MODELING DISTRIBUTED SYSTEMS

HERMANN HÄRTIG, DISTRIBUTED OPERATING SYSTEMS, SS2020
use models to analyze, prove, predict, ... properties of concrete system AND to establish fundamental insights

- abstract from details
- concentrate on functionality, properties, ... considered important for a specific system/application/question
- models in engineering disciplines very common, increasingly in CS as well

Purpose

- describe the timing requirements of an application
- describe available resources
- question:
can the application run on/use these resources such that timing requirements are fulfilled
Model elements:
- periodic tasks, deadlines, worst-case exec time, ... Hopefully RTS class is offered in future (by my successor)

Model

- Failure Trees
- statics models
- control laws
- Ohm's Law

Objective/Question

are all failures and their combinations taken into account
does a house fall down (snow, quake)
what kind of vehicles on a bridge
stability of controllers
behavior of circuits

WELL KNOWN EXAMPLES FOR MODELS

I=V/R

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?

2 Models per Question!

SYSTEMS MODELS: GENERAL APPROACH

Reasoning:

- Common sense
- Formal Verification
- Careful Inspection
- Mathematics

SYSTEMS MODELS: GENERAL APPROACH

Reasoning:

- Common sense
- Formal Verification
- Careful Inspection
- Mathematics
- "Refinement":
- Abstraction
- Implementation
- Formal Refinement

MODEL EXAMPLES COMPUTER SCIENCE

Model

- Amdahl's Law
- Turing Machine
- Logic

Objective/Question
Scalability
Halting problem, Decidability
Correctness, Precision, ...

- Objective of lecture:
understand the power of models and the need for their careful understanding
- models in detail, but math results by intuition not proofs
- Try to find answers to question Q1 ... Q3 BEFORE viewing the other pieces of the lecture and the full slide set
- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
2 Models per Question!

