
Fiasco Kernel Debugger Manual

Frank Mehnert
Jan Glauber

Jochen Liedtke

Technische Universität Dresden
Department of Computer Science

November 2008+
Version 1.1.6+

Note: Does not cover all of the Fiasco.OC featuers.

Revision History

20.04.2001 – Version 1.00 (Jan Glauber)
- Inital release based on Jochen’s LN kdb manual.

18.07.2001 – Version 1.0.1 (Frank Mehnert)
- added documentation for u command (disassemble memory)
- added documentation for Is and Id command (enable/disable IPC result logging)
- added documentation for Ss and Sd command (enable/disable show thread tcb after singlestop)
- all commands now expect thread numbers by txxx.yy notation

23.08.2001 – Version 1.0.2 (Frank Mehnert)
- added documentation for lp and lr commands
- completed documentation for T command
- when expecting a thread/task, txxxxxxxx notation is possible
- described j command
- Is/Id→ I+/I–, Ss/Sd→ t+/t–

11.10.2001 – Version 1.0.3 (Frank Mehnert)
- added description for B command
- extended description for trace-buffer dump
- some cosmetical changes

14.11.2001 – Version 1.0.4 (Frank Mehnert)
- added some remarks on symbols section
- some cosmetical changes

10.5.2002 – Version 1.0.5 (Hendrik Tews)
- added r command

15.12.2003 – Version 1.1 (Frank Mehnert)
- major update (added commands A, C, M, O, R)
- added command line switch reference
- various changes

27.12.2003 – Version 1.1.1 (Adam Lackorzynski)
- added command J, C is gone

03.05.2004 – Version 1.1.2 (Adam Lackorzynski)
- added lt, Jo, t? commands
- removed s command
- added -kmemsize parameter switch

2

13.10.2004 – Version 1.1.3 (Frank Mehnert)
- added N, ka, kb, kP, C commands
- cosmetical fixes
- -loadcnt switch documentation
- commands for setting marks and jumping to marks

07.11.2005 – Version 1.1.4 (Frank Mehnert)
- added Jd command
- added Z command

05.12.2005 – Version 1.1.5 (Frank Mehnert)
- added PR+/– command
- enter kdebug(”*#”) description improved
- documentation of -comport=n for n > 4
- typos

15.09.2006 (Adam Lackorzynski)
- Exchange -nowait with new command -wait

11.11.2006 – Version 1.1.6 (Adam Lackorzynski)
- Describe keys in memory dump.

xx.xx.200x – Version 1.1.x (Adam Lackorzynski)
- Clarify description of breakpoint addresses.
- Add more keys in the trace buffer key description.
- Add z command.
- Thread ID cleanup.

CONTENTS 3

Contents

1 General Remarks 4

2 Fiasco-Specific Functions 5
2.1 Thread Control Block: t . 5
2.2 Thread Lists: l . 6
2.3 Timeout List: lt . 6
2.4 Mapping: m . 6
2.5 Dump Backtrace: bt . 6
2.6 Kernel Data: k . 7

3 General Test Functions 8
3.1 Breakpoint: b . 8
3.2 Dump Memory: d . 9
3.3 Physical memory: A . 10
3.4 Disassemble Memory: u . 11
3.5 Dump Page Tables: p . 11
3.6 Page Fault Monitoring: P . 12
3.7 Miscellaneous Monitoring: O . 12
3.8 Monitor “Next Period” IPC: N . 12
3.9 IPC Monitoring: I . 13
3.10 Trace Buffer: T . 14

3.10.1 Key Description . 15
3.10.2 Possible Tracing Events . 15
3.10.3 Performance Monitoring . 17

3.11 Kernel Event Counters: C . 17
3.12 Port I/O: i/o . 18
3.13 I/O Bitmap: r . 18
3.14 Machine Specific Registers: M . 18
3.15 Dump UTCB: z . 18

4 Miscellaneous 19
4.1 Help: h . 19
4.2 JDB options: J . 19
4.3 Go: g . 19
4.4 Special Go: j . 19
4.5 Single Stepping: S . 19
4.6 List IRQ threads: R . 20
4.7 Screen Output Buffer: B . 20
4.8 Video Mode and Remote Console: V . 20
4.9 Escape: E . 20
4.10 Debug Message: Return . 21
4.11 Reboot . 21
4.12 Halt Thread: H . 21
4.13 Display Thread ID of TCB address: t? . 21
4.14 Symbols . 21
4.15 Remote Control from Userland . 21

