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Abstract
Key components of today’s network communication infrastructure of German embassies,
called Secure Inter-Network Architecture (SINA), are based on the GNU/Linux platform.
However, the Linux kernel with over 500,000 lines of code is rather complex and must be
fully trusted to maintain confidentiality and integrity of the processed data. In this paper, we
present an approach to reduce the complexity of the trusted computing base of a VPN gateway
by an order of magnitude while maintaining full functionality. We show how to safely reuse
untrusted legacy software on trusted platforms and thus, rapidly increase overall security with
low engineering costs.

1 Introduction
A Virtual Private Network (VPN) connects islands of trusted private networks over
untrusted links and especially over the Internet. This enables distant network nodes
(e. g., portable devices) to securely communicate with a company’s server via a virtual
network. In IPSec-based VPNs, all traffic transported over the Internet is secured by
crypthographic means as specified in the IPSec standard. This ensures the protection
of sensitive information against unauthorized inspection and manipulation. The VPN
gateway implements the needed security mechanisms and acts as the guard at the
border between networks of different trust/security levels (e. g., between the private
network and the untrusted public Internet).

The majority of current VPN implementations are based on monolithic operating sys-
tems. For example, the Secure Inter-Network Architecture (SINA) uses Linux for gate-
ways and end-user systems. In monolithic operating systems, the IPSec implementa-
tion is integrated in the kernel and closely interwoven with other components of the
kernel such as the network subsystem. Thus, bugs in the kernel code or successful
penetration of the complex monolithic kernel can compromise the security-relevant
functions.

The following example emphasizes the severity of the situation: In Linux 2.4, 70 per-
cent of the kernel code are device drivers with an error probability 7 times higher than
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Fig. 1: Nizza Security Architecture. The picture illustrates the overall architecture of Nizza.
The box at the bottom contains the microkernel and the basic trusted services.

in other kernel modules [5]. This huge amount of code has unrestricted access to all
data structures and functions of the kernel.

We aim at reducing the complexity of the trusted software of the SINA VPN gateway
by an order of magnitude. This will enable cost-efficient high-level evaluation and
application in high-assurance scenarios. Therefore, we use components and concepts
of the Nizza security architecture that shall be introduced in the following section.
Section 3 explains our VPN-gateway design and implementation in detail, followed
by an overview of related work and the conclusion in the final section.

2 Nizza Security Architecture
2.1 Overview
The foundation of Mikro-SINA are concepts and techniques of the Nizza security ar-
chitecture. In the following, we shortly present the key concepts that are important to
understand Mikro-SINA and refer you to the original paper [7] for details. The main
goal of Nizza (and also Mikro-SINA) is to keep the trusted computing base (TCB) of
security-sensitive applications as small as possible.

The core concept inherent to Nizza is the (fine-grained) isolation of protection domains.
To achieve this, the architectural basis of Nizza is the L4/Fiasco microkernel. It pro-
vides a small set of features: Address spaces for isolation, message passing primitives,
and threads. Device drivers are not part of the kernel and run in private protection
domains atop Fiasco. The limitation of the functionality of the microkernel keeps the
complexity of the software running in privileged processor mode as small as 15,000
lines of code (LOC) C++. This and the conceptual nonextensibility of the kernel code
lead to systems considered more robust and secure.

For the implementation of real-world applications, microkernel primitives alone are
insufficient. Therefore, the Nizza architecture includes a layer of trusted services as
depicted in Figure 1. Nizza’s trusted service components are small (in complexity
means) and are executed within separate protection domains.
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An exemplary trusted service of Nizza is a windowing server providing the trusted
path from the application to the user. For the deployment of a trusted platform as
defined by the Trusted Computing Group (TCG) [1], the architecture also includes an
installer that allows to install, control, and attest new trusted applications, a secure
storage module, and a user authentication component.

2.2 Trusted Wrappers

An important aspect of Nizza is the reuse of untrusted legacy software to meet the
requirement for small additional engineering costs. Legacy software in our context
are applications as well as operating systems and device drivers. Our prime exam-
ple is L4Linux, a port of the Linux kernel to the L4 microkernel interface [6] that runs
as a user-mode program. The design template of trusted wrappers as described by
Hohmuth and others in [8] enables us to even use untrusted code for trusted services.
Trusted wrappers come in two flavours, the sandbox wrappers and the perimeter wrap-
pers.

The sandbox wrappers completely encapsulate system components based on un-
trusted code to prevent leakage of information. Sandboxing makes it possible to have
untrusted code work on unprotected data, for example for converting data formats or
for running legacy applications on classified data. Components wrapped in this way
are comparable to dedicated isolated hosts for security-critical tasks.

