
Großer Beleg

Evaluation of the Go Programming
Language and Runtime for L4Re

Daniel Müller

Tuesday 12th June, 2012

Technische Universität Dresden
Faculty of Computer Science

Institute of Systems Architecture
Chair of Operating Systems

Supervising professor: Prof. Dr. rer. nat. Hermann Härtig
Supervisors: Dipl.-Inf. Björn Döbel

Dipl.-Inf. Michael Roitzsch

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 12. Juni 2012

Daniel Müller

The Go programming language was developed by Google for the purpose of systems
programming making it potentially suitable for usage in microkernel environments like
L4/Fiasco.OC and L4Re.
This work is meant to investigate whether Go can be used to develop services for a microker-
nel and to examine if there are differences in component performance and development speed in
comparison to traditional development using C/C++. The investigation should focus on whether
and how the concepts of Go channels and Go routines can be used for communication between
tasks/processes. The implementation should be generic, but also incorporate platform specific
details (for instance L4 capabilities and capability mapping).
For the evaluation, an L4 service should be implemented in Go and compared to an existing
implementation.

V

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Document Structure . 2

2 State of the Art 3
2.1 Go . 3

2.1.1 Go Routines . 3
2.1.2 Go Channels . 3
2.1.3 Example . 4
2.1.4 Implementations . 5
2.1.5 Packages . 5

2.1.5.1 Reflect . 5
2.1.5.2 Netchan . 6
2.1.5.3 Gob . 6

2.2 L4 . 7
2.2.1 Kernel Objects . 7
2.2.2 IPC Gates . 7
2.2.3 IPC . 8
2.2.4 Capabilities . 9

2.3 Go on L4 . 10
2.3.1 BID . 10
2.3.2 Building Go Programs . 10
2.3.3 Language Interaction . 11

2.4 Related Work . 12

3 Design & Implementation 15
3.1 Kernel Objects . 15

3.1.1 Go Objects . 15
3.1.2 IPC Gates . 16

3.1.2.1 Command Thread . 17
3.1.2.2 Send . 18
3.1.2.3 Receive . 19
3.1.2.4 Reply . 20
3.1.2.5 SendIpcGate . 21
3.1.2.6 RecvIpcGate . 22
3.1.2.7 Capabilities . 22

3.1.3 IRQs . 23

VII

Contents

3.1.3.1 SendIrq . 24
3.1.3.2 RecvIrq . 24

3.2 L4Go Channels . 25
3.2.1 Requirements . 25
3.2.2 Preconditions . 26
3.2.3 Usage of Netchan . 27
3.2.4 Design . 28

3.2.4.1 The Interface . 29
3.2.4.2 Possible Implementations 29
3.2.4.3 Proxy Channels . 31

3.2.5 Implementation . 32
3.2.5.1 IPC Channels . 32
3.2.5.2 Multiplexing of Channels 34
3.2.5.3 Shared Memory Channels 35

3.2.6 Runtime Library Modifications . 36
3.2.6.1 Go Channel Implementation 37
3.2.6.2 Hooks . 38
3.2.6.3 No Hook Versions . 39

3.3 Keyboard Driver . 40
3.3.1 Driver . 40
3.3.2 Client . 41

3.4 Problems . 42
3.4.1 IPC Cancelation . 42
3.4.2 Initial Memory Allocation . 44

4 Evaluation 45
4.1 Performance . 45

4.1.1 IPC Performance . 45
4.1.2 Channel Performance . 47

4.2 Code Size . 49

5 Conclusion & Outlook 51
5.1 Future Work . 51
5.2 Conclusion . 53

Glossary 55

Bibliography 57

VIII

List of Figures

3.1 A command thread can receive commands from numerous Go routines 18
3.2 Send process of a SendIpcGate . 19
3.3 Receive process of a RecvIpcGate . 20
3.4 Proxy channel approach for L4Go channel implementation 31
3.5 Multiplexing multiple Go Channels on one L4 IPC channel 34
3.6 Each Go Channel has its corresponding L4 IPC channel 34
3.7 An L4Go channel implementation that may suffer from a race condition 36
3.8 Nesting of multiple IPC call operations . 43
4.1 Native L4 IPC and Go IPC ping-pong performance 46
4.2 Go channel and L4Go channel performance 47

List of Tables

3.1 Possible approaches for an L4Go channel implementation 30
3.2 Three hooks added to the libgo runtime library 39
4.1 Lines of code of keyboard driver written in Go 50
4.2 Lines of code of keyboard driver written in C++ 50

List of Code Listings

2.1 A sample Go program . 4
3.1 Client, Go routine 1 . 33
3.2 Client, Go routine 2 . 33
3.3 Server . 33
3.4 A simple Go keyboard client . 41

IX

1 Introduction

1.1 Motivation

Developing drivers and system services for an operating system is a difficult and error-prone
task. This can be attributed to mainly three causes:

• The low-level nature of the language that is used for creating this kind of software.

Although lots of high-level programming languages are publicly available, the important
ones for systems development are C and C++. C and C++ provide the developer with a lot
of freedom in what he can do [Li04], which can be both, a curse or a blessing—depending
on the programmer’s skills and the problem at hand.

• The emergence of multi-processor and multi-core systems.

Developing software that makes use of all of a system’s processing units is a tough job.
This can be accounted to the programming models used, which are hard to grasp for pro-
grammers and do not provide suitable abstractions in order to make use of concurrency
but still allow for the creation of software that is easily understandable. Therefore, many
errors can occur, such as allocation and ownership problems between the various execut-
ing entities, race conditions, deadlocks and livelocks, and other synchronization issues.

• The necessity for a good communication mechanism abstraction.

The points mentioned above affect many types of systems. Microkernels and microkernel
environments, which are of particular interest for this work, pose another difficulty over
monolithic ones: Due to their highly compartmentalized nature they are in increased need
for communication between components, i.e., services and other processes. Establishing
a convenient communication mechanism, which can be utilized easily for various com-
munication tasks, however, is hard and it is difficult to provide an abstraction that suites
all needs.

Go is a high-level language that tries to approach the aspects mentioned above. It is a safe
language in the sense that it provides strict type and memory safety. In addition to that, it takes
care of deallocation of no longer referenced objects by incorporation of a Garbage Collector
and, thus, releases the programmer from the job of explicit memory management. For commu-
nication and concurrency, it provides easy-to-use primitives that allow development of concise
and easily understandable software: Go channels and Go routines, respectively.

In this thesis, I integrate Go into L4Re in order to make it suitable for developing services and
drivers for L4/Fiasco.OC in a more comfortable and safe way than is possible with traditionally
used systems programming languages like C and C++.

1

1 Introduction

Furthermore, I will investigate how certain L4 primitives can be integrated into the language in a
user-friendly fashion, as well as how Go channels can be adapted to be useable for inter-process
communication.

As an aside, it should be noted that not all of the previously mentioned points can be solved
by the choice of the programming language alone. But it is—in addition to the system for which
to develop itself—the major player to tackle these issues. As a system is already predetermined
for my work, I will focus on the language part and leave other factors open for future work.

1.2 Document Structure

This work is structured as follows: Chapter 2 gives an overview about the fundamentals that are
useful to understand this thesis. In there, I introduce the Go programming language, its basic
principles and primitives. Subsequently, I cover the L4 microkernel and its L4 Runtime Envi-
ronment that provides important services and abstractions, as well as the state of the integration
of Go into L4Re in order to clarify which functionality I can rely upon. The last part of the
chapter will compare this work to other work done in this field.

The main chapter, chapter 3, exlains the actual integration into L4Re—describing what was
implemented and how it was designed. I first explain the integration of L4 primitives, so called
kernel objects, into Go and will then describe how the utilization of Go channels for inter-
process communication was achieved. After that, a sample service which makes use of the
adapted Go channels—a keyboard driver—is depicted.

I evaluate my implementation in chapter 4. First, I analyze the speed of my developed Go
IPC gate wrappers and compare it to native L4 IPC performance. The performance of my L4Go
channel implementation will be evaluated as well. Further, I compare the developed Go driver
to a functional equivalent implementation using C++ in terms of lines of code.

Chapter 5 concludes my thesis by providing a short summary of my work and provides an
outlook for future work to be done on various related topics.

2

2 State of the Art

This chapter explains the basics that are necessary to understand this thesis. The first section
covers relevant details of Go and gives a brief introduction into the language in general. Section
two is about L4, describing the environment in which the work is done. The third section covers
my previous work with regard to Go and L4, explaining some of the porting steps necessary
in order to run Go programs on L4. The last part considers related work on communication
constructs, the integration of systems development languages into existing environments, as
well as the other direction, i.e., the wrapping of system specific features to utilize them for the
programming language of interest.

2.1 Go

The Go programming language [Inc09d] was invented in 2009 by a team of three engineers—
Robert Griesemer, Rob Pike, and Ken Thompson—at Google [Wik11]. It is a compiled and
strictly type-safe language that is to be used for systems programming [Inc09c, Inc09d]. It has
built-in support for concurrency and provides primitives for synchronization and communica-
tion. For comfortable and automated memory management, it also contains a Garbage Collector.

2.1.1 Go Routines

Go routines are the means for providing concurrency. They aim to be very lightweight such
that large amounts of them can be created in order to make excessive use of concurrency. This
is achieved by making them userland threads with an initially small and dynamically growing
stack, that are entirely managed by the Go runtime. The runtime library also decides which Go
routines to run and multiplexes them to actual operating system threads.

Go routines are created using the go keyword and can execute arbitrary Go functions. The
executed function can have a return value, however, it is not possible to access this return value
by normal means, i.e., it cannot be assigned to a variable. This would result in a syntactic error
detected by the compiler. In order to pass something from within a Go routine a Go channel can
be used.

2.1.2 Go Channels

Go channels (hereafter often referred to simply as channels) are communication and synchro-
nization primitives provided by Go. They are direct language primitives, i.e., not objects imple-
mented in a library on top of other Go constructs. Channels can be assigned to variables, passed
as arguments to functions and returned from them, as well as be created dynamically at runtime.
This makes them first-class objects in Go [Sco09].

3

2 State of the Art

Go channels are meant to be used for data exchange between different Go routines—data can
be sent and received from a channel. It is important to note, however, that there is no notion of
inter-process communication for Go channels. Every communication is local to the process the
channel is created in.

