ATM Firmware for DROPS

Uwe Dannowski

Uwe.Dannowski@inf.tu-dresden.de

Dresden University of Technology

July 1999

Contents

1

3

Introduction
1.1 Motivation e e
1.2 Synopsis

Basics
2.1 Whatis ATM 7 e e
2.2 Linuxo
2.3 PCA-200E Linux Driver
R 7
2.5 DROPS oo
2.6 L4ATM oo
2.7 PCA-200E Driver for DROPS
2.8 PCA-200E Hardware
281 CPU e
2.8.2 Host Interface
2.8.3 User Network Interface
2.8.4 Enhanced SAR Processor
2.9 PCA-200E Firmware
2.10 The U-Net Project
2.11 The RIO Subsystem

Design

3.1 Design Goals

3.2 ProcessModel.

3.3 Transmit
3.3.1 Transmit Data Path
3.3.2 Transmit FIFO Selection

10
11
12
13
14
14
15
15
17
18
18

i
3.3.3 Transmit Process
34 Receive
3.4.1 Receive DataPath
3.4.2 Identification of Incoming Cells
3.4.3 Receive Buffers
3.44 Receive Process
35 Events o oo
3.6 Control Requests

4 TImplementation and Performance Evaluation

4.1 Modularization
42 Memory
4.3 Header Coalescing
4.4 Identification of Incoming Cells
4.5 Cell Discard and Packet Discard
4.6 FIFO Selection Scheme
47 CPUGCycles
4.8 Maximum Bandwidth
49 Concurrency« ..o

4.9.1 Concurrent Transmitters

4.9.2 Concurrent Receivers

5 Summary

51 Future Work
5.2 Acknowledgements

6 Appendix

CONTENTS

List of Figures

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3
6.4
6.5

ATM Cell o e 4
ATM Cell Header 4
Example ATM Network 5
AAL5 PDU segmentation 6
DROPS architectureo 0oL 10
L4AATM in DROPS 11
PCA-200E DROPS driver overview 13
PCA-200E/L4 and L4/Linux 13
PCA-200E Structure 14
DataPath o o o 24
per-VC Wrap-Around Receive Buffer 28
Effects of Header Coalescing 34
Maximum Transmit Rate 38
Concurrency of Outbound Connections 40
Measurement Setup 40
Host CPU Utilization 41
Host CPU Utilization with “hazard” 41
Configuration Descriptor 45
Open Command Descriptor 46
Close Command Descriptor 46
transmit PDU descriptor 47
receive PDU descriptoro oo 47

iii

v

LIST OF FIGURES

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1

TPD Elements 25
Elements of an internal TPD 26
Internal Receive Buffer Descriptor 29
Internal Receive Descriptor Elements 29
Event Queue Entry Elements 30
Execution Times 38

vi

LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

The bottleneck in current PCI-based servers is no longer CPU performance
but I/O. Current server systems transfer data from the source I/O device
to main memory and from there to the destination I/O device. Thus all
data passes the PCI host bridge at least two times — usually more often for
activities such as checksumming.

The Dresden Real Time Operating System (DROPS) project aims at provid-
ing applications with “Quality of Service” (QoS) support from the operating
system. To this end, a multiserver environment based on the L4 u-kernel is
being developed. The DROPS project attempts to develop design techniques
for the construction of distributed real time systems where each component
can guarantee a certain quality of service to applications. From the start
of the DROPS project on, memory usage, CPU usage and interrupt latency
were the aspects to give guarantees for. Recent research [Sch98| has shown
noticeable influences from I/O activity on these three aspects. There is a
demand of predictable I/O operations as well as a need for optimized data
paths.

L4ATM together with the PCA-200E driver using FORE’s firmware offer
ATM connectivity to DROPS applications. Even under heavy load, like
the AIM multi-user benchmark running under L4Linux, this protocol stack
can guarantee promised connection characteristics for real-time connections.
But, that setup does not behave well with unexpected heavy traffic arriving
from the ATM network. In that case CPU utilization increases although
packets are probably dropped by L4ATM due to buffer shortage. Even worse,
real-time connections may experience data losses because of receive queue
congestion or receive buffer outage in the PCA-200E driver and firmware.

For the DROPS networking components, especially for the PCA-200E ATM
device driver, an advanced firmware addresses some of the issues. Expected

1

2 CHAPTER 1. INTRODUCTION

benefits are:

e per virtual channel (VC) buffering
Current firmware provides only two distinct receive buffer pools. Re-
ceive buffers are allocated in a hardly predictable order forcing the
system to do copy/map operations. Per VC buffering would allow a
zero copy receive path up to the application. The effects of buffer over-
runs due to non conforming connections would be limited to the single
connection.

e data routing decisions in firmware
Having per VC buffering, it is possible to locate receive buffers either
in host memory or in PCI attached memory, depending on the further
processing steps.

e drop unwanted cells earlier
Transferring knowledge of connection characteristics (traffic parame-
ters) to the firmware moves the point where non conforming data can
be discarded from the device driver to the firmware. This saves valu-
able PCI/host memory bandwidth and CPU cycles.

e reduced host resource usage
By reducing and limiting the usage of the hosts resources like memory
bandwidth and CPU cycles, predictability can be improved.

e priorities
Real-time connections should have priority over non real-time connec-
tions. That way, without much effort both connection types can be
used concurrently.

This work aims at providing a firmware for the PCA-200E ATM network
adapter that provides best service by utilizing a minimum of the host’s re-
sources. The result should be a fast, flexible and maintainable firmware that
suits the DROPS project.

1.2 Synopsis

This thesis is organized in six main chapters. Following this introduction,
Chapter 2 briefly describes the terms being required for understanding this
work. Furthermore, related projects are introduced in that chapter. In
Chapter 3 the design goals are presented, a process model is derived from
that and the different processes are described. Chapter 4 points out certain
aspects of the implementation and discusses performance. Finally, Chapter 5
summarizes this work and discusses the scope for further work.

Chapter 2

Basics

An extremely short and surely incomplete overview of ATM is given in the
first section of this chapter. Thereafter, a few related projects are intro-
duced: the PCA-200E drivers for Linux and DROPS, the 1.4 ukernel, and
the DROPS project and its ATM component L4ATM. This chapter closes
with a description of the PCA-200E hardware.

2.1 What is ATM ?

Of course, this section is not intended to be a complete description of ATM,
but it tries to give a short explanation of the terms used in this work.

Asynchronous Transfer Mode (ATM) is a connection-oriented packet switch-
ing network technology based on asynchronous time division multiplexing. In
contrast to traditional networks, ATM networks can give certain guarantees
regarding transfer delay, bandwidth, loss ratio, etc. This enables using the
same network for LAN/WAN data traffic and multimedia communication
services.

Cells

Packets in ATM networks are called cells and have a constant size of 53
octets. At first sight, 53 is a rather unconventional choice for the size of
a basic data unit. But this results from two contrary efforts: Enlarging
the data unit reduces overhead due to headers. Minimizing the data unit
reduces the delay of single octets. Thus, 53 octets seemed to give the best
delay /payload ratio for transmission of both data and PCM-coded voice
signals. The first five octets of a cell make up the cell header; the remaining
48 octets are referred to as the cell payload (Figure 2.1). The format of the
cell header at the UNI is defined in [ATM94].

3

4 CHAPTER 2. BASICS

[5 | 48 |
Header Payload

Figure 2.1: ATM Cell

Virtual Connections

As shown in Figure 2.2, the cell header has a well-defined structure. It
contains the Virtual Path ID (VPI) and Virtual Channel ID (VCI) fields. A
Virtual Channel (VC) is a unidirectional communication channel, potentially
with associated traffic parameters. All cells of a VC have the same VCI value.
Several VCs can be grouped in a Virtual Path (VP), marked by a common
VPI value. The concept of Virtual Channels and Virtual Paths enables
asynchronous multiplexing of several logical connections on a single physical
link.

bit
7 6 5 4 3 2 1 0 octet
GFC VPI (4...7) 1
VPI (0...3) VCI (12...15) 2
VCI (4...11) 3
VCI (0...3) PTI CLP 4
HCS 5
GFC Generic Flow Control VP! Virtual Path Identifier
VCI Virtual Channel Identifier PTI Payload Type Indicator
CLP Cell Loss Priority HCS Header Checksum

Figure 2.2: ATM Cell Header

The physical structure of an ATM network (see Figure 2.3 for an example
network) is a set of ATM devices connected via point-to-point links (seg-
ments). Usually, ATM end systems (A, B, C, D) have a single ATM inter-
face, whereas ATM switching devices (X, Y, Z) have several ports (X1, X2,
Y1 .. Y3, Z1 ... Z3).

A way from one ATM device to another can be described by an ordered
list of intermediate switches and the respective outgoing ports. Before cells
can be sent from A to C a virtual connection must be established along the
path. This can be done by manual configuration (permanent virtual circuit
— PVC) or using signalling protocols to establish switched virtual circuits
(SVC). Connection setup involves path discovery (A — X2 — Y3 — 72 —
C) and selection of exclusive VPI/VCI pairs. Since it would be a very bad
idea to reserve the same exclusive VPI/VCI pair along the whole path, these

2.1. WHAT IS ATM 7)

A B D
X |1 Y |2 Z |3
>C Lo L E c
2 3

Figure 2.3: Example ATM Network

pairs are assigned for single segments only.

There is kind of a routing table in the intermediate switching entities. For
each open connection it contains an entry with output port and new values
for VPI and VCI. Thus the cell header is changed when passing an intermedi-
ate switch. Due to the constant packet size and the simple header structure
this can almost be done in hardware.