On the other hand, perimeter wrapping is used for untrusted components that com-
municate with the outside world. These components must never see unprotected (un-
encrypted) data. Such components typically reside at the border of the system (e. g.,
network connections or storage media). Perimeter wrapping originates from network-
security techniques with the prominent example of VPN tunneling.

2.3 Communication Control

In Nizza, all components use cross-domain communication primitives provided by the
microkernel. These primitives are message-based inter-process communication (IPC)
and shared memory. Therefore, the microkernel is able to restrict interaction of do-
mains and thereby enforces system policies [10]. These policies are defined by trusted
services using microkernel primitives.

Address spaces and IPC control effectively isolate threads inside the system. Neverthe-
less, device drivers may circumvent domain boundaries via Busmaster Direct Memory
Access (DMA) devices in current computer systems as described in [7]. The paper pro-
poses several approaches to fully or partially prevent this kind of attacks or faults.
Until proper protection from Busmaster DMA attacks is applied, device drivers must
be regarded as trusted and reuse of legacy code is impractical. Otherwise, malicious
code may compromise sensitive data or system integrity.

Another aspect are covert channels among Nizza components. We did not extensively
investigate this issue. However, solutions described in several publications, for exam-
ple [9], can be adopted to Nizza.
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2.4 Terminology for security categories
There is some divergent terminology in the security community about the definitions
of the three security categories. In the remainder of the paper, we use the following
definitions from [8]:

• Confidentiality
Only authorized users (entity, principal, etc.) can access information (data, pro-
grams, etc.).

• Integrity
Either information is current, correct, and complete, or it is possible to detect that
these properties do not hold.

• Availability
Data is available when and where an authorized user needs it.

3 Mikro-SINA VPN
In the following we shall describe our design of the VPN gateway and how we reduce
the trusted computing base for this application.

3.1 Architecture
The VPN border between the private and the untrusted network logically splits the
VPN implementation into the following functional parts:

• Processing sensitive (unencrypted) data
• Protecting sensitive data and maintaining policies
• Processing protected (encrypted) data only

We observed that the security-relevant functions of a VPN implementation—data pro-
tection and policy enforcement—are only a small fraction of the monolithic kernel (less
than 5 %).

The Nizza architecture enables us to extract those IPSec-specific functions and execute
them in a separate protection domain. This technique dramatically reduces the vulner-
ability of this sensitive functionality. We call this IPSec component Viaduct as it repre-
sents the actual connection point between the private network and the untrusted In-
ternet. Beside the Viaduct, a VPN gateway requires network device drivers, IP packet
processing including defragmentation, routing, and other basic networking functions
for operation.

All the software components of the VPN gateway excluding the Viaduct must be as-
signed to either the private or the Internet side. Because both sides require general
network functionality, we use two instances of L4Linux running on one machine for
providing these functions. Each of these L4Linux instances is isolated through the mi-
crokernel and allowed to access one of the two physical network interface connectors
(NIC) exclusively1. Therefore both instances are not able to communicate directly. The

1While the Linux instances are untrusted, the current implementation of Mikro-SINA uses a set of
trusted device drivers (running in their own address spaces). We have to trust these drivers because
they use unrestricted DMA. See also Section 2.3 and [7].
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Fig. 2: Mikro-SINA Architecture overview. The illustration shows two L4Linux instances run-
ning atop the Fiasco microkernel and the basic trusted services (L4Env). Each L4Linux
instance can communicate with one NIC driver exclusively. Both instances are con-
nected (indirectly) via the trusted Viaduct.

only way of passing data from either side to the other is the Viaduct, which enforces
the security policy and protects sensitive data. The scenario is depicted in Figure 2.

Now that we have split the VPN software into distinct components, we can revisit the
security measures for each component individually to verify that sensitive information
remains protected against unauthorized inspection and manipulation. The Viaduct
must be ultimately trusted regarding confidentiality and integrity of the processed
data, therefore, its complexity is crucial. Our implementation comprises merely 5,000
LOC plus the used cryptography engine.

The L4Linux instance on the Internet side never observes sensitive information because
sensitive data is protected by the Viaduct before leaving the VPN. Therefore we can
safely regard this L4Linux instance as untrusted with respect to confidentiality and
integrity of sensitive data.

In contrast to the L4Linux instance of the Internet side, the L4Linux instance on the
private side observes sensitive data. Nevertheless, network packets cannot leak to the
Internet side because of the encapsulation. Thus, we do not need to trust this L4Linux to
meet confidentiality. With respect to integrity of the sensitive data, the private L4Linux
needs to be trustworthy just as every component of the private network’s infrastruc-
ture. The key point is that the private L4Linux instance cannot be attacked from the
untrusted network because no unauthorized data from the untrusted network passes
the Viaduct. In the case of unusual attacks from inside the VPN the VPN Box is vulner-
able with respect to integrity. To overcome this, it is necessary to use techniques that
shall be described in the next section (Section 3.2).