Go channels also serve as synchronization primitives. They provide storage for a fixed
amount of data items—a value that is specified during creation and cannot be changed after-
wards. The default buffersize is zero, meaning the sender will block until the communication
partner directly receives the value (so there is, in essence, no additional buffering involved). A
channel with a buffersize of two would allow for two items to be put into the channel without
blocking, and block on insertion of the third (provided the receiver did not remove a previously
inserted item).

Channels are parameterized by the type they are able to transport and are strongly typed, i.e.,
a chan int can be used to send and receive integer values—not other ones—and is distinct
from, for instance, a chan string. This way the compiler will detect incompatible type
usage during the compilation phase. Henceforth, when explaining parts of the send and receive
process of a channel, I will frequently refer to the transported objects of the channel’s element
type. For this purpose, I dub them channel items, or simply items for short.

2.1.3 Example

1 package main
2

3 import "fmt"
4

5 func print(c chan int) {
6 for {
7 i := <-c
8 fmt.Println(i)
9 }

10 }
11

12 func main() {
13 c := make(chan int, 0)
14

15 go print(c)
16

17 for i := 0; i < 10; i++ {
18 c <-i
19 }
20 }

Listing 2.1: A sample Go program

Listing 2.1 shows a sample Go program. It prints the numbers 0 to 9 on the screen and serves
for the purpose of illustrating the features described above.

Every Go program (in contrast to a Go package, which contains code but is not directly
compiled into an executable) must reside within the package main (see section 2.1.5 for a short
introduction on Go packages). Its main() function is called on program start-up. After the

4

2.1 Go

package declaration, other packages that are needed can be imported. In this case this is the
fmt package that can be used for formated input and output [Inc09e].

The first executed statement in the shown program is the creation of a Go channel, c, that can
be used to transfer integer values (line 13). It has no buffer space, denoted by the value 0 passed
to the make() function. The next line starts a new Go routine using the go keyword. This Go
routine will execute the print() function that will loop to receive a value from the channel
which was passed in and assign it to the variable i. This newly started Go routine will block for
receiving a value from the channel until the main() function reaches line 18 in parallel, where
such a value is inserted into c. The fmt package is then used to print the number on the screen
(line 8).

This sample also illustrates the syntax used for working with channels: sending a value
is achieved using an arrow directed from the value to send to the channel to send it through
(line 18). Receiving a value works the other way around—with an arrow that is directed from
the channel to receive from, to the variable to assign this value to (line 7). Henceforth, I will
refer to this special syntax as arrow syntax.

2.1.4 Implementations

At the time of this writing there exist two compilers (including runtime libraries) for Go.
Gc is the native compiler developed by the team at Google, and can be seen as reference

implementation. It is actually made up of three compilers—5g, 6g, and 8g—for the different
supported architectures (ARM, AMD64, and x86, respectively). This whole toolchain is derived
from the Plan9 compiler suite [Tho] used for the Plan9 operating system [Lab].

Gccgo is a front-end for the GNU Compiler Collection (GCC)1 [Tea]. As it is not developed
and maintained by the team at Google, new language features generally take a bit longer to be
implemented for it and the runtime library may not have the latest updates included.

2.1.5 Packages

For modularization, Go provides packages. Packages can be used to form logical units of code
that belong together. These units can be imported from within a program and exported func-
tionality can then be used.2

The Go standard library includes several packages in its standard distribution. Three of them
are of particular interest for this work and will be discussed in more detail here.

2.1.5.1 Reflect

The reflect package [Inc09j] provides the means for Go programs to make use of reflection.
Reflection is used for inspecting types and objects at runtime, modifying the latter, executing
actions on them, or creating new ones.

In the context of this work, reflection is mainly used because Go does not provide the means
for creating compile-time generic algorithms, i.e., ones that work on objects of various types—
but still provide type safety. This means that in order to achieve compile-time genericity, one

1 Gccgo is part of the official GCC project since version 4.6.
2 Go types and functions will be exported, i.e., be visible and accessible from outside a package, if their name

begins with an uppercase letter. If it is lowercase, it will be private to the package.

5

2 State of the Art

can pass objects of different types to a function or method only by using a common super-type
and inferring the actual type at runtime—using reflection or type casts. This contrasts to, for
instance, Java or C++ which offer generics or templates, respectively,

2.1.5.2 Netchan

The Go standard library also includes a package called netchan [Inc09h], which implements
type-safe channels over a network interface. By using the loopback device, direct communica-
tion between processes is also possible.

In the netchan package, channels can be exported by specifying a unique name. It is then
possible to import the channel by supplying the corresponding name. After that, values written
to the channel on the one side can be read from it on the other side, just as in the process-local
case.

The package is implemented using a proxy approach, where data put into the channel is
transparently read from it in the background, transfered over the network to the remote process
on which a listener waits for incoming data and puts it into the local channel where it can be
received by the user program using the ordinary channel syntax. This way it is possible to
transparently use netchan channels in places where a “normal” channel is expected.

The netchan package is implemented independent from the underlying platform and
compiler—it does not use runtime internal datastructures or functions for providing its func-
tionality, i.e., the code is portable between gccgo and gc. All functionality it relies on is already
provided in the form of other Go packages.

2.1.5.3 Gob

One package that netchan depends on is gob [Inc09f]. It offers functionality for encoding Go
objects into binary streams of data and decoding them back into object form. The encoder adds
meta-information about the type and the structure of the object to be sent, for instance, the order
and types of the attributes of a struct type.3 The decoder checks this information. This way
it is possible to ensure type safety, although not statically at compile time, but dynamically at
runtime. However, there is no error checking performed on the actual data, i.e., no checksums
are calculated and checked, and transmission errors like bit-flips would remain undetected. In
the case of netchan, this is no problem, because it uses the Transmission Control Protocol (TCP)
which has built-in error detection.

The encoder and decoder can handle nearly all Go types, including recursive ones such as
ordinary linked lists. Types that contain cyclic references, however, e.g., circularly linked list,
cannot be encoded in a generic fashion. One needs to provide special methods for encoding and
decoding objects of the such types.

3 As in the C programming language, the struct keyword is used to created structured types, i.e., types that
embed a certain amount of objects of various types into one object of the newly defined type.

6

2.2 L4

2.2 L4

As this work includes the execution of Go programs on L4Re, this section covers the relevant
details of the microkernel environment and explains the terminology briefly.

L4/Fiasco.OC (henceforth referred to as L4) is the name of a microkernel developed at Tech-
nische Universität Dresden. It is a member of the L4 microkernel family, because it implements
an Application Binary Interface (ABI) that has been derived from [Lie96]. Microkernels have
the characteristic of having only security and performance-critical parts implemented in the ker-
nel and hence running in privileged mode—everything else is running in userland without direct
access to hardware or privileged instructions. In user mode, the functionality is typically pro-
vided in the form of a service—a task4 known to other tasks which they can communicate with
in order to make use of its functionality. This makes the actual kernel part slim in comparison to
other kernel types like monolithic ones, which renders microkernels more suitable for security
critical applications, as less code in general also means less code to be possibly exploitable.

L4 comes with several libraries offering abstractions and providing services in userland, the
L4 Runtime Environment (L4Re) [Gro10]. Examples include l4re vfs for virtual filesystem sup-
port, l4re c wrapping L4Re functionality in a C interface for easier interoperability with other
programming languages, as well as adapted versions of µclibc and libstdc++—implementations
of the standard libraries for C and C++, respectively.

2.2.1 Kernel Objects

The kernel provides so called kernel objects. Kernel objects are the basic building blocks for
creating programs and libraries on L4. These objects are protected by the kernel from unau-
thorized access or modification, which means that no userspace task can tamper with them in a
way the kernel prohibits.

In order to utilize these objects, the user issues a system call—a special operation transfering
control from userspace into kernelspace. The action which the kernel then performs depends on
the type of object the system call is issued on and the parameters supplied.

2.2.2 IPC Gates

One of these kernel objects is an IPC gate. IPC gates provide the means for communication
with other tasks—sending and receiving of messages and data. They represent one endpoint of
such a messaging action. In order for an Inter Process Communication (IPC) to take place, the
IPC gate has to be bound to a thread, which can then be used for receiving incoming calls. An
IPC send action on the other hand, needs an IPC gate as its target object—the one that will be
called, i.e., that is the destination of the send process.

Because it is necessary to have an IPC gate bound to a thread in order to be able to execute
a receive operation, but every IPC gate can only be bound to one thread in the system, L4 IPC
cannot be called truly bidirectional—one can always do a send, if a valid destination, i.e., an
IPC gate, is known, but can only receive on an IPC gate that is bound to a thread within that
task.

4 Task is the L4 term of what is in general known as a process—an entity more or less isolated from other tasks that
has its own address and object space.

7

2 State of the Art

In order to have bidirectional communication, two IPC gates are necessary—one for receiving
in the first thread involved in the communication, and another for receiving in the second.

2.2.3 IPC

L4 distinguishes between several IPC operations that can be classified as send and receive
actions, respectively. They are special flavors of the normal IPC system call that can be issued
on IPC gates. L4 IPC is synchronous. In order for such a communication to take place, both
partners—the sender and the receiver—have to rendezvous, i.e., both be ready for the corre-
sponding action to take place. In order to signal that one part is ready, it does the appropriate
system call which will block the invoker until the other part is ready as well.

In addition to that, it is possible to specifiy a timeout, after whose expiration (without a
successful rendezvous) the whole IPC is canceled. This failure is signaled by a special return
value.

The following IPC operations are available:

Call: A call can be used to send data to a given receiver and wait for a reply. The reply may
contain data, but might also be just the information that the receiver has finished handling
the request. Until the reply arrives, the invoker of the call is blocked, i.e., is trapped in the
kernel and will not execute any code.

Send: In contrast to a call, a send cannot be replied—it only sends data to the specified receiver
and cannot be used to return data. Hence, it does not provide a second synchronization
point telling when the receiver has finished processing the data.

Wait: A wait is a form of open receive, i.e., one where the receiver (the one invoking the wait)
does not specify from whom to receive data. The communication can be established with
anyone sending data.

Receive: The receive on the other hand is given a certain sender with whom to communicate.
Any sender different from the one specified will be ignored. This is also often referred to
as a closed receive or closed wait.

Reply: The reply is the answer to a call on the receiver side. As mentioned before, the reply
can contain additional data, e.g., the result of a computation.
A reply is a somewhat special case of IPC. It is possible only once and only in response
to an incoming call.