ATM Adaption Layers

Independent of the type of data, the tiny ATM cells are not very handy for
data transfer. Corresponding to the demands of different service types, a set
of ATM Adaption Layers (AAL) was defined. An AAL specifies the mapping
of high level data units and control mechanisms to the ATM layer (SAR -
segmentation and reassembly). Initially, five AAL types were defined:

e real-time aware services with constant bit rate (AAL1)
e real-time aware services with variable bit rate (AAL2),

e non-real-time connection-oriented (AAL3) or connectionless (AAL4)
services, merged into AAL3/4 later

e AALS, a simplification of AAL3

AALQ, in fact no AAL at all, direct cell access

AALS5

Since AALDS seems to be the most often used AAL for mass data transfer, a
short overview is presented here. The AALs are specified in ITU-standards
1.363.1 ... 1.363.5. AALS5 provides an unreliable transport service for protocol
data units (PDUs) of 1-65535 octets. Unreliable means in-order delivery of
undamaged PDUs. Damaged PDUs are discarded and no retransmission
occurs. Prior to transmission, a padding area (0...47 octets) and a trailer (8
octets) are appended to the PDU data (Figure 2.4).

6 CHAPTER 2. BASICS

‘ length checksum trailer

‘ user data ‘ pad ‘ ‘

PT=1

Figure 2.4: AAL5 PDU segmentation

The size of the padding area is determined to make the whole PDU a multiple
of 48 octets. The resulting block is split into groups of 48 octets (segmenta-
tion) that are placed in the payload field of cells. The payload type field of
these cells is set to 0; except for the last cell, where it is set to 1 indicating the
end of the PDU. Integrity of a PDU is checked by means of CRC checksum-
ming. During reception, the cell payloads are concatenated (reassembly) and
the padding area and trailer are discarded to form the original PDU content.

Traffic types

Different types of service imply different traffic characteristics. During con-

nection setup, the connection parameters are negotiated. The user specifies a

set of parameters describing the connection characteristics (peak /minimum /sustainable
cell rate (PCR, MCR, SCR), maximum burst size (MBS), maximum cell

transfer delay (maxCTD), peak-to-peak cell delay variation (CDV), cell loss

ratio (CLR), etc.). Depending on the ATM network’s capacities and capa-

bilities, the connection is accepted or rejected. If the connection is accepted

the network guarantees to meet or exceed the confirmed Quality of Service

(QoS) for the lifetime of the connection. Several service categories have been

defined with respective parameter sets:

e UBR — Unspecified Bit Rate (PCR)
e CBR — Constant Bit Rate (PCR, CDV, maxCTD, CLR)

e rt-VBR — real-time Variable Bit Rate (SCR, MBS, PCR, peak-to-peak
CDV, maxCTD, CLR)

e nrt-VBR — non real-time Variable Bit Rate (SCR, MBS, PCR, CLR)
e ABR — Available Bit Rate (PCR, MCR), feedback mechanism

For every service category, algorithms are specified for checking the confor-
mance of cells to the negotiated parameters.

2.2. LINUX 7

Network Resource Management

Unfortunately, resources like bandwidth and buffer space in networks are lim-
ited. Non conforming connections could cause congestion by over-utilizing
assigned resources. In [ATM96] a set of traffic and congestion control func-
tions is described. ATM networks can implement one or a combination of
these functions in order to meet QoS objectives of compliant connections.

e Connection Admission Control

e Usage Parameter Control — monitor connections, detect violations
and take appropriate actions like

— Cell Tagging
— Cell/Frame Discarding
— Traffic Shaping

e Flow Control

Cell or frame discard limits the rate of a connection by dropping cells or
whole frames. In contrast, traffic shaping is a work-preserving way to force
a connection to meet the connection parameters. Provided that sufficient
buffer space is available, data is buffered and forwarded at the negotiated
rate.

Summary

The design of ATM enables building networks that can give real-time guar-
antees. Due to the fixed sized tiny cells, switching can be done almost in
hardware. This enables very low latencies and high bandwidth. Generally,
ATM networks seem to be the optimal infrastructure for transmission of
multimedia and real-time sensitive data.

2.2 Linux

Linux is a freely-distributed UNIX-like operating system, originally created
by Linus Torvalds. Developed under the GNU General Public License (GPL),
the source code for Linux is available to everyone. With the freedom to cre-
ate and adapt Linux for a wide variety of platforms, Linux has become quite
popular for business and personal use worldwide. Lots of developers world-
wide contribute to the Linux project by creating applications and extending
the kernel (device drivers, protocol stacks, etc.).

8 CHAPTER 2. BASICS

From the system developers view Linux is an operating system with a mono-
lithic kernel. In [Tan90] a monolithic kernel is defined to be a collection of
procedures with each procedure being allowed to call any other procedure if
needed. This results in a quite intricate structure making isolation of a single
component difficult. Since there is no memory protection inside the Linux
kernel itself, a failure in one procedure may influence others, and hence, the
whole kernel might become instable due to a single failing component.

2.3 PCA-200E Linux Driver

The PCA-200E Linux driver was the first step towards the DROPS ATM
protocol stack. It plugs into ATM-on-Linux[Alm99] , the ATM suite for
Linux. ATM-on-Linux was started by Werner Almesberger in 1995. Since
then, many people contributed to the project by writing or porting device
drivers and management tools. Currently still available as a separate source
distribution, ATM-on-Linux is going to be integrated into the mainstream
Linux kernel soon. ATM-on-Linux supports the following protocols:

e "raw" unreliable ATM transport without AAL ("AALO0")

e "raw" unreliable ATM transport over AALS

e ATMARP (RFC1577; client and server) for PVCs and SVCs

e LAN Emulation (client and server) for SVCs

e LANE Version 2 (client), Multi-Protocol Over ATM (MPOA, client)
e Arequipa (Application REQuested IP over ATM)

e ATM Name Service (ANS, client and server)

Since the existing drivers did not seem to fit easily into the ATM-on-Linux
Device Driver Interface [Alm96b]|, the PCA-200E driver was written from
scratch. It has a two layered structure; the lower layer controls the firmware
executing on the PCA-200E board — the upper layer is the glue between
the Device Driver Interface and the lower layer’s functions. This results in
a fairly portable hardware dependent lower layer and a system dependent
upper layer.

The driver was developed on x86-based Linux systems. But, the well-chosen
structure of the PCA-200E Linux driver allowed porting to Power PC Linux
and SPARC Linux within a few days only.

Information on the current state of the driver can be found in [Dre99b].

24. 14 9

24 14

The L4 pkernel was developed by Jochen Liedtke at the National Research
Center for Information Technology (GMD) and IBM Watson Research Cen-
ter. The initial version of L4 runs on Intel’s TA-32 — meanwhile there are
implementations available for DEC-Alpha from the Dresden University of
Technology and for MIPS from the University of New South Wales. Further-
more, there is FIASCO, an IA-32-based re-implementation of L4 in C++.

As the name “pkernel” implies, 1.4 offers only a minimal set of functionality:

e fast, message-based interprocess communication (IPC)
e page based memory management
e priority based scheduling with hard priorities

e tasks as security domains

External pagers allow implementation of almost any desired memory man-
agement outside the kernel. This minimalistic design offers highest flexibility
at high speed.

The following definitions for L4 primitives are an excerpt of [Lie96]:

IPC: Interprocess communication in L4 is message based and takes place
between exactly two threads. For a message to be transferred both
parties must agree to the transfer. Message transfers happen always
synchronously. There are mainly two types of messages — short mes-
sages and long messages. A short message consists of words where (the
size of a word and) the maximum number of words is architecturally
dependent. Short messages are transported entirely in the processor’s
register set. Hence, short messages provide the fastest communication
path. Long messages use a message descriptor (message dope) located
in memory. By use of long messages any number of words can be
copied between the IPC partners, either located in the message dope
itself or referenced in the message dope. When a message is marked
having Flexpages, the words of the message are interpreted as Flexpage
descriptors.

Address spaces: An address space is a mapping which associates each vir-
tual page to a physical frame or marks it non-accessible. Address
spaces can be manipulated by sending Flexpages in IPC messages. L4
supports recursive creation of address spaces outside the kernel. But,
to prevent corruption of address spaces all changes must be controlled
by the kernel.

10 CHAPTER 2. BASICS

Flexpages: Flexpages are regions of the virtual address space, consisting
of all pages mapped in this region. Sending a Flexpage by means
of TPC adds all the pages currently mapped in this Flexpage to the
destination’s address space.

Threads: A thread is an activity, being characterized by some kind of state
information (registers, instruction and stack pointer, priority, ...) and
an associated address space. L4’s scheduling works on thread level.

Tasks: A task is the entirety of an address space and all threads (active
or inactive) executing in this address space. Moreover a task is also a
protection domain for IPC.

Interrupts: In .4 hardware interrupts are translated into an IPC message
to a certain thread. A thread can register with a hardware interrupt
to be notified when that interrupt occurs.

2.5 DROPS

The Dresden Real-Time Operating Systems Project! is a research project
aiming at the support of applications with Quality of Service requirements.

Although much research has been done on networking support for continuous-
media applications, very few projects tackle related operating system issues,
such as scheduling and file system support for bounded response time. The
DROPS project attempts to find design techniques for the construction of
distributed real time operating systems whose every component guarantees
a certain level of service to applications.

Display ‘ FileSystern| RT Protacol

_) DSP-Audio |
Time-sharing
Component

(L*Linux) .
Display
Driver

Basic Ressource Management M
{ CPU, Mernory, Buses, Caches)

| DROPS — Mikrokernel |

‘ Disk-DrivEr| ATM-DrivEl" DSI’-M:ngmi

Figure 2.5: DROPS architecture

!The project is supported by DFG (Deutsche Forschungsgemeinschaft, SFB 358, Teil-
projekt G2).

