

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

MODELING DISTRIBUTED SYSTEMS

HERMANN HÄRTIG, DISTRIBUTED OPERATING SYSTEMS, SS2020

use models to analyze, prove, predict, ... properties of concrete system AND to establish fundamental insights

- abstract from details
- models in engineering disciplines very common, increasingly in CS as well

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

SYSTEM MODELS IN GENERAL

concentrate on functionality, properties, ... considered important for a specific system/application/question

Purpose

- describe the timing requirements of an application
- describe available resources
- question: timing requirements are fulfilled
- Model elements:
- periodic tasks, deadlines, worst-case exec time, ...

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

MODELS IN REAL-TIME SYSTEMS

can the application run on/use these resources such that

Hopefully RTS class is offered in future (by my successor)

MODEL EXAMPLES IN GENERAL

Objective/Question

- are all failures and their combinations taken into account
- does a house fall down (snow, quake) what kind of vehicles on a bridge
- stability of controllers
- behavior of circuits

WELL KNOWN EXAMPLES FOR MODELS

I=V/R

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
- 2 Models per Question !

THIS LECTURE'S QUESTIONS

Reasoning:

- Common sense
- Formal Verification
- Careful Inspection
- Mathematics

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

SYSTEMS MODELS: GENERAL APPROACH

Reasoning:

- Common sense
- **Formal Verification**
- Careful Inspection
- Mathematics
- "Refinement":
 - Abstraction
 - Implementation
 - Formal Refinement

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

SYSTEMS MODELS: GENERAL APPROACH

Model Amdahl's Law Turing Machine Logic

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

MODEL EXAMPLES COMPUTER SCIENCE

- **Objective/Question**
- Scalability
- Halting problem, Decidability
- Correctness, Precision, ...

Objective of lecture: careful understanding

Try to find answers to question Q1 ... Q3 full slide set

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

MODELS IN THIS CLASS(DOS)

understand the power of models and the need for their

models in detail, but math results by intuition not proofs

BEFORE viewing the other pieces of the lecture and the

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
- 2 Models per Question !

THIS LECTURE'S QUESTIONS