5 Jdb-related Command Line Switches 22

1 GENERAL REMARKS 4

1 General Remarks

About JDB

The Fiasco Kernel Debugger (JDB) is primarily a tool to test Fiasco and to fix bugs in Fiasco. However, it is
also useful for testing higher layers. Consequently,

- JDB always freezes the entire machine state when invoked. All interrupts are disabled, even the clock
is halted. No kernel or user process proceeds while JDB is active.

- JDB is a stand-alone debugger. It does neither use parts of Fiasco nor other device drivers. JDB includes
simple device drivers for keyboard, display (CGA and hercules), and the serial interfaces COM1 and
COM2. These device drivers are not interrupt driven.

Although developed and traditionally packaged together with Fiasco, the Fiasco Kernel Debugger is not part
of the Fiasco µ-kernel. Fiasco can run without JDB or with another kernel debugger (see compile options).
There is no other connection between Fiasco and JDB that JDB intimately knows Fiasco’s data structures.

About Exception Handling

JDB is invoked by exceptions, in particular by the debug exception (INT 1) and the breakpoint exception
(INT 3). Some exceptions are handled normally by Fiasco, for example a page fault. All other exceptions are
distributed by Fiasco either to JDB or to the current user-level thread. The according algorithm is:

exception dispatch:
if excption occurred in kernel

then invoke JDB with kernel error
elif current thread defined an IDT AND corresponding IDT entry 6=0

then invoke user-level exception handler by upcall
else invoke JDB with user error

fi .
Summarizing: JDB is used for kernel errors. It is used for user errors only as long as no debugger is installed
at user level.

2 FIASCO-SPECIFIC FUNCTIONS 5

2 Fiasco-Specific Functions

2.1 Thread Control Block: t

Displays the commented thread control block, the thread’s kernel stack, and the thread’s general purpose
registers.

t Displays the thread control block of the current thread.

txxx Displays the thread control block of thread xxx. xxx is the global debug-
ger ID and is hexadecimal.

t+/– Enable/disable automatic displaying of current thread control block
when entering kernel debugger.

thread control block The fields of the thread control block (TCB) are labeled.

kernel stack The kernel stack of the displayed thread is dumped from the current
stack top (first line) down to the stack bottom. With the cursor keys
its possible to scroll inside the TCB borders of the displayed thread.
When pressing the Enter key, the address at the cursor is dumped in
memory mode. When pressing the Space key, the address at the cursor
is disassembled.

When entering kernel mode, the processor first pushes SS, ESP, EFlags,
CS and EIP onto the kernel stack. So the last line always looks like

. . . userEIP userCS userEFLAGS userESP userSS

Likewise for other architectures. The register names are displayed in
the bottom line.

registers are displayed if the currently active thread is displayed. For this thread,
JDB knows the registers through the trap’s state, which invoked JDB.
Depending on their state, other threads might not have saved all their
registers on the stack.

thread lists With ’r’eady or ’p’resent followed by ’p’revious or ’n’ext, cycling
through the thread queues is possible.

2 FIASCO-SPECIFIC FUNCTIONS 6

2.2 Thread Lists: l

Display the present list (lp command) or the ready list (lr command). The cursor keys may be used to scroll
in the list. The Enter key shows the TCB of the selected thread. The Space key allow to change the sort
mode: Unsorted, sorted by thread priority and sorted by thread identifier. The Tab key switches to the thread
in list the current thread is waiting for.

2.3 Timeout List: lt

Display all current active timeouts. The cursor keys may be used to scroll in the list. The Enter key shows
the TCB of the owner of the selected timeout.

2.4 Mapping: m

Permits to parse the Fiasco mapping database.

mxxxxx Starts parsing the mapping subtree corresponding to physical page
frame xxxxx000. The CursorUp and CursorDown keys can be used to
proceed to the next or previous page.
The Escape key allows to leave this mode.