2.6. L4ATM 11

A key component is L4Linux, the Linux server on top of the L4 u-kernel; it
serves standard Linux applications. In addition, separate real time compo-
nents — designed from scratch — provide deterministic service to real time
applications (Figure 2.5). At the moment, an ATM protocol component,
a real time file system, and a presentation component are available. The
real-time components of DROPS are connected via the DROPS real-time
streaming interface, an interface designed for the transport of jitter con-
strained streams.

More information regarding the DROPS project can be found in [Dre99a).

2.6 L4ATM

L4ATM is the ATM protocol component in DROPS. In its current state,
it offers a narrow subset of the Linux ATM API [Alm96a] — only PVCs
are implemented. L4ATM runs as a stand-alone L4 task, using the PCA-
200E driver (Section 2.7) to access the hardware. Clients can use L4ATM
through a client library hiding the complexity of the IPC protocol. The
library provides the well-known BSD-style socket interface as well as func-
tions for a “zero-copy” data path between the client and the ATM protocol
server (get_ncp_page (), ncp_read(), ncp_write()). A stub driver exists
for L4 /Linux presenting the L4ATM protocol component as an ATM network
device.

realtime
applications

L4Linux
with non-realtime
applications ATM protocol
component

1

PCA-200E driver

1

’ PCA-200E hardware |

Figure 2.6: L4ATM in DROPS

Two shared memory areas — one for transmit, the other for receive — are
established between the client and the L4AATM protocol server. The physical

12 CHAPTER 2. BASICS

addresses of the mapped pages in the shared memory areas need to be known
and fixed over the lifetime of the mapping. In other words this is pinned
memory. The size of the shared memory areas is determined by L4ATM
from the QoS parameter set specified with a setsockopt () call after socket
creation and prior to connection establishment.

At connection setup time, a dedicated worker thread per connection is cre-
ated in L4ATM. This thread handles transmit requests from the client and
pushes received data to the client. On transmit, this thread may block to
enforce the negotiated transmit rate (traffic shaping). If received data is
available, it is pushed to the client at the negotiated receive rate.

A “pseudo interrupt thread” waits for messages from the driver’s interrupt
thread and copies the received PDU in the buffer of the respective connection.
If no free buffer space is available, the received PDU is dropped. Since buffer
sizes are determined from QoS parameters, this indicates a non conforming
traffic source. At that point the PDU was already transfered into main
memory and processed by the driver and by the ATM protocol. With the
current implementation of L4ATM and the PCA-200E device driver this path
is very CPU intensive, which is even more annoying in an overload situation.

To point this out again, L4AATM manages exclusive receive buffers and a
dedicated worker thread per VC. The receive buffer size is determined from
the QoS parameter set of the connection.

L4ATM is described in much more detail in [Bor99].

2.7 PCA-200E Driver for DROPS

The PCA-200E driver for DROPS (PCA-200E/L4) is a port of the PCA-
200E Linux driver. The lower layer of the Linux driver — the portable
hardware dependent part — was moved into a separate L4 task. To reuse the
code of the PCA-200E Linux driver almost unmodified, an emulation of the
Linux kernel functions used by the driver was required. This was the case for
Linux’ memory management (kmalloc(), kfree(), get_dma_pages()), time
management (jiffies counter) and interrupt management (request_irq(),
interrupt handling semantics). Additionally, a server stub implements the
IPC interface of the driver (Figure 2.7). A client library offers the low layer’s
functions, effectively hiding the IPC interface in between.

There are two threads in the PCA-200E driver for DROPS: a service thread
that handles transmit and control requests and an interrupt thread that
pushes received data to the client. To avoid data loss, the client should
be ready to accept received data anytime. Since there is only one client in
DROPS, the driver does not implement demultiplexing. Although the driver
is capable of enqueueing several requests, the ATM protocol component de-
scribed in the next section requires a synchronous transmit path. As a proof

2.8. PCA-200E HARDWARE 13

User Application
receive thread (client)
DETECT
ACTIVATE RECEIVE
SEND
timer
send thread receive PCA-200E driver
thread thread (server)

Figure 2.7: PCA-200E DROPS driver overview

of concept, the former upper layer of the Linux driver remained as a stub in
the L4/Linux kernel together with the client library (Figure 2.8).

Application L4Linux

kernel
ATM-on-Linux

pca200e-stub PCA-200E/L4

PCA-200E hardware

Figure 2.8: PCA-200E/L4 and L4/Linux

A more extensive description of the PCA-200E driver for DROPS is given in
[Dan98|.

2.8 PCA-200E Hardware

The PCA-200E is the PCI based member of FORE’s FORERunner 200E
155Mbps ATM network adapter series. Figure 2.9 shows a schematic diagram
of the PCA-200E.

All members of the 200E series share a common part and a host-bus spe-
cific interface. The common part consists of Intel’s 1960-CA processor, 256
KB RAM local to the 1960, an ESP-ASIC (Enhanced SAR Processor) with
128KB RAM and PMC Sierra’s SUNI-155/Lite User Network Interface. Ei-
ther an UTP interface or a fiber-optical interface is attached to the UNI.
Host side interfaces are available for SBus, EISA Bus, GIO Bus, PCI Bus,
VME bus and Micro Channel Bus.

14

2.8.1

CHAPTER 2. BASICS

. SRAM
intel 960
PCI Bus ——» TX
u PBI local bus ESP les PHY .
SRAM
Boot ROM

Figure 2.9: PCA-200E Structure

CPU

Intel’s 19960-CA processor is a general-purpose 32 bit RISC processor, mainly
targeting at the embedded systems market. Its architecture features:

load-store architecture

sixteen 32 bit global registers, sixteen 32 bit local registers
4GB flat address space, no virtual memory

fast call-and-return mechanism, saves/restores local registers
local register cache, speeds up calls and returns

bus control unit, pipelined burst 100MB/s (at 25 MHz)
priority interrupt unit, 32 priorities, 248 interrupt vectors
simple supervisor protection model

1KB fast internal RAM

sustained two instructions per cycle

A complete description is given in [Int94]. On the 200E series adapters, the
CPU is responsible for the segmentation and reassembly of PDUs. Further-
more, it has to perform all data movement.

2.8.2 Host Interface

The PCI Bus Interface (PBI) hides the complexity of the PCI-Bus Protocol
from the 1960 (CPU). It implements the PCI Bus Protocol as specified in
[PCI95]. Access to the world behind the PCI bus is offered to the 1960
via two FIFOs, each 128 words deep. A write access is caused by writing
destination address and word count to the OUT FIFO, followed by the actual

2.8. PCA-200E HARDWARE 15

data words. To generate a read, source address and word count are written
to the IN FIFO. After that, the data words can be pulled from the IN FIFO.
Special modes for fixed size transfers (1, 4, 8, 11, 12, 22, 24 words) exist.
Handshaking is done by means of FIFO word counters. To avoid FIFO
overflows, the PBI can hold the i960 temporarily.

From the host’s point of view, the PBI exports a 2 MB memory area. In
this 2 MB area the first 1 KB is unused; in the next 255 KB the i960’s local
ram can be accessed. The Host Control Register (HCR) resides at an offset
of 1 MB.

The PCA-200E can act as a PCI Master (activity caused by the 1960) and
Target (host accesses shared memory) and can generate interrupts which
have to be acknowledged by the host in the HCR.

A detailed description of the PBI is given in [Ben95b].

2.8.3 TUser Network Interface

The FORERunner 200F boards are designed for SONET/SDH links. Ac-
cording to [PMC96], PMC Sierra’s SUNI-155/Lite chip implements the ATM
Forum User Network Interface Specification [ATM94] and the ATM physical
layer. It performs the complete SONET /SDH framing process, HCS genera-
tion/correction, and insertion and removal of idle/unassigned cells. In fact,
it translates a stream of 52-octet blocks (4 octets cell header without HCS,
48 octets payload) to the line protocol and vice versa. Thus, it hides the
complexity of the line protocol from the other components on the board.

2.8.4 Enhanced SAR Processor

The Enhanced SAR Processor (ESP) is the decoupling element between the
CPU and the User Network Interface. The main objective of the ESP is
to provide an easy-to-use interface to the UNI for the CPU. Inside the ESP,
CRC generators for AAL3/4 and AAL5 checksumming, four transmit FIFOs
and four receive FIFOs, transmit rate generators, event counters and a timer
are implemented. The CPU accesses the ESP through memory mapped
registers in several regions.

FIFOs are implemented in a 128KB SRAM attached to the ESP. The ESP
logic maintains head and tail pointers for each FIFO, that are updated when-
ever cells are inserted into or pulled from a FIFO. Data can be moved be-
tween the PBI and the ESP’s FIFOs by “fly-by”-transfers. When the CPU
performs a read from a special region of the ESP, a read from the ESP receive
FIFO occurs while a write is performed simultaneously to the PBI’s OUT
FIFO. Similarly, a read from another region of the ESP performs a read of
the IN FIFO while writing to the ESP transmit FIFO. These "fly-by" re-
gions support burst mode which should be used to maximize the transfer

16 CHAPTER 2. BASICS

rate. Avoiding the CPU to touch all data twice, this enables 100MB/s on-
board transfer rates (at 25MHz) — that is approximately three times the
full duplex OC3 speed and a nearly saturated PCI bus (32 bit, 33MHz).

CRC checksums are calculated when data is transfered to or from the ESP’s
FIFOs. As an example, to generate the trailing checksum for AALS5, the
AALS5 CRC register is set to an initial value. Then, after all data (user data,
pad bytes, partial AAL5 trailer without CRC) is written to the transmit
FIFO, the AAL5 CRC register holds the correct CRC checksum which is
simply written to the FIFO, too. The same works during receive: the CRC
register holds the calculated checksum which has to be compared with the
received value.