The actual data transfer is done using the Userlevel Thread Control Block (UTCB). Every
L4 thread contains a so called Thread Control Block, which is split into a kernel part, where
kernel sensitive data resides, and a user part, that can freely be touched by the task the thread
belongs to. The UTCB, i.e., the part in userspace, contains a fixed size memory area, called the
message registers, that can be written to and whose contents (or part of it) will be copied to the
corresponding message registers of the receiver of the send. The latter can then read the data.

All L4 IPC system calls work using a special message tag object—a bitstring specifying,
among others, the amount of words, i.e., message registers, that are sent or received, respec-
tively, as well as a label field to distinguish, for example, different operations on the receiver.

8

2.2 L4

2.2.4 Capabilities

As mentioned before, kernel objects are protected from unauthorized modification from
userspace. Nevertheless, accessing them must be possible. This access can be achieved using
a capability—a reference in userspace to the object in kernelspace—that can be passed to the
corresponding system call. Capabilities are a protection mechanism that is well established.
There are many flavors of capability systems. In the case of L4, it is a so called object capability
system [MYS03].

In L4, a capability is a simple index into a capability table. This table, often referred to as the
object space—in addition to the address space—is local to the corresponding task and contains
all of the capabilities it possesses. As the kernel knows this table, it can establish the mapping
from capability index to the corresponding kernel object it represents.

After creation, a task normally owns several capabilities provided by the creator and the run-
time environment. These capabilities allow for example for allocating memory, communicating
with other tasks and creating new kernel objects, e.g., new threads or IPC gates (see section 2.2.2
on page 7 for a discussion of IPC gates).

IPC can also be used to map capabilities to another task. Mapping in this sense refers to the
process of making the kernel object referenced by this capability available to the other task. This
is for example necessary in order to make a newly created IPC gate known to another task, with
which further communication is intended. This type of IPC is not substantially different from
“ordinary” data IPC as the basic mechanisms are the same—the sender specifies a capability to
map and the receiver can receive it. However, the sender and receiver must prepare for sending
and receiving of the capability, respectively. The latter must allocate a new (empty) capability
slot in its local capability table and tell the kernel to place the newly received capability within
that slot. In contrast to data IPC, where the message registers are used, capability IPC uses so
called buffer registers—another special region within the UTCB. The number of capabilities to
map, i.e., items in the buffer registers, is also encoded into the message tag object mentioned
before.

9

2 State of the Art

2.3 Go on L4

To run Go programs on L4, several adjustments to Go and to L4 were needed. During my work
as a student assistant, I performed the necessary changes in order to run Go programs—starting
with a simple hello world program and, based on that, implementing more complex programs.
This section will summarize this work.

2.3.1 BID

L4 uses its own build system, the Building Infrastructure for DROPS (BID) [LA10], for the
creation of executable programs and libraries. It provides the necessary means for dependency
checking, rebuilding only components which depend on changed data, and linking with required
libraries, as well as installing libraries and programs in the appropriate places, so that they can
be referenced later.

The tool support focuses on three languages: Assembly, C, and C++. The default programs
to be used for assembling, compiling, and linking are GNU Assembler (GAS), GCC, and GNU
Linker (LD), respectively—the defaults on most Linux based systems. Although the system is
written in a configurable way, the integration of the default tools is tight, making an exchange
difficult. This is caused mostly by options specific to these programs being passed as arguments
and not being changeable easily. Another problem is that parts of the L4 source code rely
on specific GCC extensions and special LD linker scripts are used for laying out the resulting
binaries.

Due to this tight coupling of GCC with BID, the first decision with regard to Go was to use
the gccgo implementation, for it is mostly compatible with the GCC—easing the addition of
support for Go within BID.

2.3.2 Building Go Programs

The first step of the porting was to build the libgo runtime library for L4. The libgo belongs
to the gccgo project and is integrated into its build process. Both use the GNU Build System.
The GNU Build System differs from BID in many ways and compiling all the source code files
using BID would be a major job, as there are a lot of pre-processing steps involved, that cannot
be handled easily and in a generic manner. This would also mean a lot of maintanance effort
when backporting new versions of the libgo library. Due to these points, the decision was made
to reuse the existing build infrastructure of libgo instead of replacing it with an L4 specific one.

When trying to build libgo it soon became obvious that a part of it, the Garbage Collector
(GC), was not compatible with L4 in its current form—it uses POSIX signals for interrupting
the running Go routines and making them execute code to identify no longer needed objects for
later cleanup. L4, however, has only very limited support for signals by using the µclibc signal
backend.5 As using this backend would also decrease the number of supported L4 applications,
a native implementation was wanted. For this, the part of transfering control to another routine

5 As a remark: Due to its nature of being a microkernel environment, L4Re has split the monolithic libc implemen-
tation into a main part and various backends in the form of libraries that can be linked to applications individually,
in order to get support for a variety of tasks, including support for signals, files, and sockets.

10

2.3 Go on L4

and back as well as the necessary synchronization had to be implemented using L4 specific
thread manipulation functions and IPC primitives.

A major problem was, that signals already included the necessary work for saving the state
of a thread and restoring it later—this had to be written by hand. One pitfall thereby was the
UTCB. The UTCB is thread specific state, because it contains modifyable message registers
and is also used for storing the return value of an IPC operation. As a consequence, it needs to
be saved before interruption and restored later, which is quite costly, due to its size.

All these L4 specific changes made to the libgo are maintained in a separate version for L4Re
by the operating system group at TUD.

The next step in order to build programs and packages from Go sources, was to add support
for .go files to BID. This involved the modification of one Makefile directly used by BID to
add rules to create object files from Go sources and link them into a package or an executable,
respectively. The rest of the necessary definitions, e.g., the commands used for compiling and
linking, could be written outside BID and are only referenced from the target Makefiles, defining
the source files and targets to create.

2.3.3 Language Interaction

In order to write Go programs that access L4 specific functionality, it is necessary to call code
written for L4 from within Go. Most of the L4 parts are written in C or C++. C is often
considered the least common denominator for interaction between languages: many of them
provide the means for accessing C code. Examples include Java with its Java Native Inter-
face (JNI) [Lia99], Perl with Inline::C [Ing02], and C# with the NAG C library [Gro]. C++—
although closely related to C—is problematic due to name mangling of functions, which is not
standardized and may differ among compilers and even between different versions of the same
compiler. Name mangling refers to the process of encoding the signature of a function, i.e., its
parameters, return type, and other things, into the symbol provided in the binary. This is nec-
essary to allow function overloading—having two functions with the same name but accepting
different parameters.

Gccgo allows for accessing C functions from within Go by declaring a Go function with
the corresponding signature, i.e., one where the parameters have equal sizes, and annotating it
with a special “import” directive: asm ("function") to state that it is defined elsewhere.
Gc takes another approach and uses special cgo files that are a mixture of C and Go code and
can be automatically translated into pure Go code [Ger11, Inc09a]. In both cases the opposite
direction—calling Go code from within C—is not supported.

11

2 State of the Art

2.4 Related Work

A comparable work of porting a programming language to L4 was written by Aaron
Pohle [Poh08]. In his undergraduate thesis, he developed a shell for the L4 Environment
(L4Env) [Gro03, Kau06]. This work included the porting of the Python scripting language
to the—now outdated—L4Env, which was later replaced by L4Re. Python is used as the glue
language within the shell, that can be utilized, for instance, to chain commands. Pohle extended
the language by a library that allows for comfortable communication between tasks from within
the shell, and doing library and system calls. Subsequently, he evaluated the quality and speed
of his Python port.

In contrast to my work, Pohle’s focus was not primarily on porting a new language to L4,
but to create a shell usable for administration purposes—the decision for choosing Python was
made as part of his thesis and not determined beforehand. Also, his work did not involve
the enhancement of language features for the underlying system. His library concentrated on
wrapping existing functionality to make it easily accessible.

Another language, comparable to Go in that it contains strongly typed communication chan-
nels and lightweight threads, is Concurrent ML (CML) [Rep91], an extension to Standard
ML [MTM97].

In CML channels are synchronous—the sender will block until the receiver has actually
received the value sent. Built on top of channels are first class operations called event values.
Event values help in designing more complex communication structures based on channels, e.g.,
messages containing an acknowledgment, signaling the cancelation of a request, or messages
used for synchronization or the choice between multiple communications.

New threads can be started using the spawn keyword. However, there is no real concurrency
on multi-processor or multi-core systems in CML—everything is executed by a single thread.
An extension to this language, Parallel CML [RRX09], fixes this drawback by adding true
support for multithreading.

The work on CML involved the design of a whole new language which focuses on provid-
ing powerful yet easy to use communication primitives. This differs from my work, where a
language is already given and an existing communication mechanism in it is to be enhanced to
make it more suitable for development on the underlying system. Whereas for CML the designer
had all freedom for the implementation, I had to keep several requirements and preconditions in
mind, limiting the size of the design space for possible solutions significantly.

Work in the context of writing low-level software in a high-level language was done by Mad-
havapeddy et al., as well as Wirth and Gutknecht.

Madhavapeddy’s work [MHD+07] examines the usage of a domain-specific language, the
Meta Packet Language (MPL), for the implementation of various internet protocols, with the
main goal being the creation of software that has less errors compared to an implementation
in an unsafe language—without a great performance penalty. It included implementations for
low-level protocols such as Ethernet, IPv4, ICMP, and TCP, as well as for high-level ones
like SSH and DNS. In addition to that, entire servers for the latter two protocols were created
using their Melange framework, which was developed in the high-level language Objective

12

2.4 Related Work

CAML (OCaml)—another ML based language—and compared in terms of performance and
correctness to existing ones: OpenSSH and BIND, respectively.

The main difference to my work is the motivation—whereas Madhavapeddy focuses on min-
imizing errors in a complete software stack and even verifies this formally, my goal was to
create something that is easy to use and yet does not pose unnecessary restrictions with respect
to other implementations. Additionally, MPL is specifically designed for the implementation of
the protocols and cannot be used for many other tasks, while Go is a general purpose language
usable in many scenarios. Parallels to my work can be found in the creation of sample programs
and services that are used for the final evaluation.

Wirth and Gutknecht from ETH Zurich used the high-level programming language
Oberon [RW92, Wir88] to implement the Oberon operating system [Rei91, WG92]. The pro-
gramming language is largely influenced by Pascal and Modula-2, incorporating strict type-
safety, object-orientation, and mechanisms for good structuring. It is very simple with respect
to its features and is easily implementable for compiler writers. One of the goals of the work
was, again, the reduction of errors in the operating system by using a safe language and detect-
ing errors at the earliest time possible.