2.5 Dump Backtrace: bt

Displays the backtrace of a thread.

bt Display the user-backtrace of the last thread running (currently active
thread) before entering JDB. Instruction pointers are shown from newest
at the top down to oldest. If the symbols for the current task are loaded,
the proper function names are also displayed.

bttxxx Display the user-backtrace of thread xxx. Also shows the kernel back-
trace of the selected thread.

bttxxxxxxxx Display the user-backtrace specifying the low dword of thread id

btxxxxxxxx Display the backtrace of the current thread interpreting address
xxxxxxxx as framepointer.

2 FIASCO-SPECIFIC FUNCTIONS 7

2.6 Kernel Data: k

Displays some global Fiasco kernel data that is not thread specific.

ka Display some information about the local APIC.

kb Determine how many cycles does it take to execute some special
instructions.

kc Display some information about the processor.

kf Interprets the content of the kernel info page.

kg Display entries of the GDT (global descriptor table).

kh Short help about available subcommands.

ki Displays the kernel clock, current pdbr, cr0, cr4, idt, gdt, ldtr, tr, I/O
bitmap pointer.

kI Display entries of the IDT (interrupt descriptor table).

km Kernel memory footprint.

kp Display ports of the PIC.

KP List all PCI devices.

kr Information about the memory manager.

3 GENERAL TEST FUNCTIONS 8

3 General Test Functions

3.1 Breakpoint: b

Sets/resets four global breakpoints for kernel-mode and user mode.

bl Displays the breakpoints and breakpoint restrictions

bi . . . Sets an instruction breakpoint.
b{w,a,p}{1,2,4} . . . Sets a data-write breakpoint (w) or a data-access breakpoint (a) for a 1-,

2- or 4-byte variable or sets a breakpoint for in/out to a 1-, 2- or 4-byte
i/o port (p)

. . . xxxxxxxx xxxxxxxx is the absolute breakpoint address and given as a hexadecimal
number where leading zeros can be omitted.

b–[bpn] Resets a system-global breakpoint. The number of the breakpoint bpn
(1..4) has to be specified

b+[bpn] Enter kernel debugger when breakpoint matched (default action)

b*[bpn] Don’t enter kernel debugger when breakpoint matched, instead create a
tracebuffer entry

br[bpn] . . . Restricts a breakpoint. The breakpoint exception invokes JDB only
when all set restrictions are met. Otherwise, the breakpoint exception is
ignored. The number of the breakpoint bpn, which should be restricted
must be specified.

. . . txxx Restricts breakpoints to thread xxx.

. . . Txxx Restricts breakpoints to threads 6=xxx.

. . . axxx Restricts breakpoints to task xxx.

. . . Axxx Restricts breakpoints to tasks 6=xxx.

. . . e[reg]
[yyyyyyyy,zzzzzzzz] The specified register reg must have a value in the specified inter-

val (if yyyyyyyy≤zzzzzzzz) or outside the interval [zzzzzzzz,yyyyyyyy] (if
yyyyyyyy>zzzzzzzz).

. . . {1,2,4}xxxxxxxx
[yyyyyyyy,zzzzzzzz] The specified 1-, 2- or 4-byte variable must have a value in the specified

interval (if yyyyyyyy≤zzzzzzzz) or outside the interval [zzzzzzzz,yyyyyyyy]
(if yyyyyyyy>zzzzzzzz).

. . . – All breakpoint restrictions of the breakpoint with number bpn are reset.

Note:
Breakpoint restrictions are not reset when the breakpoint address or type are changed or when the breakpoint
is reset (b-). Breakpoint restrictions can be explicitly reset (br-). However, changes of the restrictions do not
require prior reset.
br{t,T}, br{e..} and br{1,2,4} restrictions are logically anded. However, setting a restriction overwrites a
prior restriction of that type.

3 GENERAL TEST FUNCTIONS 9

3.2 Dump Memory: d

Displays physical and virtual memory.

dxxxxxxxx displays memory beginning from address xxxxxxxx. The dump is 32-bit-
word oriented so that addresses are always truncated to 4-byte aligned
addresses. The cursor keys, PgUp, PgDn and Home can be used to
move the dump cursor and display further memory. The Enter key can
be used to jump to the address at the cursor, the Home key returns if
possible.
This command always displays virtual memory of the current address
space. Pages that are not mapped to physical memory are shown as
.

dtyyy xxxxxxxx displays virtual memory of task yyy beginning from address xxxxxxxx.

dtyyyyyyyy xxxxxxxx displays virtual memory of a task specifying the low dword of the thread
id beginning from address xxxxxxxx.