While transmitting, cell headers must be written on cell boundaries to a
cell header register which is tightly coupled with the transmit FIFO. Header
coalescing is a neat feature to reduce the overhead caused by cell headers. It
allows to set a cell header once and keep it for all following cells until a new
header is written. On the receive path, the cell header is pulled from the cell
header register together with the number of cells having the same header.
Consequently, cell payloads can be transfered between the PBI and FIFOs
in blocks of more than a cell payload, further reducing the CPU cycles per
cell.

The transmit FIFOs are connected to a cell scheduler/multiplexer. FIFO
can either have high or low priority. A per FIFO token generator generates
tokens (permission to emit a cell) at a certain rate which can be controlled
by the CPU. Whenever a FIFO has a token and a cell available, the cell
scheduler can transfer the cell from the FIFO to the UNI. This can be used
to force outgoing connections to a certain cell rate (traffic shaping). The
scheduler serves the high priority FIFOs first in a round robin manner; if no
high priority FIFO has token and data available, the low priority FIFOs are
served round robin.

Which receive FIFO to place an incoming cell in is determined by to the two
least significant bits in the VCI field of the cell header. This fixed assign-
ment can reduce the number of connections per FIFO, effectively increasing
the probability of back-to-back cells with the same header (header coalesc-
ing). Obviously, this relies on VCI values being allocated in densely ascend-
ing/descending manner. For most ATM switches this assumption is valid;
the VCI value is continuously increased on each new connection, wrapping
around at the end of the VCI space.

The ESP is described in detail in [Ben95a].

2.9. PCA-200E FIRMWARE 17

2.9 PCA-200E Firmware

After power-on, the 19960 CPU on the PCA-200E runs mon960, a standard
debug/monitoring tool from Intel. The mon960 code is located in a small
boot ROM on the board. It can be used to download and start the firmware.
The PCA-200E firmware is part of the drivers for the operating systems
supported by FORE. It is to be loaded onto the PCA-200E during system
start.

After initialization the firmware implements the AALI [FOR97|. The AALI
defines a command queue, a transmit queue, a receive queue and up to four
buffer queues. Queues are simply an array of queue entries. Each queue
forms a logical ring list by wrapping around after the last array element to
the first. Queue lengths are configurable at initialization time. The queues
in detail are:

Command queue: The command queue is used to send commands to the
firmware: activate_vci (open), deactivate_vci (close), request_stats,
zero_stats, etc.

Transmit queue: To send data, a Transmit PDU Descriptor (TPD, con-
taining location/length of data in host memory, ATM cell header, ...)
located in host memory is filled and then its address is written to the
transmit queue.

Receive queue: The receive queue holds references to Receive PDU De-
scriptors (RPD). These RPDs are located in host memory and are
written to by the firmware on reception of data from the network. An
RPD holds references to buffers in host memory containing the received
data.

Buffer queues: Via the buffer queues new receive buffer descriptors are
supplied to the firmware. There are up to two receive buffer pools,
each with up to two buffer sizes, giving a maximum of four buffer
queues.

When opening a new VC with the activate_vci command, an associated
receive buffer pool can be selected. Unfortunately, there is no way to directly
specify receive buffers per VC. This prevents implementation of zero-copy re-
ceive data paths. The receive buffer pools and the receive queue are shared
by all connections, allowing monopolization of these resources by one con-
nection while other connections may lose data.

18 CHAPTER 2. BASICS

2.10 The U-Net Project

The U-Net architecture developed at Cornell University, provides low-latency
and high-bandwidth communication over commodity networks for worksta-
tions and PCs. It achieves this by virtualizing the network interface such that
every application can send and receive messages without operating system
intervention. With U-Net, the operating system is no longer involved with
the sending and receiving of messages. This allows communication protocols
to be implemented at user-level where they can be integrated tightly with
the application. In particular, the large buffering and copying costs found
in typical in-kernel networking stacks can be avoided and feed-back to the
application about flow-control and packet loss is facilitated.

The key aspects of U-Net are:

e U-Net defines a virtual network interface for commodity networking
hardware and operating systems.

e The U-Net virtual network interface preserves the traditional protec-
tion boundaries between processes. Multiple applications can use U-
Net at the same time without interfering.

e U-Net uses commodity operating systems (Unix and Windows/NT)
and commodity networks (Fast Ethernet and ATM).

U-Net supports the Myrinet PCI and SBus interfaces, DECChip 21140 Fast
Ethernet PCI interface, and the FORE Systems PCA-200/SBA-200 ATM
interfaces. Supported operating systems include Linux, SunOS 4.x, Solaris
2.x, and BSDI.

U-Net/MM is an extension to the U-Net user-level network architecture,
allowing messages to be transferred directly to and from any part of an
application’s address space. This is achieved by integrating a translation
look-aside buffer into the network interface and coordinating its operation
with the operating system’s virtual memory subsystem. This mechanism
allows network buffer pages to be pinned and unpinned dynamically.

The source of U-Net related information is [Cor96].

2.11 The RIO Subsystem

The RIO subsystem [KSL99|, a project at Washington University, enhances
the Solaris kernel to enforce the QoS features of the The ACE ORB (TAO)
endsystem and provide end-to-end QoS. That is achieved by using early
demultiplexing and schedule-driven protocol processing.

2.11. THE RIO SUBSYSTEM 19

The Solaris default network I/O subsystem processes all packets sequentially
at the same priority, regardless of the destination user thread. That can lead
to priority inversion easily, preventing high-priority connections to meet their
QoS requirements. To overcome this, RIO supports priority-based queueing
— instead of enforcing strict FIFO order, packets destined for high-priority
applications are delivered ahead of low-priority packets. Connections are
assigned a priority which is determined from the connection characteristics
given with TAQO’s QoS specification. Priorities map to RIO queues, which are
served by an associated in-kernel thread with respective scheduling priority.
Incoming packets are inspected by a packet classifier in the network driver,
which decides whether processing takes place in interrupt context (for low-
delay connections) or the packet is enqueued in the appropriate queue.

To summarize, the RIO subsystem tries to preserve end-to-end priorities by
separating resources and applying priority-based protocol processing.

20

CHAPTER 2. BASICS

Chapter 3
Design

L4ATM together with the PCA-200E driver using FORE’s firmware offer
ATM connectivity to DROPS applications. Even under heavy load, like
the AIM multi-user benchmark running under L4Linux, this protocol stack
can guarantee promised connection characteristics for real-time connections.
But, that setup does not behave well with unexpected heavy traffic arriving
from the ATM network. In that case CPU utilization increases although
packets are probably dropped by L4ATM due to buffer shortage. Even worse,
real-time connections may experience data losses because of receive queue
congestion or receive buffer outage in the PCA-200E driver and firmware.

To overcome these problems, this work aims at providing a smarter firmware
for the PCA-200E. Due to unavailability of the firmware source code, the
firmware has to be designed and implemented from scratch. On one hand,
this means re-implementing parts that were acceptable before; but on the
other hand, it gives the opportunity to build a firmware that suits the
DROPS design. Furthermore, it enables one to apply changes in case of
future insights. However, it seems to be a chance to overcome the limita-
tions of the current ATM protocol stack.

This chapter identifies the design goals. From that the process model of the
firmware is derived and its implications are described. After inspecting the
data paths, the individual processes are described while certain aspects are
investigated in more detail.

3.1 Design Goals

Among others, the aspects listed below have been identified to deserve in-
creased interest when building real-time systems. The firmware design should
try to minimize these and make them as predictable as possible.

e memory bus utilization

21

22 CHAPTER 3. DESIGN

e I/0 bus utilization
e interrupt frequency

e host CPU utilization

Zero-copy data paths are a common approach to keep the host’s CPU uti-
lization low for protocol processing, even at very high data rates. This can
be achieved by the use of per-VC transmit and receive buffers. Furthermore,
per-VC receive queues and receive buffers minimize influences of concurrent
connections and isolate misbehaving connections (early demultiplexing). I/O
bus utilization can be minimized by placing data structures local to the ac-
tivity that most often accesses them. Interrupt frequency can be reduced
and bound by generating a single interrupt for a group of events. That way,
the host CPU utilization caused by network activities can be limited even
under worst case conditions.

In order to provide the capabilities offered by the ATM network to the ap-
plications, further design goals must be met:

e minimize mutual influences of concurrent connections
e minimize host’s CPU utilization for malicious connections

e provide support for shaping outgoing traffic

Practice shows that AALS is the most often used AAL. The firmware should
implement segmentation and reassembly for AAL5. Nevertheless, the design
must not prohibit later implementation of other AALSs or even higher level
protocols in the firmware.

3.2 Process Model

At a first glance, there are three main tasks the firmware has to work on in
parallel:

e Transmit data to the network
o Receive data from the network

e Handle control requests from the host

This calls for a multitasking system. An interrupt-based approach is unlikely
to perform well here. The FIFO mechanisms would require extensive locking
to prevent concurrent accesses. Opposed to that, cooperative multitasking
gives a task full access to all the FIFOs at runtime and avoids any locking.

3.3. TRANSMIT 23

Tasks are forced to save their state between invocations. The system can be
reduced to a list of functions that are executed one after another repeatedly,
as the following piece of pseudo code illustrates:

while (true)

{
transmit () ;
receive();
handle_commands() ;

};

Execution times of these functions should be minimized and bound to reduce
overall latency and to avoid data loss due to FIFO overflows. Whenever a
function would block on a certain operation, it should save its current state
and return to its caller. The current state of a process is stored in a set of
descriptors — per-VC receive descriptors hold the state of the receive process,
per-PDU transmit descriptors are used for the transmit process state.