Their work covers the creation of a whole new operating system as well as the design of a
language for this task. I, on the other hand, did neither design a language nor write an entire
operating system from scratch, but rather adapted a language for use on an existing operating
system. However, as Oberon not only refers to the kernel, programs and libraries were also
developed—which is one of the goals of my thesis as well.

Another work with regard to integrating system specific features into the programming language
of interest for comfortable usage was done by Warg and Lackorzynski [WL11].

The paper covers the integration of capabilities of the L4/Fiasco.OC microkernel into the
C++ programming language. Their approach uses operator overloading and template metapro-
gramming techniques to allow for intuitive utilization of capabilities in a way comparable to
smart pointers [Sut02, Ale01]. The focus lies on introducing as little overhead as possible, with
no additional level of indirection, no overhead with respect to pointers (as another way of ref-
erencing objects in the task-local case), and no additional dynamic memory allocations. They
also introduced special versions of static and dynamic casts, taking advantage of the C++ type
system.

Contrary to my work, their goal was the creation of a suitable representation of an L4 sys-
tem functionality in a language, whereas for my thesis a language feature was given and its
implementation had to be adjusted to utilize the underlying feature in a convenient way. My
implementation is also not concentrated primarily on low overhead and high performance, but
rather on keeping the changes to the runtime library minimal, in order to minimize the mainte-
nance effort and increase the chance for integration into the main development line.

13

3 Design & Implementation

This chapter explains design and implementation of inter-process Go channels, presents a driver
written in Go, and discusses important design decisions made during the development.

First, the wrapping of important kernel objects is described in section 3.1. Using these objects
the implementation of L4Go channels (section 3.2) and an L4 sample service (section 3.3)—
a keyboard driver—are covered. Finally, section 3.4 elaborates some problems that occured
during the implementation.

3.1 Kernel Objects

In order to be able to write system software for L4 in Go it is necessary to provide access to
several primitives provided by the kernel, i.e., kernel objects. These kernel objects include:

• Tasks as a representation of an address space and an object space

• Threads as an abstraction for serial execution of code

• Factories for providing the means for creating new kernel objects

• Schedulers for the assignment of CPUs to threads

• IPC gates for establishing a communication channel between two tasks

• IRQs to access hardware interrupts or, in the case of virtual interrupts, to provide an
asynchronous signalling mechanism

Out of this set of kernel objects, mainly two are relevant for this work: IPC gates are used
to establish a communication channel, which can be used for implementing inter-process Go
channels. IRQs are essential for writing drivers for hardware. The keyboard driver that is to be
developed requires support for IRQs from within Go in order to get notified about key events.
This section explains the integration of these two kernel objects into Go.

3.1.1 Go Objects

The first step in the process of designing a wrapper for the two kernel objects, IPC gates and
IRQs, was to choose the type of wrapping. Two approaches come to mind:

• Wrap the functional interface as provided by L4Re.

This approach directly reuses the interface as provided by L4Re and makes it accessible
to Go programs. For this to work, the functional C interface providing access to the kernel
object would need to be wrapped.

15

3 Design & Implementation

The advantage of this approach is based on its supposedly simple implementation,
because there is no need to derive a new interface design as it reuses the one already
provided. For people familiar with the existing interface it is both easily comprehensible
and straightforward to work with. For other people, however, to whom the development
on L4 is unknown, this interface could be potentially hard to grasp and of a too low level
of abstraction.

• Provide a new Go type representing the kernel object.

The second point covers the treatment of kernel objects as Go objects of a certain type.
This basically extends the first approach because it uses the L4Re interface internally, but
provides a convenient wrapper in the form of a Go object around it.
In this case, the interface design can be more abstract and, thus, potentially be understood
more easily by developers who are unfamiliar with L4 internals.

When pondering between these two points, it became clear that the first approach would
not be easy to implement. This is caused by the fact that, as mentioned in section 2.2.2 on
page 7, IPC gates and IRQs are always bound to an L4 thread. However, because Go code is
run from within a Go routine, which can be mapped to arbitrary L4 threads and as this mapping
can potentially change over time, the Go developer would somehow need to manage a separate
L4 thread that is bound to the corresponding kernel object (see section 3.1.2.1 for a detailed
explanation of this problem). This additional work for thread creation and management should
be hidden from the user of the code. With this additional constraint, the decision was made to
implement a wrapper in the style as described by point two.

The next two subsections discuss the design and implementation of the wrapper objects for
IPC gates and IRQs.

3.1.2 IPC Gates

IPC gates are represented in Go by two differnt classes: RecvIpcGate and SendIpcGate. Objects
of type RecvIpcGate correspond to an IPC gate that is bound to a thread within the current task
and can be used for receive actions. SendIpcGates on the other hand are gates that are not bound
to any thread for receiving and hence can only be used for send IPC operations.

This distinction is made because an IPC gate can only be bound to one thread in a system.
This thread is then able to receive data on that gate, i.e., do an open wait or a closed wait. This
difference in functionality is directly reflected in the interface of the two types.

In the native L4 implementation, an IPC gate always has a label, i.e., a number, assigned to
it, under which it is known to the thread it is attached to. The label can be assigned freely by the
user and is returned when doing an open wait operation. This way, it is possible to distinguish
the receipt of data between several IPC gates that are bound to the same thread.

In contrast, on the level of Go there is no need for the user to decide on such a label and assign
it to an IPC gate when using the two types mentioned above. This is due to the fact that each
thread is associated with one IPC gate. The corresponding Go object contains a reference to that
thread and always communicates with it, there can be no many to many mappings of gates to

16

3.1 Kernel Objects

threads, and so there is no need for distinguishing between gates from within one thread—which
would be what the label is for.1

3.1.2.1 Command Thread

As briefly explained when dicussing the kind of wrapper to use (section 3.1.1), a special thread
is needed in order to use IPC gates from Go code. This has two reasons:

• Receiving data from an IPC gate can only be done from within the thread that is bound
to the gate. If one would do a receive operation from within a Go routine, however, it
depends on the mapping of the Go routine to the actual L4 thread whether this operation
can actually succeed. If the Go routine is run by the thread that is bound to the IPC gate,
everything is fine. If, on the other hand, the Go routine executes on a different thread,
the receive can never be handled—and the Go routine will be blocked for an indefinite
amount of time.

• In order to send or receive data using IPC the UTCB is used. The UTCB is bound to an L4
thread. If the user wants to write data into the UTCB from within Go and the underlying
L4 thread executing the Go routine changes, the UTCB will change as well. This can lead
to writing data to the wrong UTCB or using the wrong one for the send i.e., not the one
where the data was written to. This argumentation applies to the process of receiving data
as well.

To solve these two issues, a special thread, the command thread, is introduced. A command
thread is an L4 thread that is directly created using the L4 Application Programming Interface
(API) for thread creation. This way the Go runtime does not know of its existence and does
not manage it like a Go routine. This thread is the one that is bound to the actual IPC gate. It
is prepared for receiving commands from Go routines and executing them. Commands in this
sense represent the actual IPC operation to execute, e.g., a call or an open wait.

It is important to note that the command thread can receive commands from any Go routine
and is not bound to a specific one (see figure 3.1). However, it can handle only one command
at a time. Until it is finished all other senders will block. This behavior makes these Go objects
easy to work with, even if they are shared between multiple Go routines, because no additional
synchronization is needed. Only the UTCB, used for reading and writing data, complicates
things and needs additional means of synchronization if the IPC gate object is shared between
multiple Go routines—otherwise read and write conflicts might occur.

An alternative approach to coping with these two problems would be to pin the mapping of
Go routines to L4 threads, at least for the time of preparing and executing an IPC operation.
This would allow this operation to always be executed from the Go routine that is run on the
thread which is bound to the IPC gate—a necessary precondition for the action to succeed.

However, this change would require the Go runtime library, which is responsible for mapping
Go routines to operating system threads, to be adapted to support this fixing of Go routines to

1 Internally, i.e., on the level of C++, the IPC gate is bound to the thread using a specific label, however, it can be
the same for every gate because there is no need to distinguish between various gates if there is only one gate per
thread.

17

3 Design & Implementation

Go routine 3

Go routine 2

Go routine 1

Command Thread

Figure 3.1: A command thread can receive commands from numerous Go routines

L4 threads. As the modifications to this library should be kept as few as possible, this approach
is rejected.

3.1.2.2 Send

Using a command thread as described before, it is possible to implement the sending of data
from within Go code. A detailed illustration of the sending process for communication of a
client task with a server task is shown in figure 3.2 on the facing page.

The first step for the Go code is to write the data that is to be transfered into the UTCB.
This can happen in a specially encoded form, having meta information attached to the data, e.g.,
for allowing error detection or passing type information, or simply as a bytewise copy of the
memory region of interest. The behavior is entirely up to the Go code, the only constraint is that
the receiver must know the format in order to decode it.

After that, a special label is created. It encodes the amount of message words to transfer,
as well as the IPC operation to exercise, i.e., send or call. This label is then used for the IPC
call to the command thread. The actual call does not transfer any message registers, because
the data written to the UTCB by the Go routine was written directly into the UTCB of the
command thread and any transfered words would overwrite this data. This is also the reason for
encoding this information within the label in the first place and not using the message registers
for transportation.

The command thread waits for an incoming IPC operation using an open wait. After that,
it decodes the label that was transfered from the calling Go routine. Depending on the desired
IPC operation (the “command” in figure 3.2) the actual IPC to the receiving task is performed,
transfering the amount of message registers as encoded within the label. After it returns, the
thread replies to the caller in order to unblock it. The behavior of synchronous IPC is preserved,
i.e., a call blocks until the actual receiver replied. This is achieved, because the reply to the
call done by the Go routine for invoking the command thread takes place after the actual IPC
operation finished.

Due to the mechanism explained above it is possible to send data to any partner that can
receive an IPC—there is no Go specific protocol or metadata involved. This also means that
communication with non-Go tasks is possible—a requirement for, for instance, transparently
replacing a service written in an unsafe language like C++ by one written in Go.

18

3.1 Kernel Objects

Client

L4Go
Go routine

write(utcb, data)

encode(command,w)

ipc call(thread)

L4C
L4 command thread

ipc wait()

decode(&command,&w)

case command of {
CALL: ipc call(gate, w)

SEND: ipc send(gate, w)

}

ipc reply()

Server

L4C
L4 gate thread

// handle normal IPC

// i.e. ipc wait

// or ipc recv

// perhaps do ipc reply

Figure 3.2: Send process of a SendIpcGate

3.1.2.3 Receive

The receipt of data from another task poses another problem over the send case, that will be
tackled here.