Memory can be displayed in various modes. The Space key switches
between these modes:

d-mode 32-bit words are shown as dwords, uppermost nibble leftmost, e.g.
00000002 for the value 2. Values 0 and FFFFFFFF are displayed spe-
cially: 0 and -1.

b-mode 32-bit words are shown bytewise, uppermost byte righmost, e.g.
02000000 for the value 2. Values 0 and FFFFFFFF are not treated
differently.

c-mode Bytes are shown as ASCII characters. Unprintable characters are shown
as .

The view offers several keys to change the view:

Space Changes display modes between d, b and c mode, see above.

Return Goes to the address under the cursor.

Tab Whether to show contents of adapter memory or not. Reading adapter
memory may cause unwanted behaviour. Default is not to show adapter
memory.

e Memory values can be edited. When pressing the key, a new value for
the address where the cursor points to can be entered.

c Pressing the key highlights all values which are up to 0x100000 below
or above the current value. Only works in d-mode.

u Changes into disassembler view with the value under the cursor prese-
lected as the address as well as the current task.

3 GENERAL TEST FUNCTIONS 10

3.3 Physical memory: A

Display or modify physical memory.

Arxxxxxxxx Read 32 bits from physical address xxxxxxxx and display the result

Awxxxxxxxx yyyyyyyy write 32 bits contained in yyyyyyyy to address xxxxxxxx

3 GENERAL TEST FUNCTIONS 11

3.4 Disassemble Memory: u

Disassembles virtual memory.

uxxxxxxxx disassembles memory beginning from address xxxxxxxx. The cursor
keys, PgUp and PgDn can be used to move one line backwards or for-
wards or to jump one page backwards or forwards, respectively.
This command always disassembles virtual memory of the current ad-
dress space. Pages that are not mapped to physical memory are shown
as

utyyy xxxxxxxx disassembles virtual memory of task yyy beginning from address
xxxxxxxx.

utyyyyyyyy xxxxxxxx disassembles virtual memory of a task specifying the low dword of the
thread id beginning from address xxxxxxxx.

3.5 Dump Page Tables: p

Displays page tables and virtual memory.

p displays the higher-level page table (page directory) of the current ad-
dress space. The cursor keys, PgUp, PgDn can be used like in the dump
case. Pressing the Enter key when the cursor points to a valid lower-
level page table switches to this table. In the same way, the Enter key
there switches to the data page. The Home key always “returns” to the
lower- or higher-level page table, respectively.

pxxx displays the higher-level page table of task xxx.

The Space key changes between page table mode and raw mode.

Page-table entry formats:
- Nil entry.

xxxx--r User-level, read-only, pointing to physical address 0xxxx000.
xxxx--w User-level, read/write, pointing to physical address 0xxxx000.
xxxx--R Kernel, read-only, pointing to physical address 0xxxx000.
xxxx--W Kernel, read/write, pointing to physical address 0xxxx000.
xx/4--{r,w,R,W} 4M-page entry, pointing to physical address 0xx×4MB.

3 GENERAL TEST FUNCTIONS 12

3.6 Page Fault Monitoring: P

Monitors page faults. Page faults are monitored before they are handled by Fiasco.

P+ Switches page-fault monitoring on. Whenever a page fault occurs, page-
fault address, instruction pointer and thread number are displayed and
the system stops until a key is hit on the debug console. Pressing the
’i’ key invokes the full JDB menu; any other key resumes normal oper-
ation, i.e. starts normal page-fault handling.

P– Switches page-fault monitoring off.

P* Switches traced page-fault monitoring on. Instead of presenting any
single page fault, all page faults are monitored in a trace buffer. This
buffer stores up to 1024 entries. When JDB is invoked the next time,
the entries can be displayed by the dump trace command T.

PR+ Enables monitoring of the return code of the page fault handler. To log
these events, PF logging must be enabled either by P+ or by P*.

PR– Disables monitoring of the page fault handler return code.