3.3 Transmit

The transmit process covers transmit queue handling with transmit FIFO
selection, refill of the transmit FIFOs and event handling for completed
transmissions. In this section, an overview of the transmit data path is
given first, followed by notes on the FIFO selection scheme. A description
of the transmit process completes this section.

3.3.1 Transmit Data Path

In DROPS, an application wishing to communicate over ATM uses L4ATM.
The upper interface of LAATM offers two slightly different methods to trans-
mit data: the copying write() function call and the “no-copy” function
ncp_write(). The function get_ncp_page() requests a buffer in the mem-
ory area shared between L4ATM and the application. The application copies
its data into the buffer and calls ncp_write() to hand over the buffer to
L4ATM for transmission. write() is called with the address of a buffer pri-
vate to the application. The client library then passes the buffer contents to
L4ATM by a copying IPC operation. The result of both methods is similar:
transmit data (PDU) is accessible in L4AATM’s address space and the re-
spective physical address is known. The worker thread in L4ATM performs
protocol processing — including invocation of traffic management algorithms
— and conveys the PDU to the device driver.

The driver must inform the firmware of the transmission request and pass
all information required to transmit the PDU to the firmware. The firmware

24 CHAPTER 3. DESIGN

host CPU PCI Bus

PCI host bridge
cache and memory
controller

4
main
memory

Figure 3.1: Data Path

selects a transmit FIFO according to the PDU description. While even-
tually performing the associated AAL processing (header/trailer, checksum
generation) the PDU data is transfered from the host’s memory via the PBI
into the transmit FIFO as FIFO space is or becomes available. Due to the
limited size of the PBI's IN FIFO and the ESP’s transmit FIFO this can
take a quite long time, depending on the PDU size — especially at very low
transmit rates. A plot of the physical data path is given in Figure 3.1.

3.3.2 Transmit FIFO Selection

DROPS favours the idea of running real-time applications and non real-time
applications on the same machine. The same is valid for communication:
there are two different qualities of network connections — real-time connec-
tions and best-effort connections. Naturally, best-effort connections have a
lower priority than real-time connections. As the name “best-effort” implies,
these connections can utilize only resources not used by real-time connec-
tions. With the hardware given in the ESP, this scheme is applied easily:
one FIFO is set to low priority, the remaining three FIFOs are set to high
priority. Real-time connections use one of the high-priority FIFOs to shape
their traffic. Remembering the FIFO scheduling scheme described in Sec-
tion 2.8.4, the fourth i.e. the low-priority FIFO can only emit a cell when
no high-priority FIFO has data available. Hence, all best-effort connections
using the low-priority FIFO share the remaining bandwidth.

The rate of a FIFO’s token generator can be changed anytime. This implies
somehow that the rate must not be changed when the FIFO holds transmit
data, since this would change the rate of the currently processed PDU. As
long as the number of concurrent real-time connections does not exceed the
number of high-priority FIFOs, these FIFOs can be used exclusively by a
certain connection. Other scenarios are discussed in Section 4.6.

3.3. TRANSMIT 25

3.3.3 Transmit Process

At first sight, the firmware needs at least the following information to trans-
mit a PDU: the PDU location (physical address), PDU length, VPI and VCI
number and AAL type. From L4ATM’s point of view, there are real-time
connections and best-effort connections. Real-time connections are estab-
lished with a certain transmit rate; best-effort connections are intended to
transmit as fast as possible. Hence, transmit requests for real-time con-
nections can be mapped to shaped transmissions while transmit requests
for best-effort connections cause non-shaped transmissions. Having this in
mind, it seems sufficient to add a rate descriptor to the list above in order to
have a distinction between real-time connections and best-effort connections
even in the firmware. An invalid rate descriptor then indicates a non-shaped
(best-effort) request. The elements of a transmit PDU descriptor are shown
in Table 3.1.

| field name | field size in bits |
physical address 32
PDU length 16
VPI <8
VCI <16
AAL 3
transmit rate 16
handle 32

Table 3.1: TPD Elements

Ttransmit PDU descriptors (TPD) reside in host memory. The firmware
maintains a transmit queue in the board’s local RAM; this queue is a logical
ring list of addresses of TPDs. The driver sets up a TPD and writes this
TPD’s physical address to the current transmit queue entry. The firmware
processes the request and informs the driver either by an event or by simply
marking the descriptor as completed. This distinction enables the driver to
reduce the interrupt frequency.

The transmit queue resides in the board’s local RAM in order to reduce PCI-
Bus activity. That way, a single PCI write access from the host is sufficient
to issue a transmit request. The firmware polls the current entry of the
transmit queue periodically, which does not involve any PCI Bus transfers.
If a new request (the address of a TPD) is found, the TPD is fetched into
the local RAM, the transmit queue entry is invalidated and the reference
to the current entry is advanced. The fields of the TPD are validated and
an internal TPD is set up. An internal TPD contains the fields listed in
Table 3.2.

Internal TPDs are enqueued per transmit FIFO. Which of the four transmit

26 CHAPTER 3. DESIGN

‘ field name ‘ description ‘
address address of remaining data
pdu_ length PDU length
data_ words remaining words for data
pad_ words remaining pad words
partial crc temporary CRC checksum
tx_function A AL-specific transmit function
complete function | function to call on completion
tx_rate
handle

Table 3.2: Elements of an internal TPD

FIFOs is primarily used depends on the traffic type (see Section 3.3.2). The
transmit process handles the first TPD in each FIFOs queue by calling the
associated transmit function. The transmit function implements the AAL
processing and data transfer to the FIFO. If the FIFO is filled up before
all data from the TPD is used the TPD is updated and the next FIFO is
served. This way a nonblocking operation can be achieved. Before the FIFO
has been drained the firmware can work on other tasks and is back to fill
the FIFO again. If a TPD has been completed — i.e. the PDU has been
transmitted completely — the associated completion function is called and
if available the next TPD is served. The firmware design reqires that the
completion function runs for a fairly short time only.

3.4 Receive

Reception of data from the network involves several stages: identify incoming
cells, either drop cells or apply AAL processing, transfer data into host
buffers and notify the driver. This section gives an overview of the receive
data path followed by notes regarding identification of incoming cells. An
explanation of the necessary changes to L4ATM’s receive buffer scheme and
the description of the receive process complete this section.

3.4.1 Receive Data Path

Incoming cells are put in one of the four receive FIFOs, no matter if there is
an open connection for that VPI/VCI pair. If in any of the four FIFOs are
more than a configurable number of cells, a flag is set in a control register
(An interrupt could be requested too). For the sake of low latency the cells
should be pulled from the ESP’s receive FIFO as soon as possible. Cells for
which a connection was registered are processed by the respective receive

3.4. RECEIVE 27

function for reassembly. All other cells are dropped. The receive function
implements AAL processing and reassembly. Obviously, this is the best
point to apply early demultiplexing. Receive buffers for a VC are installed
at connection setup. Buffer space is provided by L4ATM; the buffer size
is determined from the QoS parameter set. The receive function transfers
the reassembled data directly from the ESP’s receive FIFO into the per VC
buffers in host memory. This way a zero-copy receive data path to L4ATM
can be implemented.

L4ATM’s client library exports two functions an application can use for
receiving data. The read() function copies the received data into a buffer
specified by the application and returns the length. In contrast to that
the function ncp_read() provides a pointer to the buffer and returns the
length. While the implementation of read() copies data from L4ATM’s
address space (the receive buffer area) to the applications address space by
means of IPC, read_ncp() only copies a reference to the data located in the
shared memory area and thus implements a zero-copy receive data path to
the application.

3.4.2 Identification of Incoming Cells

A major point of interest is the identification of incoming cells. First of all,
a decision has to be made on whether to discard the cell(s) or not. Only
cells of open inbound connections are important. All other cells should be
removed from the ESP’s receive FIFO as soon as possible.

The receive hardware provides four different receive FIFOs. When the use of
all four FIFOs is not disabled, the receive hardware selects the appropriate
FIFO (0..3) by inspecting the two least significant bits of the VCI field in the
cell header. Depending on the way the FIFOs are served, cells with different
VCI values could outstrip each other. This is legitimate, as long as cells of
the same VC are kept in order. The same could also happen in a switch
featuring per VC queuing.

The firmware must maintain information on all open VCs. When the cell
header is pulled from the receive cell header FIFO, a connection descriptor
— if a connection exists for this VPI/VCI pair — must be looked up. This
operation should be fair in that it is equally expensive for all open connec-
tions; furthermore, the operation should be very cheap when no associated
connection can be found. Implementation details are discussed in Section
4.4.

The result of the lookup operation is a pointer to an internal receive descrip-
tor as described in Section 3.4.4. If the incoming cells do not belong to an
open connection, the pointer is invalid and the cells are discarded.

28 CHAPTER 3. DESIGN

3.4.3 Receive Buffers

DROPS’ ATM protocol component — L4ATM — manages a dedicated re-
ceive buffer area per VC. This area is physically contiguous and the physical
address is known. The size of the buffer area is determined by L4ATM
on connection setup from the QoS parameter set. As for now, L4ATM’s
pseudo-interrupt thread selects the appropriate receive buffer and copies the
received PDUs into the buffer at page boundaries. If the PDU would not fit
into the free space at the end of the buffer it is placed at the start of the
buffer (In [Bor99], this is called early wrap-around). An entry describing the
PDU (location in buffer, size) is added to the list of pending PDUs for this
connection.