When receiving data using the command thread, it is possible that an actual data IPC from
some other task is mistakenly interpreted as a command to the thread or vice versa. This is due
to the fact that the receipt of a command uses an open wait operation—because it cannot know
the source of the command IPC. The actual IPC operation to execute, however, is some sort of
receive as well (it does not matter right now whether it is an open or closed one). It now depends
on the timing of the senders, which of the two communications is treated as the command and
the data IPC, respectively—which is essentially a race condition.

In order to solve this issue, it would be necessary to make the first receive—the one for
receiving a command—a closed receive, i.e., an operation which can only be served by a known
sender. In that case it could not accidently receive the data IPC, because this IPC would come
from a different source. Now, even if the operation to be executed by the command thread
is an open wait (for a closed wait the same argumentation as above applies), it still could not
get mixed up, as there can be no waiting for a new command in parallel, because everything
happens within one thread, where execution is strictly serial.

To achieve this behavior, an additional thread is introduced: the forward thread. Just like the
command thread, it is created as a native L4 thread. The forward thread is used as the fixed
communication partner for the command thread—the latter can now receive commands using a
closed receive that can only be served by the forward thread. Data and command communica-
tions can no longer be mixed up.

Using this forward thread and a command thread the RecvIpcGate type is implemented.
Objects of this type can be used to receive data. Figure 3.3 on the next page illustrates this
process.

The first step here is to encode the desired command to issue in order to send it to the com-
mand thread. As in the send case this involves the creation of a special label. After that, the
forward thread is called. It decodes the label to look up the desired IPC operation. In case of
an open or closed wait, a call to the command thread is performed. In case of a reply a normal
send will be executed. This difference is due to the blocking properties of these IPC operations.
A wait, no matter if it is open or closed, blocks until something is received. A reply on the

19

3 Design & Implementation

Client

L4Go
Go routine

encode(command,w)

ipc call(thread)

read(utcb, data)

L4C
L4 forward thread

ipc wait()

decode(&command,&w)

case command of {
WAIT: ipc call(thread)

RECV: ipc call(thread)

REPLY: ipc send(thread)

}

ipc reply()

L4 command thread

ipc recv()

decode(&command,&w)

case command of {
WAIT: ipc wait()

RECV: ipc recv()

REPLY: ipc reply(w)

}

ipc reply()

Server

L4C
L4 gate thread

// ordinary IPC

// i.e. ipc call

// or ipc send

Figure 3.3: Receive process of a RecvIpcGate

other hand acts just like a send—it returns immediately. The command thread will receive the
command encoded in the label. The difference to the send case is that the wait operation is
closed, meaning it knows the forward thread and waits only for commands from exactly this
thread. After decoding the command to execute, the corresponding operation can be invoked.
As in the send case the reply signals the forward thread to unblock, which in turn replies to the
caller—unblocking it as well.2

The Go code can now read the received data from the UTCB. In this case it will know the
UTCB of the thread that did the actual receive—the command thread. The amount of received
words is also passed back to the caller. It is, again, encoded within the label of the replies. This
is not shown here for the sake of simplicity.

3.1.2.4 Reply

The implementation of the reply action deserves a more detailed look, although it is briefly
covered implicitly above.

In order to allow for replying to an IPC call operation, the L4/Fiasco.OC kernel creates a
reply capability whenever a call is received. This reply capability can be used at most once
and only in order to send something back to the caller. After that usage it will be invalidated.
It is not possible to preserve multiple reply capabilities, e.g., for answering multiple incoming
calls—only the one from the last call will be valid. This limitation of having only one reply
capability applies only in the context of one thread, i.e., each thread in the system can have
its own reply capability—with respect to these capabilities these threads are isolated from each
other.

This has implications for the implementation of the command thread for receiving actions as
shown in figure 3.3. In order for an incoming reply command to be successfully executed, the
reply capability must still be valid, which implies that there must have been no reply issued after
the incoming call of interest but before the actual reply command.

2 The process as shown here is simplified to make it easier understandable. If the command thread executed a reply
operation it will not reply itself to the forward thread, because the latter did only a send operation for issuing the
command.

20

3.1 Kernel Objects

In order to achieve this, the command thread does not use the reply capability to answer
calls—it does a normal send IPC operation instead. For this to work two requirements must be
met:

• The caller must be known to the command thread.

This condition is fulfilled trivially, as it must be known in order to do a closed wait.
This was the requirement for introducing the forward thread in the first place (see sec-
tion 3.1.2.3).

• The caller must be able to receive an incoming IPC operation.

In the inter-process case this is only fulfilled if an IPC gate is available. However, the
command thread and the forward thread are both within the same task. And communi-
cation between threads within a task does not require a separate IPC gate—a thread can
receive data from another thread within the same task simply by doing the corresponding
IPC system call, i.e., a wait or a receive.

As both requirements are satisfied, it is possible to not use the reply capability to answer a
call, but simply do an ordinary send operation instead. This allows the original reply capability
to the remote IPC partner to be left untouched until the actual reply command is issued by the
user.

3.1.2.5 SendIpcGate

With the functionality for sending data as described in the previous section, I am able to imple-
ment the SendIpcGate type.

The first step in the design of this type is to decide on a way to put the data to transfer into
the UTCB and read it from there.3 The Go standard library defines interfaces for writing data to
and reading data from various sources—io.Writer and io.Reader [Inc09g], respectively.
Types implementing these interfaces are used in various Go packages, e.g., fmt [Inc09e] for for-
mated input and output, zlib [Inc09l] and zip [Inc09k] for on the fly compression and archiving
of data, respectively, and opengpg [Inc09i] for encryption using GNU Privacy Guard (GPG).

By implementing the io.Writer and io.Reader interfaces, i.e., adding Write() and
Read() methods with the corresponding signature, SendIpcGate objects can be used every-
where where an object implementing one of these interfaces is expected. This allows for a
seamless integration of IPC gates into existing Go code.

After that first step, the actual IPC methods were added: Send() and Call(). These do
not accept any parameters. They know implicitly about the UTCB where the data is written to,
because they know the command thread to which the UTCB belongs. They also have knowledge
about the number of message registers that contain data, as the Write() method records the
amount of items written. With this knowledge, these IPC methods can invoke the corresponding
IPC operation on the IPC gate represented by this object.

To summarize, the SendIpcGate interface contains four methods: Write(), Read(),
Send(), and Call(), as well as a constructor function, doing the necessary initialization

3 The possibility for reading data from the UTCB is needed for the SendIpcGate, because the reply to a call can be
used to send data—which would be extracted by reading it.

21

3 Design & Implementation

work, like the creation of a command thread.4 The usage involves two or three steps, depend-
ing on the IPC operation: the writing of data into the UTCB, the invocation of the desired IPC
method, and, in the case of a call with a reply sending data, the reading of the answer.

3.1.2.6 RecvIpcGate

For receiving an IPC using an IPC gate, the RecvIpcGate type was created. In addition to open
and closed wait operations it must also have support for replying to an incoming call.

As for the SendIpcGate type, support for both, the io.Writer and the io.Reader inter-
faces has to be added. Reading must be supported for the obvious reason of reading data that
was received. Support for writing data to the UTCB is necessary in order to be able to send
back data in the reply to a call.

The interface of the RecvIpcGate type comprises five methods: Write() and Read() as
before, as well as Wait() for doing an open wait, Recv() for a closed wait, and Reply()
for replying to a received call. As for the SendIpcGate, an additional construction method is
responsible for creating the previously explained forward and command thread.

3.1.2.7 Capabilities

As explained in section 2.2.3 on page 8 that introduced L4 IPC, the mapping of capabilities
is performed using IPC as well. The basic principles are the same as for “ordinary” data IPC,
escpecially the need for an IPC gate for receiving a capability mapping is unchanged. Due to
the fact that mapping capabilities between tasks is an essential functionality for systems devel-
opment on L4, support for this feature has to be included in the RecvIpcGate and SendIpcGate
types as well.

The mapping of a capability does not differ much from the sending of data—one has to
specify the capability, put it into a special part of the UTCB (the buffer registers—in contrast to
“ordinary” data that uses the message registers), and tell the kernel the number of capabilities
to transfer. After invoking the corresponding IPC operation, the IPC partner can receive the
mapping.

The receiving of the mapping includes a little additional setup. The receiver has to allocate
a new capability slot, into which the kernel can insert the received capability. After informing
the kernel about this slot (or slots, if one wants to receive multiple mappings) and finishing the
receive IPC operation, it contains the mapped capability, which can from now on be used by
this task by supplying the capability index representing it.

To add support for mapping capabilities to the RecvIpcGate and SendIpcGate types, the inter-
face has to be enriched.

The SendIpcGate type is extended with three methods: CallSendCap(),
CallRecvCap(), and SendCap(). The first one can be used to send a capability using a
call operation, whereas the second one receives a capability in the reply to it. SendCap()
sends the capability using an IPC send. In addition to that, analogous methods for sending

4 Go has no notion of constructors in the traditional sense. In C++ and Java, for instance, every method that has the
same name as the class it belongs to is considered to be a constructor, i.e., the method for creating objects of this
type. In Go, every function can be used to construct objects—the naming is entirely up to the developer of the
code.

22

3.1 Kernel Objects

multiple capabilities, i.e., a vector of them, are introduced for convenience and to not restrict
the interface artificially to one mapping at a time: CallSendCaps(), CallRecvCaps(),
and SendCaps()—making up a total of six added methods.

The only restriction this interface poses over the underlying native L4 implementation, is that
it is not possible to send and receive a capability together in one call, i.e., send one in the send
part of the call and receive one in the reply to it. A method offering this behavior could easily
be created, but due to missing use cases is not yet implemented.

The RecvIpcGate type also is extended with six additional methods: WaitCap(),
RecvCap(), and ReplyCap() for receiving a capability using an open wait, receiving one
in a closed wait or sending one in a reply, respectively, and their counterparts accepting multiple
capabilities.

An alternative approach for an interface would be to allow for writing capabilities to the
UTCB and reading ones from it using methods similar to Write() and Read() used for
data, respectively, which keep track of the next entry in the corresponding buffer to operate
on automatically. This would have the advantage of being more intuitive to handle, due to
the similarity in usage with respect to sending and receiving data. However, this is not easily
possible due to the setup required to receive a capability, i.e., the allocation of a capability slot.
In essence, before receiving, one would need to know that this receive operation is meant to
be used for receiving a capability mapping along with the amount of capabilities to receive.
This could be implemented with some sort of internal data exchange before the actual receive
operation using a specifically designed protocol. However, as implementing this functionality
is not trivial and would exceed the amount of time available for this thesis, the interface as
previously described was used.