Pr . . . Restricts the monitored page fault. Page faults that do not meet all spec-
ified restrictions are ignored by the monitoring system.

. . . txxx Restricts page faults to thread xxx

. . . Txxx Restricts page faults to threads 6=xxx.

. . . x [yyyyyyyy,zzzzzzzz] Only page faults with fault addresses inside the interval
[yyyyyyyy,zzzzzzzz] (if yyyyyyyy≤zzzzzzzz) or outside the interval
[zzzzzzzz,yyyyyyyy] (if yyyyyyyy>zzzzzzzz) are monitored.

. . . – All page-fault restrictions are reset.

3.7 Miscellaneous Monitoring: O

Monitors miscellaneous operations. Unlike the P command and the I command, the implementation of this
logging events induces additional (small) costs at runtime. Therefore these events can be completely disabled
at compile time and may not be available.
For a complete list of available events type O without any argument.

3.8 Monitor “Next Period” IPC: N

Monitors the “next period” IPC.

N* Enables monitoring of “next period” IPC.

N– Disables monitoring of “next period” IPC.

3 GENERAL TEST FUNCTIONS 13

3.9 IPC Monitoring: I

Monitors IPC operations. IPCs are monitored before they are handled by Fiasco.

I+ switches IPC monitoring on. Whenever an IPC operation is invoked,
sender thread number, operation type (call, send, wait, wait for, reply
and wait), destination thread number (if specified), message type (nor-
mal or map), message words 0 and 1 and the instruction pointer are
displayed. The system stops until a key is hit on the debug console.
Pressing the ’i’ key invokes the full JDB menu; any other key resumes
normal operation, i.e. starts normal IPC handling.

I– switches IPC monitoring off, single as well as traced monitoring.

I* switches traced IPC monitoring on. Instead of presenting any single
IPC, all IPCs are monitored in a trace buffer. This buffer stores 1024
entries per default (its size can be modified using the -tbuf entries=

command line switch — see section 5 for details). When JDB is invoked
the next time the entries can be displayed by the dump trace command
T.

IR+ switches monitoring of IPC system call results on. To log these events,
IPC logging must be enabled either by I+ or by I*.

IR– switches monitoring of IPC system call results off

IT+ Use special log format containing both IPC data and IPC result. The
format is used together with the L4 userland tracing library.

IT– Switch back to normal IPC log format.

Ir . . . restricts the monitored IPCs. IPCs that do not meet all specified restric-
tions are ignored by the monitoring system.

. . . txxx restricts IPCs to thread xxx.

. . . Txxx restricts IPCs to threads 6=xxx.

. . . axxx restricts IPCs to task xxx.

. . . Axxx restricts IPCs to tasks 6=xxx.

. . . s Only IPCs containing a send part are monitored, i.e., call, send, reply
and wait.

. . . – All IPC restrictions are reset.

3 GENERAL TEST FUNCTIONS 14

3.10 Trace Buffer: T

Shows the trace buffer. The according messages of a trace entry are stored in a trace buffer, together with
timing information and up to two values of performance counters.

T Enters trace-buffer dump. The newest information is displayed at the
top. On all processors except 486, trace-buffer entries get timestamps
when they are entered into the buffer. Accordingly, they can be dis-
played in various timing modes.

index Entries are shown with their number in the buffer.

tsc diff Entries are shown with their time difference (in 40 bit hexadecimal no-
tation or µs, ms, or s – switchable by Space key) to their displayed
predecessor entry.

tsc rel Entries are shown with their time difference relative to the reference
element.

tsc start Entries are shown with their time difference relative to the system start.

kclock rel The kernel clock with their difference relative to the reference element
is shown.

kclock The absolute kernel clock is shown.

pmc1 diff Entries are shown with the differences of their first performance counter.

pmc2 diff Entries are shown with the differences of their second performance
counter.

pmc1 rel Entries are shown with the difference of their first performance counter
relative to the reference element.

pmc2 rel Entries are shown with the difference of their second performance
counter relative to the reference element.