Obviously, this has to change when demultiplexing is implemented in the
firmware. Therefore, the buffer management is moved to the firmware as well.
That means the firmware manages the list of received PDUs and exports it
to L4ATM. The firmware reassembles received PDUs directly into the per-
VC receive buffer. Due to hardware limitations, a PDU always starts at
an address that is a multiple of four. In contrast to early wrap-around
implemented by L4ATM, in the case of insufficient space at the end of the
buffer the PDU continues at the start of the buffer (see Figure 3.2).

PDU n+2 wraps around
PDU n+1
PDU n

free space / ¢ \K
>~ &/

/

_

base
current
tail

end

N

Figure 3.2: per-VC Wrap-Around Receive Buffer

Unfortunately, using this buffer model a PDU can happen to be split into two
segments. Neither the API of L4ATM nor the ATM-on-Linux API support
scattered buffers. To overcome this, the start of the buffer could be mapped
behind the end of the buffer — assuming the buffer is aligned to a page
boundary and a multiple of pages in size. That way a split PDU can be
accessed as a contiguous block of virtual memory.

An internal buffer descriptor (Table 3.3) holds the required information to

3.4. RECEIVE 29

manage a receive buffer. It contains the general parameters of the buffer
necessary for implementing wrap-around. The current pointer holds the
address where received data is to be written to. A fallback pointer is used
whenever a receive error occurs.

‘ field name ‘ description ‘

current where to write next data

fallback restart here if PDU was damaged
base start of buffer

end end of buffer

tail tail pointer updated by the driver

Table 3.3: Internal Receive Buffer Descriptor

A receive queue is maintained by the firmware for each connection. The
firmware writes information about the received PDUs to the queue. The
dedicated worker thread in L4ATM pulls entries from the receive queue,
optionally applies traffic management algorithms, pushes the PDU to the
application and adjusts the tail pointer for the buffer and the receive queue
afterwards.

3.4.4 Receive Process

Internal receive descriptors hold a connection’s receive process state. The
fields of an internal receive descriptor are given in Table 3.4.

‘ field name ‘ description ‘
rx_function receive function, depends on the AAL
disable if active, drop all data — reset at end of PDU
buffer reference to receive buffer descriptor
complete function | function to call after end of PDU
partial _crc temporary CRC checksum
rxq_ base start of receive queue
rxq_ size size of receive queue
rxq_ current current receive queue entry
rxq_ tail tail pointer updated by the driver
handle

Table 3.4: Internal Receive Descriptor Elements

Having looked up the receive descriptor for the cell header, the receive func-
tion is called. The receive function implements AAL processing and data
transfer from the ESP’s receive FIFO to host memory. Due to header co-
alescing, payload of more than one cell can be transfered in one operation,

30 CHAPTER 3. DESIGN

but a huge PDU is likely to be broken into a few blocks. The CRC checksum
is calculated as data is pulled from the receive FIFO. After the transfer of
a block the partial CRC value is stored in the RPD and restored before the
next block of this PDU is transfered. The field current in the associated
receive buffer descriptor is adjusted as data is written into the buffer. If
the resulting value is at the end of the buffer, current is set to the buffer’s
base address. When the free buffer space between current and tail is not
sufficient, buffer shortage is signaled for that connection. The current PDU
is damaged due to cell loss; reassembly for that VC is suspended (trans-
fer of data belonging to this PDU is disabled). With the end of the PDU,
current is set to fallback and reassembly for that VC is resumed. In the
preferred scenario the PDU is reassembled completely, the completion func-
tion is called and the internal receive descriptor is initialized for a new PDU
(reset partial CRC value, set fallback pointer to current position).

The tail pointer resides in the board’s local RAM. That fact is of increased
importance when data arrives on a VC at a higher rate than expected. Prob-
ably, the receive buffer of that connection gets filled up, preventing further
reception. The firmware polls the tail pointer on every arriving cell (or cell
block) of that connection. These are local accesses that cause no PCI-Bus
action. A single access from the driver to the board’s local RAM is enough
to get the tail pointer update. To minimize PCI-Bus utilization further,
the host driver should cache the tail pointer and write back its value at the
end of its receive processing for the specific connection.

The chosen process model requires timely termination of the receive process,
even if there are still cells in the receive FIFO. Otherwise, transmit FIFOs
could eventually drain off violating guaranteed transmit rates.

3.5 Events

Events are the means of communication from the firmware to the driver
executing on the host CPU. A host resident event queue is filled by the
firmware with event entries (Table 3.5).

‘ field name ‘ description ‘

handle specified by the driver, passed uninterpreted
type of event | indicates type of event

Table 3.5: Event Queue Entry Elements

While the event type enables easy classification of the event in the driver,
the handle is used to identify the source of the event. These handles are
specified when opening a connection, transmitting data or requesting control
processing. Events can be generated for the following reasons (event types):

3.6. CONTROL REQUESTS 31

e transmit request completed
e control request completed
e PDU received

e receive queue full

e receive queue over threshold

Events can be silent or interruptive. Whenever an interruptive event
is written to the event queue, an interrupt is generated on the PCI bus.
Furthermore, an interrupt is generated when a receive queue gets filled up
(error condition due to a non conforming connection) or the number of silent
events has reached a threshold value. That way, connections with relaxed
timing requirements (as best-effort connections are) can receive or transmit
data without causing an interrupt for each single PDU. Hence, silent events
are the means of reducing the interrupt frequency.

3.6 Control Requests

Besides the receive and transmit processes described in the previous sec-
tions, a third mechanism is required to control the firmware. This covers
initial configuration, opening and closing connections, and status inquiries.
The firmware maintains a command queue in the board’s local RAM. The
command queue is a list of physical addresses of command descriptors. The
firmware polls the current entry of the command queue — since the queue
is in the local RAM, no PCI transfers are required for that. An entry can be
written by the driver in a single PCI transfer. In the following paragraphs
the different request types are described, command descriptor structures are
presented in the Appendix section.

Configuration: Global data structures are initialized with the configura-
tion command. The length of both the command queue and the trans-
mit queue, location and length of the event queue as well as the number
of significant bits for VPI and VCI (i.e. the maximum number of con-
nections) are configurable. The result of the configuration command
are the addresses of the command queue, the transmit queue and the
tail pointer of the event queue in the board’s local memory. Obviously,
the configuration command cannot be written to the command queue.
Instead it is to be written to a well-known address in the board’s local
memory.

Open a connection: Opening a connection means enabling the receive
process for the specified VPI/VCI pair. For that purpose, a receive

32

CHAPTER 3. DESIGN

buffer and a receive queue must be specified (base addresses and sizes).
On success, the result consists of two addresses — one for the buffer
tail pointer, the other for the receive queue tail pointer. Both ad-
dresses are offsets in the board’s local memory. These locations are
to be updated by the driver whenever it frees receive buffer space or
receive queue entries. The driver should try to minimize the number
of accesses. Additionally, a handle can be specified that is returned in
the event queue as a reference.

Close a connection: Whenever a connection is closed, further reception

of data on the specified VPI/VCI pair is disabled. The driver must
not write to the tail pointer locations any longer. Furthermore, it
should check the receive queue of the connection after completion of
this command.

Status/Statistics: The current design does not require any status inquiries

to be implemented. However, there may be need for in the future.

Parameters common to all control commands are a handle and an address
where the result shall be written to. The size of the result buffer is implicitly
given by the requested operation.

Chapter 4

Implementation and
Performance Evaluation

In this chapter, some aspects of the implementation and their impact on
performance are discussed. A few important data structures are described
as their structure settled during the implementation process.

4.1 Modularization

For the implementation a modular design approach has been chosen. This
means separating functional units of the firmware into the following modules:

e PBlinitialization, ESP initialization, entry code, main loop and control
request handler

e transmit data movement, receive data movement

e AALS segmentation and reassembly

e internal transmit descriptors (allocator, queue handling)

e internal receive descriptors (allocator, activate/deactivate, lookup)
e receive buffers, receive queues

e transmit process (transmit queue, FIFO selection), receive process

e events (interrupt generation)

That way e.g., applying a new receive buffer scheme involves only changing
the receive buffer module.

33

34CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATION

4.2 Memory

The PCA-200E board has 256 KB of fast SRAM installed for storing the
firmware code and data. The first KB is shadowed by the i960’s internal
RAM. During the implementation phase, the mon960 debugger is of much
help (breakpoints, single stepping, etc.) — which takes about 20KB for
its private data structures. So, there are about 234 KB available for the
firmware. This space has to be shared for code and data. 32KB would be
a very pessimistic estimate of the code size, leaving 200KB for data related
to connection management. Targeting at a minimum of 1024 connections,
this would result in nearly 200 bytes per-connection data (including receive
descriptors, buffer descriptors, transmit descriptors, etc.). Taking into con-
sideration that no data is to be buffered, that seems plenty of space.

4.3 Header Coalescing

Using the header coalescing feature when transmitting an AAL5 PDU, only
two updates to the cell header register are required opposed to writing a
cell header for each cell. Hence, the number of accesses to the ESP can be
reduced which frees CPU cycles for other tasks. Figure 4.1 shows the ratio
of required number of accesses with and without this feature enabled.

1.01

without header coalescing
with header coalescing -------

1

0.99

0.98

0.97

ratio

1 4 16 256 1024

PDU size in ce\(lss4
Figure 4.1: Effects of Header Coalescing

For a PDU size of 9180 bytes, header coalescing reduces the required number
of accesses to the ESP to 92.3%. Hence, this feature reduces the transmit
costs by nearly 8%. A similar mechanism exists for the receive path, too.
Another important implication is, that cells can be transfered without any
action being required in between.