Having defined the interface, the actual implementation is straightforward. The main work
is to extend the command thread for handling the transfer of items, the L4 term for a special
kernel object, e.g., a capability. This includes encoding the number of items to send or receive
into the label describing the action to do. On the side of Go, support for allocating capabilities
needs to be added, as well as the necessary setup code to execute before a receive could happen
is to be implemented.

3.1.3 IRQs

IRQs are another type of kernel object in L4. They provide a mechanism for asynchronous
notification. IRQs can be seen as an abstraction for two different types of notifications:
On the one hand, they can be used to communicate with hardware that triggers hardware inter-
rupts as an information that a special event occured, for instance, that a network package arrived
at the network interface card, or that a key was pressed or released on the keyboard.
On the other hand, they might also be used without interaction with hardware, as a so called vir-
tual interrupt, that is implemented entirely in software but serves the same purpose of providing
an asynchronous notification mechanism.

Because support for this kind of notification is another essential feature for system develop-
ment on L4, IRQs have to be wrapped in the form of Go types as well.

The implementation of Go IRQ objects is analogous to that of IPC gates: there are two distinct
types, SendIrq and RecvIrq, representing an IRQ kernel object to send and receive notifications,
respectively. Like IPC gates, IRQs have to be attached to a thread in order to receive a notifi-

23

3 Design & Implementation

cation. The other way—triggering one—is always possible without such a binding. The same
constraint as before, that one IRQ can be bound to at most one thread in the system at a time,
essentially led to the distinction of these two types.

3.1.3.1 SendIrq

The SendIrq type provides a method Trigger() for triggering such an asynchronous event.
On the level of L4 this is a system call that is executed on the underlying IRQ kernel object,
comparable to, for instance, send and receive on an IPC gate, for sending data or doing a receive
operation, respectively. In contrast to SendIpcGate, there are no Read() and Write() meth-
ods, because there is no need to read or write data, as IRQs cannot be used to transfer messages
in a way similar to IPC gates.

Like the SendIpcGate type, the implementation uses a command thread to execute the actual
operation. The rationale behind this usage is the same as well: in order to trigger such an IRQ
object, a fixed UTCB is needed (see section 3.1.2.1 on page 17). This fact is not obvious—as
just explained, there is no data to be transfered using the UTCB—and is rooted in the implemen-
tation of the trigger system call. It is implemented as a protocol on top of L4 IPC, which uses
the UTCB for passing special protocol-specific data. Using this data, the receiver can execute
the actual IRQ operation.

3.1.3.2 RecvIrq

Receive is another operation that IRQs provide. It can be used to wait for a notification on a
specific IRQ object. RecvIrq accounts for that operation with a corresponding Recv()method.

Like the SendIrq and SendIpcGate types, RecvIrq has a comparable implementation to
RecvIpcGate: two additional threads are used to achieve the correct behavior. A command
thread allows for the correct receipt of notifications in the first place and is needed due to the
variable mapping from Go routines to L4 threads, as explained before. A forward thread is
necessary in order to mask out IPC messages that are received by the command thread that are
no actual commands, but used otherwise. By introducing the forward thread as a fixed commu-
nication partner and using a closed receive from this source, the command thread cannot mix
up these messages with actual commands.

24

3.2 L4Go Channels

3.2 L4Go Channels

A major part of the work involves the creation of Go channels that can be used for inter-process
data exchange—I refer to these channels in the following as L4Go channels, in contrast to the
“ordinary” Go channels which can only operate within a task-local context. With the IPC gate
primitives for Go as described in the previous section it is possible to implement these channels.
This section describes their design and implementation.

First, some requirements are defined that have to be fulfilled by these channels. After that,
preconditions as determined by the Go language itself are explained, which directly influence
the resulting design. Next, I elaborate on the implementation and explain possible alternatives,
as well as discuss necessary modifications to the Go runtime library.

3.2.1 Requirements

In order to decide on an L4Go channel design, five requirements have to be fulfilled. The
reasoning leading to the final design will be explained below. These requirements are:

R1) The changes made to libgo should be as few as possible as this directly affects the main-
tenance effort and possibility of integration into libgo’s main development branch.

The libgo runtime library is developed and maintained by the team responsible for the
gccgo. Bug fixes and new developments will be implemented there. In order to make use
of the improvements on L4, regular updates of libgo are required.
Updating libgo, however, also means adjusting the changes that were made to it previ-
ously in order to make it work on L4 again. This maintenance effort of reapplying the
changes to the new version can be substantial, depending on the amount and type of
adjustments the developers made. It is therefore important to keep the modifications to
the library minimal, to allow for frequent updates of libgo.
Another fact to consider is the possibility of having the modifications integrated into the
main branch. In that case the gccgo team would take the responsibility of maintaining
the L4 specific changes and they would become part of the official distribution of libgo.
Aside from the fact that the popularity of L4 would play an important role for that process
to succeed—which cannot be influenced by this work—the amount of changes is relevant
as well. The less changes there are, the less maintainance and test effort exists for the
gccgo team and the higher are the chances of integration.

R2) The special channel syntax for sending data through a channel and receiving data from
a channel (arrow syntax) has to be preserved for the case of inter-process channels—a
feature relevant for the integration into existing Go code as well as into Go in general.

If existing Go programs were to be ported to run on L4 and want to make use of L4Go
channels for distributing work between several tasks or for communication in general,
adjusting them is easier if already present Go channels can be reused and need only be
initialized once (to make them refer to a remote endpoint instead of a local one) instead
of changing every occurrence of a channel in a syntactic way, i.e., replacing the send or
receive syntax with a method call on a special object.
Preserving the send and receive syntax is also favorable for seamless integration into the

25

3 Design & Implementation

Go language in general, as users will immediately recognize channels as such—just as in
the local case.

R3) The semantics of Go channels, especially their synchronization properties, must be
retained.

Go channels cannot only be used for communication between Go routines but also for
synchronization: if a channel is full, i.e., its buffer memory has no slot left for a new
item, sending a new object is not possible and the corresponding request will block until
an element was received from this channel, making one slot available for a new item.
Analogously, receiving an object from a channel with an empty buffer will block as well.
This behavior allows Go code to use Go channels as the means for various synchroniza-
tion tasks, e.g., for triggering a certain action upon unblocking of a receive from a channel.
As this is a basic and well specified property of Go channels, which may be relied upon
by numerous existing Go applications, this behavior has to be preserved.

R4) Channels have to support bidirectional data transfer—it must be possible to send and
receive data on one and the same channel.

“Normal” Go channels are bidirectional. If L4Go channels only allowed for unidirec-
tional communication, this would limit the usage and restrict the number of possible
applications. For example it would no longer be possible to send data on a channel and
receive a result on the same one—a typical scenario at least for simple services.5 Also,
L4Go channels should integrate as seamlessly as possible with existing Go code, i.e., with
as few changes as necessary.
In order to achieve that, they should also support bidirectional communication.

R5) A special type of channel should be available, allowing the sending and receiving of
capabilities.

This fact covers the treatment of a platform specific detail—the mapping of capabilities
on L4. Early in the design process the possibility for creating a special type of channel
used for sending and receiving capabilities was elaborated. These channels would provide
for an easy way of transfering access privileges between tasks. Usage scenarios include
server setups, where a manager can map resources to clients.
The general concept of a capability channel does not differ from an ordinary L4Go
channel—an object of a specific type is sent from the first task and can be received
by another one—but the implementation would differ. Although mapping a capability
involves IPC as well, a special setup is necessary beforehand and the actual process of
sending differs as well.

3.2.2 Preconditions

In order to comprehend the design decisions made for L4Go channels, it is important to under-
stand the preconditions that are determined by the Go programming language:

5 More complex services would presumably use a different type for the reply than the one that was given as input—
and would thus need a distinct channel for providing the answer as well.

26

3.2 L4Go Channels

• Go channels are embedded in the language—not built on top of it.

With this point I want to emphasize the fact that it is not possible to modify channels or
their behavior by white-box reuse techniques such as inheritance or overwriting of meth-
ods.
If Go channels were ordinary language objects, one could think of inheriting from them
and changing the implementation of the send and receive methods. This is not possible in
this case, because channels are directly built into the language. Send and receive opera-
tions are translated by the compiler into corresponding runtime library calls. Modification
of the behavior of these functions would require changes to the runtime library itself as
well—no modification hooks are provided.

• Go has no support for operator overloading.

This point is closely related to the first one, but not as far-reaching. It covers the possi-
bility offered by some languages to modify the behavior of (certain) operators provided
by that language. C++, for instance6, supports overloading of operators [fITS03]. This
means that the functionality of operators for user-defined types is entirely up to the author
of the code.7 All the developer has to do is write a special operator function and imple-
ment the desired behavior.
If Go supported overloading of operators, one could keep the arrow syntax for sending
and receiving on channels and would only need to provide a user-defined type, i.e., some
sort of remote channel object that is connected to an L4 service, for which these operators
would be overloaded. If the arrow syntax is then used, a user-defined function would be
called that would carry out the corresponding IPC actions.
Unfortunately, Go does not provide operator overloading as a language feature [Inc09b].

3.2.3 Usage of Netchan

The first possibility that was considered was the usage of the netchan package. It provides—as
explained before (see section 2.1.5.2 on page 6)—remote channels on top of a network interface.
There are, however, arguments against this:

• The abstraction is inappropriate, making the interface complex and the overhead high.

This point refers to the fact that netchan uses network interfaces as the abstraction for the
underlying communication primitive for transfering data.
A network interface is a very high-level abstraction. This becomes obvious when exam-
ining the interface provided by netchan [Inc09h]. It consists of two types, an Exporter
and an Importer. An Exporter is bound to a specific TCP port. It provides, among
others, methods for exporting a channel under a specific name and for synchronizing. The
Importer provides a similar interface, but for importing channels that were exported
previously. Although the rationals for all the details of this interface are not entirely clear
to me, an implementation that directly uses L4 IPC primitives without a network abstrac-
tion layer could be much slimmer: there is no need to distinguish between TCP ports

6 Other languages with support for operator overloading include Eiffel, Haskell, and Smalltalk.
7 C++ does not support overwriting of operators for built-in types, i.e., at least one operand in an overloaded operator

function needs to be a user-defined type.