On a 486, timing information and performance counters are not available. On Pentium and all further pro-
cessors, each trace-buffer entry is accomplished with a 64-bit timestamp which is read from the processor’s
internal time-stamp-counter register using the rdtsc instruction.
On a Pentium Pro and mostly all further processors (Pentium MMX, Pentium II, AMD K7), each trace-buffer
entry can be accomplished with two 40-bit performance counter values which are read from the processor’s
internal performance counter 0 and 1.

3 GENERAL TEST FUNCTIONS 15

3.10.1 Key Description

←,→ Switch between timing modes.

Space Changes between displaying raw time stamp counter values and timed
representation.

↑, ↓, j, k, PgUp,
PgDn, Home, End

Move the trace-buffer cursor and display further trace-buffer entries.

h, l Scroll horizontally.

c Clear the trace buffer.

Enter The code the event occured at is disassembled. Home then returns to the trace-
buffer dump.

r Set the reference entry used when displaying relative time/counter values.

jr Jump to the reference element.

s0-9 Set mark0 .. mark9. Marks are highlighted.

j0-9 Jump to mark0 .. mark9.

/, ?, n The trace buffer can be searched for a regular expression (similar to less).

F Filter the tracebuffer view by specifying a regular expression.

Tab Toggle. Also display thread names.

3.10.2 Possible Tracing Events

Kernel events:

- IPCs and IPC results (see I* command at page 13),

- “next period” IPC (see N* command at page 12),

- page faults and page fault results (see P* command at page 12),

- other logging events (see O command at page 12),

- break points (see b* command at page 8)

User level trace events:

- #include <l4/sys/kdebug.h>

enter_kdebug("*text");

Creates a trace buffer entry containing the string text.

- #include <l4/sys/kdebug.h>

enter_kdebug("*+text");

Creates a trace buffer entry containing the string text. The values of the registers EAX, ECX, and EDX

are stored together with the message.

- #include <l4/sys/ktrace.h>

fiasco_tbuf_log("text");

3 GENERAL TEST FUNCTIONS 16

Creates a trace buffer entry containing the string text. In contrast to using the sequence enter kdebug("*text"),
the string text may be created at runtime.

- #include <l4/sys/ktrace.h>

fiasco_tbuf_log_3val("text", val1, val2, val3);

The string text and three hexadecimal values are stored into a single trace buffer entry.

3 GENERAL TEST FUNCTIONS 17

3.10.3 Performance Monitoring

The following options are only accessible while the trace-buffer dump mode is active and the CPU supports
performance counters.

P Permits to activate, deactivate and change performance monitoring
while you are in the trace-buffer dump. (This command does not work
outside the trace-buffer dump. Performance monitoring is not available
on 486 processors. P5, P6, and K7 processors have two counters. Not
all events are available for each counter.

P[num]+ Turns performance monitoring for counter num on (kernel and user-
mode activities)

P[num]– Turns performance monitoring for counter num off

P[num]u Turns performance monitoring on (only user-mode activities)

P[num]k Turns performance monitoring on (only kernel-mode activities)

P[num]e Count on edge. This allows to measure not only the fraction of time
spent in particular state, but also the average length of time spent in
such a state (for example, the time spent waiting for an interrupt to be
served). This option makes only sense with selected events (see hard-
ware documentation).

P[num]d Count on duration

P[num]? Select a performance monitoring event from list for counter num. Also
kernel event counter (see N* command at page 17) may be specified.

3.11 Kernel Event Counters: C

Kernel event counters must be enabled using the configuration option JDB ACCOUNTING. There exist counters
for address space switches, context switches, page faults, and others.

Cl Show kernel event counters.

Cr Reset kernel event counters.

3 GENERAL TEST FUNCTIONS 18

3.12 Port I/O: i/o

I/O from/to ports of the x86 ports address space.

i{1,2,4}xxxx Reads (in) from the specified 1-, 2-, or 4-byte port.

ipxxxxxxxx Reads (in) from the specified PCI configuration register. It is not re-
quired to set bit 32 of xxxxxxxx. PCI configuaration registers are always
4-byte registers. Their address xxxxxxxx must always be 4-byte aligned.

o{1,2,4}xxxx{yy . . .} Writes (out) yy . . . to the specified 1-, 2-, or 4-byte port.

opxxxxxxxx Writes (out) yyyyyyyy to the specified PCI configuration register. It is
not required to set bit 32 of xxxxxxxx. PCI configuaration registers are
always 4-byte registers. Their address xxxxxxxx must always be 4-byte
aligned.