In summary, the basic architecture of our VPN gateway reduces the trusted computing
base of the VPN gateway to the basic Nizza components plus the Viaduct. The overly
complex functionality of a complete TCP/IP implementation is provided by untrusted
legacy components without compromising our security objectives.
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3.2 Availability

Up to now we did not investigate the security objective availability. For our scenario,
we need to classify attacks against availability. The first class of such attacks aims at
producing overload to throttle the quality of a service or even make it unusable. Attacks
of the second class crash a system or components of a system to make it unusable.

To prevent overload attacks, communication protocols and state machines of protocol
interpreters need to be designed to be robust against such attacks. For example, the
replay window and the sequence number in the IPSec protocol protect the VPN imple-
mentation from CPU overload caused by an attacker resending encrypted packets. We
have to consider this kind of attacks also in our local communication protocols among
our components.

Examining crash attacks, our system seems to be worse than the original monolithic
system, because we have twice the complexity of the untrusted L4Linux. However,
attacks from the untrusted network can only affect the L4Linux on the public side,
because packets that pass the Viaduct have to originate from another trusted VPN
island. This means we are on a level equal to a monolithic Linux.

Attacks from within the VPN can only affect the L4Linux on the private side of the VPN
gateway, because all traffic that passes the Viaduct to the public network is encrypted
and therefore cannot crash the public L4Linux. Nevertheless, attacks from inside the
VPN are not typical for VPN scenarios.

With the Nizza architecture, it is even possible to increase the robustness against crash
attacks. In contrast to a monolithic system, we are able to reduce all the untrusted com-
ponents on either side to their bare minimum. In our case we do not need to run any
Linux application neither on the public nor on the private side. On the public side we
need a complete network-protocol stack that must provide the transport protocols for
the key-exchange (IKE) daemon and performs the packet reassembly (see Section 3.3)
for the Viaduct. The IKE daemon is a trusted application that manages the exchange
of cryptographic keys and protocol negotiation among the VPN gateways of a VPN.

On the private side, we have to consider the topology of the VPN. If the VPN is a
single subnet without internal routers, the only functionality besides the NIC device
driver is an address resolution protocol (ARP2) implementation. The ARP implemen-
tation reads the destination IP address from the datagrams that leave the VPN gateway
into the private network. However, we need no further functionality for processing IP
packets. In the case of a complex VPN topology with internal subnets we need addi-
tional functionality for IP routing.

With the resulting architecture as depicted in Figure 3, we minimize the possibilities
of denial-of-service attacks while still using complex untrusted software. From the
untrusted Internet only the untrusted network-protocol stack can be attacked. Attacks
that aim on other facilities of the Linux kernel, such as process management, user man-
agement, or file systems, are no longer possible.

2ARP is used for translating IP addresses into link-layer addresses (e.g., Ethernet MAC addresses).
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Fig. 3: Minimalized Mikro-SINA architecture. The private L4Linux is replaced by a small com-
ponent that contains only the NIC driver and ARP handling. The public L4Linux is
replaced by the Flexible TCP/IP Stack (FLIPS). FLIPS is a port of the Linux IP-Stack to
the Nizza platform. Its complexity with 80.000 LOC is significantly lower than that of
L4Linux.

3.3 Dataflow

Next, we describe the data flow in Mikro-SINA in detail (Fig. 2). On each side, a trusted
device driver transfers network packets between the physical network and the corre-
sponding L4Linux instance. We implemented custom L4Linux driver stubs to attach
the NIC to its L4Linux as proposed in [7].

The private L4Linux instance routes network packets arriving at eth0 to a pseudo de-
vice driver virt0 attached to the Viaduct and vice versa. In the minimized architecture
(see Figure 3) the NIC driver provides the received packets directly to the Viaduct. The
packet handling on the Internet side is more complex (Fig. 4). The Viaduct protects
outgoing packets via cryptography and forwards them to pseudo device virt1 of the
L4Linux at the Internet side. L4Linux performs further packet processing (e. g., frag-
mentation) and finally routes the packets to the Internet via eth1.

Incoming packets from the Internet may be fragmented on the way from one VPN
gateway to another. These fragments cannot be processed by IPSec individually. The
logic to reassemble fragmented IP datagrams is rather complex and does not need to be
trustworthy. Therefore, packets must be reassembled before handing them over to the
Viaduct. The L4Linux TCP/IP implementation performs the packet defragmentation
before handing a packet from the IP layer to an upper-layer protocol (e. g., TCP, AH,
ESP). Therefore, we use a pseudo IPSec protocol stub in L4Linux that forwards the
packets to the Viaduct, which applies IPSec functions and sends them to the private
L4Linux instance.