27

3 Design & Implementation

or an equivalent, or to multiplex multiple channels over a single one—a distinct L4 IPC
channel could simply be created for each L4Go channel. The need for synchronizing data
also vanishes in the case of IPC. For a network connection there is no guarantee when
packages arrive, due to an unreliable network being the medium of transfer. In case of L4
IPC there is no such unreliable component in between—the kernel takes care for correct
synchronization.
An additional fact is the high overhead of network transfers in contrast to IPC on L4.
In order to provide network related functionality a special service is used. Additionally,
there is a driver for the network interface card involved.8 These additional components
slow down the communication speed and add complexity that can be avoided by using
a different communication primitive—L4 IPC, i.e., an IPC channel instead of a network
connection.

• Netchan channels are unidirectional—a direct restriction to the usage of channels.

Channels in netchan can only be used to send or receive—not both. The desired direc-
tion has to be decided upon when connecting the channel and cannot be changed later
on. Normal Go channels, however, are bidirectional. This opens the doors to potential
problems—for instance the wrong usage of a netchan channel, i.e., sending on a receive-
only channel or receiving on a send-only channel, which will block the sender or the
receiver indefinitely. This can lead to errors that are hard to detect as they only occur at
runtime.
In addition to that, this property of netchan channels is also in direct conflict with require-
ment R4.

• Implementing capability channels on top of netchan is impossible.

This point discusses the use of netchan for providing capability channels. As explained in
section 3.2.1 on page 25, a special type of channel for sending and receiving capabilities
should be created in order to fulfill requirement R5. Capabilities in L4 can only be trans-
fered (mapped or granted) to another task by using IPC. This has two implications: First,
network channels are not local to one system but can connect several systems and capa-
bilities are only valid in the context of one and the same L4 system. Due to this, a network
interface, again, appears not to be the right abstraction to use. And second, as networking
in L4 is only built indirectly on IPC—the communication with the network service is done
using IPC—it is not possible to built capability channels using only networking facilities.
One would need to break the abstraction and rely on IPC for transfering capabilities.

These three points and the synchronization problem as discussed in section 3.2.6 disqualify
netchan for the implementation of L4Go channels.

3.2.4 Design

After discarding the idea of using netchan for implementing L4Go channels, a new imple-
mentation has to be designed. Therefore, an appropriate interface as well as a concept of the
implementation need to be developed.

8 In the case of computer local network traffic, i.e., traffic over the loopback device, there would be no need for a
driver for a network interface card.

28

3.2 L4Go Channels

3.2.4.1 The Interface

The first step is to design a suitable interface to be provided for interacting with L4Go channels.
In principle there are not many requirements to be fulfilled by this interface, which, thus, can be
very narrow:

I1) The first requirement stems from the fact that L4 is an object capability system. It states
that an L4 IPC connection to be used (at least initially) must be somehow granted to the
task and cannot be established entirely by itself: as L4Go channels are to be used for
communication with another task, it is necessary to have some communication channel to
this task, either for direct information exchange or to be able to establish further channels
by means of mapping capabilities that represent this ability to communicate. Without this
initial channel no propagation of authority, i.e., right to communicate, is possible.9

To account for this requirement, a function is introduced to which this initial communi-
cation channel gets passed in. In the case of L4Re, this can happen as a string parameter,
containing the name of the L4 IPC connection, under which it is registered in the envi-
ronment and can be retrieved using the corresponding function for this job.

I2) The second requirement was already given earlier: R2 states, that the existing channel
syntax has to be used.
This means that it is not possible to implement dedicated Send() and Recv() functions
for use with these channels which can be used for sending and receiving data, respectively,
but rather that it is necessary to find a way to preserve the usage of the arrow syntax.

In summary, it can be stated, that the interface has to contain a setup function or method, that
can be used to initialize the channel and to pass in an L4 communication channel to use. By
preserving the already existing arrow syntax, the remaining part of the interface comprising the
sending and retrieving of data items is fixed as well.

3.2.4.2 Possible Implementations

After having decided on the basic design of the interface, a possible implementation has to be
found. It is possible to integrate Go channels on various levels—in every case, however, the
interface as described above has to be provided. Three basic approaches come to mind:

A1) An implementation which is worked into the language.

On the lowest level possible, L4Go channels could be directly embedded into the lan-
guage. Go channels already are language constructs. By adapting the compiler, support
for binding a Go channel to some sort of L4 IPC connection could be added, and send and
receive operations on this channel could use this connection to transfer data items across
task boundaries. This approach would mainly involve two steps:
First, the construction procedure for channels, i.e., the make() function, would need to
be adjusted in order to accept an additional paramter. This argument references the IPC
connection to be used, as explained in the discussion of the interface. This step satisfies

9 The requirement of having such a channel is a feature of object capability systems, that allows for confinement,
i.e., restricted authority propagation. See [MYS03] for a more detailed explanation of this property.

29

3 Design & Implementation

requirement I1.
Second, a way to change the action of the send and receive operations using the arrow
syntax would have to be found, to make use of the given IPC connection for sending and
receiving data items, in order to fulfill I2.

A2) An implementation in the libgo runtime library.

On an intermediate level, only the runtime library could be modified. In that case it
would no longer be possible to adapt the built-in channel creation function, make(), for
“connecting” the channel to a different task, because this adaptation would result in a syn-
tactical change to the language, which would need compiler support to be implementable.
In order to still fulfill I1, an additional function that can be passed in a reference to the
communication channel to use, which performs the necessary initialization work, could
be introduced. This would result in a two step process for setting up an L4Go channel—
creating the channel using the make() function and binding it to the IPC channel—in
contrast to “ordinary” Go channels, where only the first step is needed.
Preserving the channel syntax, however, is still possible, because the arrow syntax is
directly translated into calls to functions of the runtime library by the compiler in order to
execute the corresponding action. These functions would need to be adapted to use IPC
for data transfer.

A3) An approach similar to that taken by netchan, implemented as a separate Go package.

One could also implement L4Go channels without any modifications to compiler or run-
time library, but as an independent Go package. This would be the highest level possible
for the implementation.
Using this approach, an additional function as depicted in the previous point is necessary
in order to satisfy I1, too.
For fulfilling requirement I2, the same strategy as employed by netchan could be used.
The way it is done there, is based on a proxy-object approach, as briefly described in
section 2.1.5.2.

For deciding which approach to use, the different advantages and disadvantages were discov-
ered and weighted against each other. They can be summarized as follows:

Approach A1 A2 A3

Modification of. . .
compiler & runtime runtime library neither

library (−−) (−) (++)
Development effort −− − +
Integration ++ + +
Expected performance ++ ++ −

Table 3.1: Possible approaches for an L4Go channel implementation

As can be seen in table 3.1, approach A1 is pretty radical: it provides a great integration of
L4Go channels into the language, due to the syntactical changes that can be introduced, espe-
cially for adaptation of the built-in make() function. The expected performance is also good,

30

3.2 L4Go Channels

because of the possibility of a direct modification of the functions for sending and receiving
channel items—there is no additional level of indirection involved.

The necessary modifications to compiler as well as runtime library and, associated with this,
the high development effort, however, disqualify this approach from further considerations. The
main argument here is the fact that modifications to the runtime library—and even worse: the
compiler—should be kept as minimal as possible.

This is also the reason why approach A2 is not used. Although it is easier and faster to
implement than the previous approach, as only the runtime library needs to be adapted, this
remaining modification still has more impact on the applicability of the resulting implementa-
tion with respect to maintenance effort and chance of integration into the main development line
than, for instance, the points of integration or performance.

The last approach, approach A3, is the one of choice. Here, the runtime library as well as
the compiler need not be changed. Additionally, the development effort is reduced compared
to the two previous approaches, because the implementation could incorporate the previously
implemented Go IPC gate objects and can happen nearly entirely using Go, instead of C, which
would need to be used for adapting runtime library and compiler.

The expected performance, however, is not as good as in the previous cases. This is due to
overhead introduced by another layer of indirection: after sending a channel item from Go, it
will first be read from the channel in background, sent to the remote task using IPC means, be
written transparently into the local channel there, and can then be received from within Go user
code. The next section describes this process of transfering data in more detail.

3.2.4.3 Proxy Channels

As just explained, an approach similar to that taken by netchan will be used for the imple-
mentation of L4Go channels. I dub this implementation proxy channels or the proxy channel
approach. This name refers to the fact that these channels do not actually send the data items to
the remote task themself, but rather provide the interface for this sending to other code. They
are necessary to preserve the arrow syntax. Conceptually, a proxy channel works like this:

Client

c chan int

Go-Client L4Go

c <- 1

1
data := c.Recv()

2

ipc call(data)

3
Server

c chan int

L4Go Go-Server

i := <-c

6
c.Send(data)

5

ipc wait(data)

4

Figure 3.4: Proxy channel approach for L4Go channel implementation

The process illustrated in figure 3.4 uses two L4 tasks: a Client, C, and a Server, S. The client
wants to send some data to the server, using a L4Go channel, c. This channel must be initialized
(“connected”) to refer to the server. S also has such a channel on its side—it is connected to
the client. For the following explanations, I assume that the channels are unbuffered, but it is
possible to use buffered ones here as well.

31

3 Design & Implementation

The client starts by putting the data to be sent into its local channel using the channel send
syntax (1). On the other end of the channel a Go routine was installed by the initialization
function, which loops in an endless loop to receive data from the channel (2).10 Each time a
new data item (“data”) is received from the channel, it will be sent to the receiver task, which
the channel is connected to (3). This sent uses the IPC functionality as provided by L4.

The server loops as well to receive data from C using the IPC counterpart to the send operation
the client uses (4). When it receives the data item, it puts this element into its local channel (5).
All this happens completely transparent to the user, within an encapsulated package that was
used for setting up the channel. Now, the actual transfer to the Go user code happens. At (6) the
data item is read from the local channel and can be processed further.

3.2.5 Implementation

3.2.5.1 IPC Channels

When trying to implement L4Go channels that use an IPC connection for the actual data transfer
from, say, a client to a server, two approaches are possible:

C1) Use a unidirectional IPC connection from the client to the server.

This approach uses a single IPC connection for all data transfers. For this to work, there
must be some sort of agreement between both sides, i.e., the sender and the receiver, on
how the communication works. As this connection can only be used in one direction—
from the client to the server in that case—the former can send data straight to the server,
but cannot receive it directly. For receiving data the client would need to tell the server,
that it is ready to receive data. This message would have to be a an IPC call operation.
When the server received data from its local channel, it can send this data to the client by
using the reply IPC operation.
On the server side, the corresponding action for receiving data from the client would be
to wait for an incoming message that contains the respective data. For sending data, the
server needs to wait for an incoming call from the client, which signals that he is ready to
receive something. The server can then send the data.
In order to distinguish both incoming messages in the server side, the client would need to
send some sort of identifier first, describing whether he has attached data to the message
(send case) or is waiting for data in the reply (receive case).