3.13 I/O Bitmap: r

Displays mapped ports, gives information about pages mapped for the I/O bitmap, and shows the I/O port
counter (used for determining privileged tasks).

r display the I/O bitmap for the current task.

rxxx display the I/O bitmap for task xxx.

3.14 Machine Specific Registers: M

This command allows to display/modify machine status registers.

Mrxxxxxxxx read 32 bits from the machine specific register xxxxxxxx and display the
result

Mwxxxxxxxx yyyyyyyy write 32 bits yyyyyyyy to the machine specific register xxxxxxxx

3.15 Dump UTCB: z

This command dumps the address and the contents of the UTCB of a thread.

z Display the UTCB of the current thread

zxxx.yy Display the UTCB of thread yy of task xxx.

4 MISCELLANEOUS 19

4 Miscellaneous

4.1 Help: h

Shows a screen with a short description of JDB commands.

4.2 JDB options: J

Jc Set the color of the debug prompt.

Jd-/Jd+ Disable/enable direct console.

Jh Set the height of the screen available for JDB.

JH Adapt the height of the screen to the height of the terminal window by
detecting its current size using escape sequences.

Jo list attached Jdb consoles.

4.3 Go: g

Resumes execution after/at the instruction which invoked JDB.

4.4 Special Go: j

Resumes execution after/at the instruction which invoked JDB.

jb Continue until next branch (call, ret, jmp, int, iret instruction). This
mode works using the single step mode of the processor.

jr Continue until current function returns (until ret or iret instruction at
the current code level). This mode uses the single step mode of the
processor.

js Single Step (in difference to S+, we do not enter the single step mode)

4.5 Single Stepping: S

If the single step mode is activated, the processor enters the kernel debugger after each instruction. Note: On
int 0xxx, the whole system call is executed.

S+ enables single stepping mode

S– disables single stepping mode

4 MISCELLANEOUS 20

4.6 List IRQ threads: R

Rl list all IRQ threads

Ra attach specific IRQ to Jdb

4.7 Screen Output Buffer: B

The output buffer stores all output written to the Fiasco kernel debugger console using outstring(),
outchar(), outdec(), kd display() and so on. The default size of the output buffer is 8192 bytes. It
can be changed using the -out buf= option (see section 5).

B Show complete output buffer.

Bn Show last n lines of output buffer.

4.8 Video Mode and Remote Console: V

Va switches JDB output to VGA monitor

Vh switches JDB output to hercules monitor

Vs tries to activate source level debugging

4.9 Escape: E

With escape enabled pressing the ESC key instantly stops execution and invokes JDB. Note: a better method
to enter the kernel debugger is sending any character to the serial console.

E+ activates escape

E– deactivates escape

4 MISCELLANEOUS 21

4.10 Debug Message: Return

Shows the debug message with trap type and the instruction pointer, where JDB was invoked.

4.11 Reboot

The ^ key (european keyboard: Shift-6) resets the machine.

4.12 Halt Thread: H

Halt a specific thread. This can be useful for instance if a thread stays in an endless loop raising page faults.

4.13 Display Thread ID of TCB address: t?

It is useful to find the appropriate thread ID belonging to a TCB address. The t? command does this job.

4.14 Symbols

Symbols are alternative notations for addresses and can replace them at any place where JDB awaits the input
of an address. The s key signals JDB that a symbol name instead of an address follows. When entering a
symbol, the TAB key allows symbol completion.
Symbols are useful, for instance, to specify breakpoints and memory dump addresses.

Note:
The use of symbols requires that the symbol table of the specified task table is loaded into JDB. This has be
done by user level programs by using the debug trap mechanism. The symbols for the Fiasco kernel can be
loaded using the RMGR (see appropriate manpage).

4.15 Remote Control from Userland

Some non-interactive JDB commands may be executed from a user level program by using

#include <l4/sys/kdebug.h>

enter_kdebug("*#");

For example, to log the IPC traffic for a specific code sequence, use

/* start IPC logging inclusive results */

enter_kdebug("*#I*IR+");

...

/* IPC here */

...

