (𝛂 to) y

!69TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/ 2: TAKE GRANT RULES

x x
𝝰 X

y

x y
𝝱

x y
𝝱-𝝰

ref MB: chapter 3.3

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/M2: FORMALIZED

CanShare(𝛂, x, y, G0):  

there exists a sequence of G0 … Gn with G0 ⊢* Gn  

and there is an edge in Gn:

�70

x y
𝝰

ref MB: chapter 3.3

take rule (𝝰⊆𝛃) 

a takes (𝛂 to y) from z

grant rule (𝝰⊆𝛃) 

z grants (𝛂 to y) to x

!71TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/ 2: CAREFUL: LEMMA
Xt

x yz
Xt

x y
𝝱

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x z

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱 Xt

x

𝝰
𝝱

Xg
x yz

Xg
x yz

𝝱 𝝱
𝝰

ref MB: chapter 3.3

Xt
x yz

Xt
x yz

𝝱 𝝱
𝝰

*
?

 

create rule

z takes (g to v) from x

z grants (𝛂 to y) to v

!72TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/ 2: CAREFUL: LEMMA

Xt
x yz

𝝱
Xx z y

𝝱

v

tg

t

Xx z y
𝝱

v

tg

t
g

𝛂

Xx z y
𝝱

v

tg

t
g

Xx z y
𝝱

v

tg

t
g

𝛂

𝛂

(𝝰⊆𝛃)

ref MB: chapter 3.3

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

Q3/M2: FORMALIZED

CanShare(𝛂, x, y, G0):  

there exists a sequence of G0 … Gn with G0 ⊢* Gn  

and there is an edge:

CanShare decidable in linear time !

�73

x y
𝝰

ref MB: chapter 3.3

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

TAKE AWAY

three questions, 2 models per question, different answers !!!

modeling is powerful

need to look extremely carefully into understanding

models !!!

�74

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS 2018

REFERENCES
Q1/M1:  
Pfitzmann A., Härtig H. (1982) Grenzwerte der Zuverlässigkeit von Parallel-Serien-Systemen.
In: Nett E., Schwärtzel H. (eds) Fehlertolerierende Rechnersysteme. Informatik-

Fachberichte, vol 54. Springer, Berlin, Heidelberg (in German only) 
Q1/M2:  
John v. Neuman, PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE. ORGANISMS
FROM UNRELIABLE COMPONENTS.

Q2: most textbooks on distributed systems

Q3: textbook: Matt Bishop, Computer Security, Art and
Science, Addison Wesley 2002

�75