4.4. IDENTIFICATION OF INCOMING CELLS 35
4.4 Identification of Incoming Cells

During the receive process, a cell header is pulled from the receive FIFO.
Solely with the cell header available a decision must be made on whether
the cells belong to an open connection or not. One can think of several
approaches of how to determine that:

tree-based search: This way, the whole range of VPIs and VCIs can be
covered. The tree contains pointers to dynamically allocated connec-
tion descriptors. The number of connections is limited by the available
memory for connection descriptors. The time it takes to lookup a cer-
tain connection depends on the number of connections. By the use of
self optimizing trees the seek time for “high-traffic” connections could
be minimized while incrementing the time for other connections. But,
this would induce a certain level of unfairness. Furthermore, it would
be necessary to investigate if inserting a node (opening a connection
is not a time-critical operation unlike the lookup on cell arrival) could
break the hard time limits for searching the tree. Another negative
point: figuring out that an entry is not present may require walking
the tree down in its full depth.

hash-based search with overflow buckets: A common approach would
be to calculate a hash value from VCI and VPI as an index into a
hash table with overflow buckets. Although this method could reduce
the mean lookup time, it can result in heavily different lookup times.
Again the lookup costs for a non-present entry can be enormous.

VPI/VCI as table index: By reducing the significant bits in the VPI and
VCI field to a total of, say 10, the value gained from merging the
significant bits is used as an index into an array of descriptors. This
reduces the number of VPIs and VCIs the firmware can cope with.
The number of connections is limited by the table size (which in turn
is limited by the available memory). Using an array of pointers to
dynamically allocated connection descriptors, the table size (and thus
the VPI/VCI space) could be slightly enlarged while incrementing the
costs for a lookup operation by an additional level of indirection.

With respect to the criteria listed in Section 3.4.2, the method described last
looks most suitable for the given problem. It takes minimum and constant

lookup time — no matter whether an open connection exists or not — at
the price of a reduced VPI/VCI space.

36 CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATION

4.5 Cell Discard and Packet Discard

Incoming cells get into one of four receive FIFOs in the ESP, even if no
connection has been opened for those cells or a connection’s buffer is filled
up. In both situations the firmware should remove the cells from the receive
FIFO. Therefore, the firmware reads the cells from the receive FIFO without
further processing. Even in an hand-optimized loop this takes at least twelve
cycles per cell.

A solution that significantly reduces the overhead associated with discarding
cells could be to adjust the memory pointers of the ESP’s FIFO logic. That
way, a short address calculation and a single write access to an ESP register
would be enough to get rid of cells. This method is most efficient for large
blocks of cells. Even though the pointers are accessible from the 1960, no
stable mechanism was found by the time of writing. However, independent
of the method used for discarding, cells classified as to be discarded produce
no extra load on the host CPU.

The firmware tries to reduce the work for the host CPU. Therefore, it im-
plements a packet discard mechanism for AAL5 PDUs. Whenever a connec-
tion’s receive buffer has insufficient free space for the current PDU available,
the connection is marked as disabled and all future cells except for the End-
of-PDU cell are discarded. After arrival of the last cell, the connection is
enabled again. Since the length of a AAL5 PDU is encoded in the last cell,
there is no way to determine at arrival of a PDU'’s first cell whether the
entire PDU will fit into the available buffer space. Hence, for connections
with variable PDU sizes this packet discarding scheme cannot completely
avoid unnecessary PCI-Bus usage, whereas with a commited fixed PDU size
the firmware can begin discarding of cells even at the start of a PDU. Nev-
ertheless, it unburdens the handling of dropped packets from the host CPU
in overload situations, which is a major advantage over the previous combi-

nation of the PCA-200E driver and L4ATM.

4.6 FIFO Selection Scheme

The transmit FIFO selection scheme described in Section 3.3.2 works fine for
up to three concurrent real-time connections. Scenarios with more than three
concurrent real-time connections can be handled similarly as long as they can
be implemented by PDU interleaving (VBR connections). For the remaining
cases, two FIFOs should be associated with the two connections with the
highest rate, while a cell-level scheduler multiplexes the remaining real-time
connections onto the third high-priority FIFO. That approach may be limited
to quite low data rates because of the PCA-200E architectural constraints. In
[SGI8] a feasibility study of a software-based cell-level scheduler is presented:

4.7. CPU CYCLES 37

based on a Pentium Pro 200MHz up to 1000 concurrent connections can be
shaped simultaneously. But, in contrast to the 1960 on the PCA-200E, that
CPU is not responsible for actual data movement. It runs algorithms for the
scheduling of DMA transfers and cell transmits. This comparison and the
estimates from Section 4.7 indicate, that software-based cell-level scheduling
at high rates is likely to fail on the PCA-200E hardware.

4.7 CPU Cycles

Estimates

The 1960 CPU on the PCA-200E board is clocked at 25MHz. A saturated
full-duplex 155Mbps link transfers 706414 cells/s. The PCA-200E hardware
allows to transfer cells as twelve 32-bit words in a burst operation (taking
one external cycle per word), leaving an average of 23 cycles per cell for
overall processing overhead. Even with the 1960 being able to execute about
two instructions per cycle, this value seems insufficient.

Call Costs

The modular design presented in Section 4.1 is strongly supported by the
1960 architecture. The combination of two features, a sophisticated call-
and-return mechanism saving procedure-local registers and a saved register
cache with a maximum depth of sixteen, makes function calls very cheap.
In a typical program, procedure calls and returns cause procedure depth to
oscillate a few levels around a median call depth. Unless oscillation is larger
than the number of cacheable register sets, no cache flush is required. A
call or return instruction involves transfer of sixteen 32-bit registers which
consumes only four clock cycles. By the use of clever instruction scheduling,
up to two instructions prior to the call/return can be executed in parallel
with the call or return instruction.

Execution Timings

This section lists execution times for certain tasks. Due to the lack of a times-
tamp counter in the 1960, timings were taken by generating an interrupt after
a certain number of iterations of the task. The host then calculated the du-
ration between two successive interrupts by use of the Pentium’s timestamp
counter. From that the cycles for a single iteration were derived. Obvi-
ously, the values gained reflect a minimum — the i960’s instruction cache
combined with its 16-word prefetch buffer eventually may have reduced ex-
ecution time during measurements in a way that is not achievable under

38CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATION

normal conditions. On the other hand, running the 1960 with cache disabled
would increase execution times more than likely.

task ‘ cycles ‘
test if cells are in the any of the receive FIFOs 5
parse empty tx fifo queues 28
enqueue an internal transmit descriptor to a FIFO’s empty queue 21
enqueue an internal transmit descriptor to a FIFO’s queue 38
dequeue an internal transmit descriptor from a FIFO’s queue 34

Table 4.1: Execution Times

Related to the estimated 23 cycles per cell these values underline the moti-
vation of header coalescing. Header coalescing enables transfer of multiple
cells in a block operation, grouping data transfer cycles together. That way
“long running” operations (taking more than 23 cycles) become feasible.

4.8 Maximum Bandwidth

When people talk about network adapters, the most often asked question
probably is: “How fast is it?” Thinking about that twice, there are a lot
of answers to this question. In the context of ATM network adapters, in-
teresting aspects are throughput as well as latency. Lacking suitable ATM
measurement tools latency was not measured. The numbers presented in
this section were obtained either by the use of interrupts and the host’s
timestamp counter or from a network management/monitoring tool whose
precision is more than questionable.

400000
350000 /
300000

250000

200000

150000 /
100000 //

Rate in cells/s

50000 *

0

16 64 256 1024 4096 16384 65536
PDU size in octets

Figure 4.2: Maximum Transmit Rate

4.9. CONCURRENCY 39

Figure 4.2 shows the maximum achievable transmit bandwidth with respect
to the PDU size. The dashed line shows the values for a connection with
reduced transmit rate. The degradation on small PDU sizes relates to the
processing overhead in the firmware. The transmit FIFO drains off before the
firmware is ready to refill the FIFO again. For a connection at link speed
the overhead becomes significant for PDU sizes of less than 1024 octets.
A connection with approximately 100000 cells/s can achieve its requested
bandwidth even with a PDU size of three cells.

4.9 Concurrency

One of the problems addressed by DROPS is the isolation of concurrent
activities. Regarding ATM connections, this means reducing mutual influ-
ences of concurrent connections. In this section the behaviour and effects of
concurrent connections are investigated.

4.9.1 Concurrent Transmitters

With the ESP’s transmit FIFOs the firmware is able to shape up to three
concurrent outgoing real-time connections while offering the remaining band-
width for best-effort connections. Given that there is a feasible cell schedule?
for these connections, no mutual influences should occur. The graphs in Fig-
ure 4.3 show cell rates of four concurrent outgoing connections and their
sum: C2 with 24000 cells/s, C3 with 48000 cells/s, C1 whose rate is changed
and the best-effort connection C4.

During the experiment, the rate of C1 was changed. The rate of C2 and C3
remained stable as expected whereas the rate of C4, the best-effort connec-
tion, adapted to the remaining rate.

4.9.2 Concurrent Receivers

Two central ideas of this work are the isolation of inbound connections and
the protection of the host system from overload situations. Connections
exceeding their negotiated rate are to be policed by discarding their packets.
The host’s CPU utilization should not be influenced by those connections.

The setup depicted in Figure 4.4 was used for the measurements: Three ma-
chines (A, B and C) ran DROPS with an application to control the firmware.
Additionally, an “idler” ran on C to measure the available CPU time. Host
A generated two AALD streams of 8192 KByte PDUs, both with a rate of

11t is left to L4ATM to determine if a cell schedule exists for a set of real-time con-
nections. This decision should be made during the admission control phase at connection
setup.

40CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATION

450000

400000 PR
C1+C2+C3+C4 - -#--

350000 ®mmr ks R s T S s PO

300000

250000

200000

Rate in cells/s

150000

100000 T

50000

=)
————— . e T B e PR

0

0 50000 100000 50000 200000 250000 300000

1
Rate of C1 in cells/s

Figure 4.3: Concurrency of Outbound Connections

D c

Figure 4.4: Measurement Setup

20 Mbit/s. Host B generated an AAL5 stream with varying PDU size and
rate. The switch was configured with three PVCs leading to the port C was
connected to. The “idler” on C repeatedly measures the number of iterations
in a tiny loop in a certain number of CPU cycles. Taking the value for an
unloaded CPU as reference, this allows estimation of remaining CPU time.
Furthermore, the firmware was configured to request an interrupt for every
PDU that was received successfully.

As expected, without any open connection the host CPU does not even notice
the incoming data stream. Figure 4.5 shows utilization of the host’s CPU
time for a connection at link speed and for a 40 MBits/s connection, both
with varying PDU size. Here, the interrupt handler on the host immediately
acknowledges the PDU by advancing the tail pointer of both the receive
buffer and the receive queue. Values for smaller PDU sizes are not available
because of massive CRC errors, probably induced by the firmware’s overhead.

The influences of misbehaving inbound connections on the host CPU are
shown in Figure 4.6. Here, two connections of 20 MBit/s each and a third
connection of 40 MBit/s were opened. Host A sends on the two connec-

4.9. CONCURRENCY 41

\ " link speed ——
40 MBit/s ---x---

CPU utilization in %

0
128 256 512 1024 2048 4096 8192 16384 32768 65536
PDU size in octets

Figure 4.5: Host CPU Utilization

tions at their negotiated rate, whereas the rate of the other connection, the
“hazard”, originating at B is changed.

Tx-limit dat” using ($1):((710-$2)100/710) ——

CPU utilization in %
w
Fs

0 20 40 60 80 100 120
PDU size in octets

Figure 4.6: Host CPU Utilization with “hazard”

Up to a rate of 2 MBit/s no significant load can be detected. Starting with
5 MBit/s, an almost linear increase in CPU utilization can be monitored,
up to the point where the actual rate exceeds the negotiated rate. Since the
receive buffer is drained with a rate of max. 40 MBit/s, additional PDUs
are discarded by the firmware — the host does not get an interrupt for
that. Hence the CPU utilization remains constant. When the rate of the
connection exceeds 100 MBit/s, a remarkable decrease in CPU utilization can
be seen. This is obvious: all three data streams are joined on C’s switch port,
which gets saturated at about (20 + 20 + 100) MBit/s. Due to cell discard
strategies in the switch, cells of the hazardous connection are dropped. This
leads to damaged PDUs, which in turn pose no load to the C’s CPU.

42CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATION

Chapter 5

Summary

This work aimed at design and implementation of a firmware for the PCA-
200E ATM network adapter. With respect to the demands of real-time
systems, and that of DROPS in special, a solution was presented.

The firmware supports traffic shaping on the transmit path, differentiates
between real-time and best-effort connections, and allows implementation of
zero-copy transmit and receive paths. It uses a simple but powerful policing
mechanism to protect the host from misbehaving inbound connections. As
shown in Chapter 4, it provides effective methods to minimize the work
for the host CPU. Paired with L4ATM this firmware offers resource-saving
real-time communication via ATM.

Although the design was aligned to LAATM’s requirements, the general struc-
ture allows easy adaption to different host systems. That covers changes to
the buffer mechanism as well as different strategies for host notification via
interrupts.

5.1 Future Work

There is still room for optimization. Although egcs, the cross-compiler used
for this project, does a quite good job on optimizing, sometimes better code
can be generated with some hints from the programmer (explicit register
variables, statement reordering, etc.). To make the firmware’s buffer man-
agement more flexible and to allow application of cache-partitioning schemes,
scatter-gather buffers should be implemented for both receive and transmit
buffers. Implementation of other AALSs or even higher layer protocols in the
firmware may be desirable, too.

43

44 CHAPTER 5. SUMMARY

5.2 Acknowledgements

I would like to thank the members of the Operating Systems chair at the
Dresden University of Technology who helped bringing this work to a success-
ful end, in particular Prof. Hermann Hértig, Jork Loser, Volkmar Uhlig and
Lars Reuther for helpful discussions, Sebastian Schénberg and Jean Wolter
for repeatedly reading and correcting this paper, and last but not least my
parents for their understanding and their support during this busy time.

All trademarks used in this work are hereby acknowledged.

Chapter 6

Appendix

Configuration Descriptor

The Configuration Descriptor is used during initialization to set up queue
lengths and the number of valid bits for VPI and VCI. Its structure is given
in Figure

31 0
command queue length +0
transmit queue length +1
event queue base +2
event queue length +3
number of VPI bits +4
number of VCI bits +5
address of result buffer +6

Figure 6.1: Configuration Descriptor

45

46 CHAPTER 6. APPENDIX

Open Command Descriptor

The Open Command is used to enable reassembly of incoming data for a
VPI/VCI pair into the buffer. Figure 6.2 presents the structure of the Open
Command Descriptor.

31 0

VPI +0

Vel +1

AAL +2

receive buffer base +3

receive buffer size +4

receive queue base +5

receive queue length +6

handle
address of result buffer

Figure 6.2: Open Command Descriptor

Close Command Descriptor

The Close Command is used to disable reassembly of incoming data for a
VPI/VCI. Figure 6.3 presents the structure of the Close Command Descrip-
tor.

31 0
VPI +0
VCl +1
handle +2
address of result buffer +3

Figure 6.3: Close Command Descriptor

47

Transmit PDU Descriptor

The driver sets up transmit PDUdescriptors in host memory, according to
the structure given in Figure 6.4.

31 16 13 0
address +0
length AAL VPI & VCI +1
transmit rate descriptor +2
handle +3

Figure 6.4: transmit PDU descriptor

Receive PDU Descriptor

The receive queue contains entries with a structure as shown in Figure 6.5.
Since there is a private receive queue for connection, no information describ-
ing the VC is required.

31 16 13 0

address +0

length +1

Figure 6.5: receive PDU descriptor

48

CHAPTER 6. APPENDIX

Bibliography

[Alm96a] Werner Almesberger. Linuz ATM API, Draft, version 0.4. Labo-
ratoire de Réseaux de Communication (LRC), Ecole polytechnique
fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland,
July 1996.

[AIm96b] Werner Almesberger. Linuz ATM device driver interface, Draft,
version 0.1. Laboratoire de Réseaux de Communication (LRC),
Ecole polytechnique fédérale de Lausanne (EPFL), CH-1015 Lau-
sanne, Switzerland, February 1996.

[Alm99] Werner Almesberger. ATM on Linux.
http://icawwwl.epfl.ch/linux-atm/, 1997 — 19909.

[ATM94] The ATM Forum. ATM User-Network Interface Specification, Ver-
sion 8.1, September 1994.

[ATM96] The ATM Forum Technical Commitee. Traffic Management Spec-
ification Version 4.0, April 1996.

[Ben95a| Michael Benson. ESP: An Enhanced SAR Processor. FORE Sys-
tems, Inc., 1000 FORE Drive, Warrendale, PA 15086-7502, March
1995.

[Ben95b] Michael Benson. PBI — PCI Bus Interface. FORE Systems, Inc.,
1000 FORE Drive, Warrendale, PA 15086-7502, November 1995.

[Bor99] Martin Borriss. Operating Systems Support for Predictable High-
Speed Communication. PhD thesis, Dresden University of Technol-
ogy, 1999.

[Cor96] Cornell University. U-Net — A User-Level Network Interface Ar-
chitecture. http://www2.cs.cornell.edu/U-Net/Default.html,
1996.

[Dan98] Uwe Dannowski. An ATM Driver for DROPS. Grofer Beleg, Dres-
den University of Technology, June 1998.

49

50

[Dre99a]

[Dre99b]

[FOR97]

[Int94]

[KSL99|

[Lic96]

[PCI95]

[PMC96]

[Schos]

[SGOg]

[Tan90]

BIBLIOGRAPHY

Dresden University of Technology. DROPS — Dresden Realtime
Operating System. http://os.inf.tu-dresden.de/drops/, 1996
- 1999.

Dresden University of Technology. PCA-200E Linux Driver.
http://os.inf.tu-dresden.de/pca200e/, 1997 — 1999.

FORE Systems, Inc., 1000 FORE Drive, Warrendale, PA 15086-
7502. Programmer’s Reference Manual for AALI Interface, May
1997.

Intel Corp., Santa Clara. 1960 CA/CF Microprocessor User’s Man-
ual, March 1994.

Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The Design
and Performance of a Real-time I/O Subsystem. In Fifth Real-
time Technology and Applications Symposium, Vancouver, British
Columbia, Canada, June 1999.

J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspa-
piere der GMD No. 1021, GMD — German National Research
Center for Information Technology, Sankt Augustin, September
1996. Also Research Report RC 20549, IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, Sep 1996; available from
URL: ftp://borneo.gmd.de/pub/rs/L4/14refx86.ps.

PCI Special Interest Group, Portland, OR 97214. PCI Local Bus
Specification, 2.1 edition, June 1995.

PMC-Sierra, Inc. PM5346 S/UNI-155-LITE, SATURN User Net-
work Interface 155.52 € 51.84 Mbit/s, issue 6, March 1996.

Sebastian Schonberg. PCI Bus Performance and Real-Time Influ-
ences. In First Workshop on PC Performance. ACM, Oct 1998.

J. Schiller and P. Gunningberg. Feasibility of a Software-based
ATM cell-level scheduler with advanced shaping. In Broadband
Communications ’98, Stuttgart, Germany, April 1998.

A.S. Tanenbaum. Betriebssysteme - Entwurf und Realisierung.
Carl Hanser Verlag, Miinchen, 1990.