3.4 Evaluation

In the following, we evaluate our approach in terms of code complexity. We compare
Mikro-SINA with monolithic Linux. A typical configuration of the Linux 2.4 kernel
comprises about 500,000 LOC (with about 80,000 LOC accounting for the networking
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Fig. 4: A closer view of the flow of network packets on the Internet side of the Mikro-SINA
VPN gateway. The IP stack of L4Linux reassembles fragmented IPSec packets before
they are passed to the higher network layer (pseudo ESP destination). Thus, the Viaduct
always receives IPSec packets that are ready to directly apply the needed cryptographic
functions.

implementation3). For Mikro-SINA, we focused our analysis on the complexity of the
components that need to be trusted to meet the hard security requirements—integrity
and confidentiality of private data. These components are:

• The microkernel (about 15,000 LOC)

• Basic resource managers (about 30,000 LOC)

• The Viaduct (about 5,000 LOC)

This leads to an overall complexity of merely 50,000 LOC for the TCB, which is an
order of magnitude lower than that of the Linux kernel.

4 Related Work
One of the most recent architectures that is comparable to Nizza is the Next-Generation
Secure Computing Base (NGSCB) from Microsoft [2, 3].

NGSCB is an operating-system architecture that is quite similar to our Nizza security
architecture. Microsoft uses a software architecture akin to our microkernel-based ar-
chitecture. The microkernel is called Nexus in their publications. NGSCB supports
Windows as legacy operating system and provides secure partitions for trusted appli-
cations. It is not clear to us whether NGSCB supports scenarios with multiple instances
of a legacy operating system. In addition, there is no information on the facilities for
cross-domain (cross-partition) communication and their efficiency, which is a precon-
dition for fine-grained isolation of components.

3These numbers are for vanilla Linux 2.4.28 without FreeS/WAN patches.
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The most important difference between NGSCB and Nizza is that NGSCB describes
a special hardware platform [2] that is necessary to run NGSCB software. NGSCB
depends on support for the secure applications in all security-critical devices and the
infrastructure for that devices, such as the main-board chip set, the video adapter, the
keyboard, or the mouse. Most of these hardware changes are necessary because un-
trusted legacy software has direct access to devices that process unprotected sensitive
data.

Nizza is designed to run on standard PC hardware. Nevertheless, for specific security
requirements such as attestation of the boot process, we support extended hardware
(e. g., a trusted-platform module—TPM). We will also benefit from NGSCB hardware
that supports DMA restriction (Section 2.3) or virtualization support, mostly with re-
spect to performance. Because we have small trusted device drivers for the devices
that process unprotected sensitive data, we do not need support for protection in these
devices.

The aspect of untrusted device drivers is addressed in work by Michael M. Swift and
others [11, 12]. They describe how the operating system and applications can be pro-
tected from faults in device drivers. This approach uses memory-protection techniques
to isolate device drivers from the remaining operating-system kernel. The goal in
this work is improved robustness of the operating system while still running unmod-
ified drivers in their usual environment without modifying the interfaces between the
drivers and the OS.

With this approach, they reach a fairly good tolerance against programming errors in
device drivers and are able to recover from driver crashes. However, they do not aim
on hard security objectives that must be maintained even if a faulty device driver or
system component becomes malicious.

Another development we have to mention are virtual machines. Virtual-machine tech-
niques became extremely popular in the last years. It seems to be a valuable technique
for server consolidation with secure isolation among the different machine instances.
With Xen [4], Paul Braham and others propose para-virtualization with slightly modi-
fied legacy OS instances as an alternative to complete virtualization. This development
is quite similar to our microkernel approach and L4Linux. Even though there are im-
portant differences between pure virtual machines and microkernels, both approaches
are promising regarding secure systems. You can find detailed information on that
topic in [8].

5 Conclusions
The main goal of this work was minimizing the complexity of the trusted components
(in means of LOC) of a VPN gateway while maintaining the functionality of the origi-
nally monolithic implementation.

We met this goal by carefully revisiting the software building blocks with respect to the
required security measures. We used existing legacy implementations of device drivers
and protocols wherever the use of untrusted software is feasible without jeopardizing
the system’s security. However, untrusted software components must be assumed to
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possibly malfunction. While availability cannot be taken for granted, Mikro-SINA pro-
tects the confidentiality and integrity of transported information.

The Mikro-SINA approach enabled us to keep our engineering effort, which in essence
is our custom IPSec implementation, as small as 5,000 LOC. The overall complexity of
the trusted software is only 50,000 LOC.

Mikro-SINA represents a prime example of how to build secure platforms based on the
Nizza security architecture and shows the way toward the broad use of Nizza as a base
of future security platforms. Our convincing experiences with Mikro-SINA highlight
Nizza as an open-source alternative to the upcoming NGSCB platform from Microsoft.
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