/* stop IPC logging */

enter_kdebug("*#I-");

5 JDB-RELATED COMMAND LINE SWITCHES 22

5 Jdb-related Command Line Switches

-wait Emit a debug trap after the kernel has been initialised and before user programs
are started. This will usually enter the kernel debugger and show the debugger
prompt.

-nojdb Disables the builtin kernel debugger JDB.

-nokdb Disables the GDB stub. Should Fiasco raise an exception, it will just call the
builtin jdb.

-noscreen Disables output to VGA/Hercules console.

-noserial Disables output to serial console. If this switch is not given, kernel messages
will output additionally to the serial interface. If -nokdb is enabled, you can
use a terminal program on the host to control Fiasco. If you are connected to a
remote GDB, messages are copied to GDB’s console.

-comspeed=n Will set the rate of the serial interface to n bytes/second. 115200 baud is the
default.

-comport=n Will use COMn for serial communication. COM1 is the default. Possible values
for n are 1, 2, 3, and 4. n is interpreted as I/O port if n > 4.

-hercules Redirect kernel messages to the Hercules (or other MGA-compatible) console.

-esc Enable esc hack. On every timer interrupt, ask the keyboard if the Escape key
was pressed. If so, do enter into kernel debugger. Applications (e.g. L4Linux)
may be confused by dropped key events so better use -serial esc.

-kmemsize=n Overwrite Fiasco’s heuristic for required kernel memory. Set the memory re-
served for mapping trees, TCBs, and other to n MB.

-watchdog Enable watchdog. On every timer interrupt, tell the watchdog that we are sill
alive. If a task disables the interrupts and loops, the timer interrupt is’nt called
anymore and after 2 seconds the watchdog releases an non maskable interrupt
(NMI) which forces Fiasco to step into the kernel debugger. Requires at least
an Intel PPro or AMD K7 Model 2.

-loadcnt Initialize a performance counter for counting all cycles the CPU is not halted.
The counter is accessible from userland via rdpmc(x) where x is 0 on P6/K7,
and P4.

-apic Initialize the builtin Local APIC. If the Local APIC is disabled by the BIOS but
available, it is re-enabled.

-serial esc Enter jdb on serial receive interrupts. This is only necessary if kdb was disabled
by -nokdb.

-tbuf entries=n Set number of lines to store in the debugging trace buffer. Default is 1024.

-out buf=n Set output buffer for kd display functions to n bytes. Default is 8192.

-jdb cmd=cmds Execute Jdb commands non-interactive at startup. Example: use
-jdb cmd=I*IR+P*PR+ to log all IPCs and page faults from startup.

	1 General Remarks
	2 Fiasco-Specific Functions
	2.1 Thread Control Block: t
	2.2 Thread Lists: l
	2.3 Timeout List: lt
	2.4 Mapping: m
	2.5 Dump Backtrace: bt
	2.6 Kernel Data: k

	3 General Test Functions
	3.1 Breakpoint: b
	3.2 Dump Memory: d
	3.3 Physical memory: A
	3.4 Disassemble Memory: u
	3.5 Dump Page Tables: p
	3.6 Page Fault Monitoring: P
	3.7 Miscellaneous Monitoring: O
	3.8 Monitor ``Next Period'' IPC: N
	3.9 IPC Monitoring: I
	3.10 Trace Buffer: T
	3.10.1 Key Description
	3.10.2 Possible Tracing Events
	3.10.3 Performance Monitoring

	3.11 Kernel Event Counters: C
	3.12 Port I/O: i/o
	3.13 I/O Bitmap: r
	3.14 Machine Specific Registers: M
	3.15 Dump UTCB: z

	4 Miscellaneous
	4.1 Help: h
	4.2 JDB options: J
	4.3 Go: g
	4.4 Special Go: j
	4.5 Single Stepping: S
	4.6 List IRQ threads: R
	4.7 Screen Output Buffer: B
	4.8 Video Mode and Remote Console: V
	4.9 Escape: E
	4.10 Debug Message: Return
	4.11 Reboot
	4.12 Halt Thread: H
	4.13 Display Thread ID of TCB address: t?
	4.14 Symbols
	4.15 Remote Control from Userland

	5 Jdb-related Command Line Switches