C2) Use a bidirectional IPC connection.

Another way of mapping an L4Go channel to L4 IPC would be to establish a truly bidi-
rectional connection between the two tasks of interest. For that, two IPC gates must be
present: the first is used for receiving on the client side, the second for receiving on the
server side. Using this strategy, sending data is always possible from either task.
This approach is more symmetric and straightforward to implement than the first one,

10 It should be noted that as Go does not have support for generics or template-like mechanisms, reflection is used
here for receiving the data, i.e., c is not a channel object in this context, but some reflection data structure derived
from the actual channel object that can be used for receiving the data using its Recv() method. See 2.1.5.1 on
page 5 for further information on reflection.

32

3.2 L4Go Channels

because in order to achieve the same operation (send or receive) each side has to do
essentially an identical sequence of actions.

When thinking about these two approaches more deeply, it became clear that the first one
cannot work reliably under all circumstances. To understand why this is the case, consider the
following code for two communicating tasks, a client and a server, that are connected by an
L4Go channel, c:

for i:=0; i<42; i++ {
// ...
c <-i

}

Listing 3.1: Client, Go routine 1

for {
i := <-c
// ...

}

Listing 3.2: Client, Go routine 2

for {
i := <-c
c <-i+1

}

Listing 3.3: Server

The client contains two Go routines: Go routine 1 for sending data (listing 3.1) and Go
routine 2 for receiving data (listing 3.2). The server has only one path of execution, in which he
does both, receiving and sending (listing 3.3).

In this example, the client sends increasing numbers to the server, which in turn receives them,
increases them by one, and sends them back. In Go routine 2, the client receives the increased
numbers and may process them further. This is a valid usage of Go channels in conjunction with
Go routines. Setups where this kind of work-splitting on the client side into two Go routines
for sending and receiving might occur include scenarios where the duration for handling client
requests by the server varies extremely. In such cases receiving the results in the same order the
requests were sent is often not pratical. By having this partitioning on the client, these special
cases can be accounted for.

When executing this example using approach C1, the program will most likely deadlock. This
deadlock is caused by the fact that the client performs—concurrently—a send and a receive
operation to the server (because of the usage of two Go routines). The server, however, only
has one IPC gate for serving requests. As requests to one IPC gate can only be served by one
thread, because only one thread can be bound to it at a time, the behavior of the example given
above depends on the order of execution of the two Go routines. If Go routine 1 starts to run
first, it will send data to the server, which can receive it and send it back. If, on the other hand,
Go routine 2 is executed first, it will issue a request for receiving data. The server will block on
this request and will never be able to serve it, because in order to send something back it first
would need to receive something. This is a typical race condition between the two Go routines.

Approach C2 does not have this problem. Due to the two IPC gates used for the implementa-
tion of an L4Go channel, it is possible to send and receive data concurrently. This way the server
can still receive data, although the client already sent a request for receiving data itself—there
is no chance for a deadlock.

For the reason just explained, bidirectional IPC connections using two IPC gates
(approach C2) will be used for the implementation. Henceforth, I will refer to such constructs
as IPC channels.

33

3 Design & Implementation

3.2.5.2 Multiplexing of Channels

When using IPC channels as the underlying communication primitive for L4Go channels, two
possibilities arise, on how they interact:

M1) Use one IPC channel for transfering data of multiple L4Go channels.

By attaching meta data to the actual payload of a channel, it is possible to distinguish
between the data of multiple channels. By distinction of the various data items, they
can be multiplexed on one IPC channel and be separated, i.e., demultiplexed, again later.
To manage this transfer through one channel, some sort of protocol would have to be
implemented in order to forward the elements on the receiver side to the correct L4Go
channel. One could attach a simple label—e.g., an increasing number representing each
L4Go channel—to the actual data. Figure 3.5 illustrates the process of multiplexing.

Go channel 3

Go channel 2

Go channel 1

L4 IPC channel

Figure 3.5: Multiplexing multiple Go Channels on one L4 IPC channel

M2) Use an individual IPC channel for every L4Go channel.

In this approach, every L4Go channel has exactly one IPC channel associated with it,
which will be used for transfering channel items. This strategy relies on the fact that
IPC gates can be created and exchanged dynamically at runtime. For each newly created
L4Go channel, a new IPC channel needs to be established. An illustration can be seen in
figure 3.6.

Go channel 3 L4 IPC channel 3

Go channel 2
L4 IPC channel 2

Go channel 1
L4 IPC channel 1

Figure 3.6: Each Go Channel has its corresponding L4 IPC channel

Making a decision between these two approaches is difficult. The first one, M1, has the
advantage of using only one IPC channel for—at least theoretically—transfering data of an
arbitrary amount of L4Go channels. This IPC channel could be statically allocated and so this

34

3.2 L4Go Channels

approach would potentially work even in scenarios where dynamic allocation of IPC gates is
not possible.

But there are also disadvantages to this approach. The first being the more complex imple-
mentation, due to the additional bookkeeping involved for marking the payload with an iden-
tifier describing the Go channel it belongs to. This bookkeeping, as well as the multiplexing
and demultiplexing associated with it, also induce extra runtime overhead. Second, deadlocks
as explained before can occur, because if there is only one IPC gate, this can easily be blocked
waiting for an operation to finish.

Approach M2, on the other hand, has no performance penalty caused by additional meta data
processing and managing, but there might be increased memory usage due to the extra IPC
gates involved. Also, it relies upon dynamic allocation of IPC channels in the case that L4Go
channels are dynamically created. For a fixed amount of L4Go channels, however, a static setup
is also possible: the IPC channel could be outlined at configuration time and then be used as the
base of the L4Go channel.

A static setup is possible in both approaches and hence does not serve as a key distinction
feature. Mostly due to the absence of possible deadlocks the decision was made in favor of
approach M2.

3.2.5.3 Shared Memory Channels

The implementation as described before uses the UTCB for transporting the data to be sent over
the L4Go channel. This has the advantage of being easily implementable using the previously
discussed L4 IPC gates, because the Go IPC gate objects directly provide the means for writing
data into the UTCB and reading from it (see sections 3.1.2.5 and 3.1.2.6, respectively).

However, the UTCB is of limited size: it consists of typically 63 message registers, i.e.,
machine words—depending on the machine architecture. This can prohibit the usage of L4Go
channels for transfering large Go objects, like dynamically allocated arrays, lists or trees—as
there might not be enough space for storing the whole object at once and transfering it.

One solution for this issue would be to transfer the object in multiple steps, i.e., sending
the first part by filling the entire UTCB with data, then continuing with the next part until the
entire object is transfered. The receiver would need to make sure that it correctly reassembles
the object after receiving all parts. Although feasible, this implementation would significantly
increase the complexity of the send and receive code.

Another approach is to use an area of shared memory for the actual data exchange. This
memory would need to be shared between the tasks that are connected by the L4Go channel.
The sender would write data into this memory and the receiver could read the data. The IPC
gates would be used for synchronizing access to the shared memory, such that no reads at the
receiver side conflict with writes from the sender. The shared memory area could theoretically
be unlimited in size11 allowing Go objects of arbitrary size to be sent.

11 Sharing is possible only at the granularity of a page, so the minimum size of a block of shared memory would
be one page, which is typically 4096 KiB—depending on the architecture. The maximum size is limited only by
the amount of physical memory that is available to the system or, in the case of a system with swapping, by the
amount of free secondary storage or the size of the virtual address space, respectively—whatever is smaller.

35

3 Design & Implementation

3.2.6 Runtime Library Modifications

Unfortunately, it turned out that a naive implementation in the proxy-style fashion as described
in section 3.2.4.3 has two severe problems. Both are caused by missing synchronization between
Go user code and the proxy channel implementation and require a deeper consideration. These
two problems are:

P1) A race condition that can lead to wrong data items being read from an L4Go channel.

Figure 3.7 illustrates this problem. It shows two tasks—a client and a server. Only the
client is of concern here, but the implementation on the server side is no different and,
thus, equally affected by this issue. It contains two parts, a Go part which is written by the
user, as shown on the left side, and a part that is used for implementing the L4Go channel
and is working in the background, shown on the right. The first part is “ordinary” serial
code, which contains a channel, c, that is connected to the server. Through this channel,
a value is sent. After some additional work, a receive will take place. The second part,
on the right, consists of two Go routines executing an endless loop: the first is used for
sending data to the remote server task and the second is used for receiving data from it.
As only the send part is relevant here, the receive part is left out and will not be considered
any further. What the send part does, is to receive an item from the local channel c and
send it to the server task (see section 3.2.4.3 for a more detailed explanation of the whole
process).

Client

Go
send and receive

c := make(chan int)

c <-1

// ...

i := <-c

// ...

L4Go
Go routine send

for {
c.Recv()

// write data into UTCB

// send data to remote task

}

Go routine recv

for {
// ...

}

rac
e co

nd
iti

on

Server

// ...

// ...

// ...

Figure 3.7: An L4Go channel implementation that may suffer from a race condition

The thoughtful reader may have noticed the occurrence of two “receives”—one in the
user code and one in the send Go routine. Although these two receives look different, the
left one using the arrow syntax and the right one using an ordinary method call, they both
achieve the same goal—reading a value from the channel—by use of the same underlying
functionality. These two receives block until an actual data item is written into the channel
and can be read from it, and can occur entirely concurrently. If this happens, it depends
on the scheduler’s decision, which Go routine to wake up first—the one executing the
user code or the one waiting for receiving data in the background. As only one of the Go
routine’s receive requests can be served, there exists a race condition among them about
who the “winner” will be.

36

3.2 L4Go Channels

In order to cope with this problem, it is necessary to provide an additional synchronization
point that tells the L4Go channel implementation, when the user actually wants to receive
data, e.g., by usage of the arrow syntax for receiving data. Only if this happens, the
receive part on the right side, i.e., the c.Recv(), would actually be executed.
Sadly, changes to the runtime library of Go are necessary, in order to implement this
behavior, because otherwise there is no way for the implementation to tell whether the
user is ready for receiving a channel item. Without this knowledge, the afore-mentioned
call would have to block upon the receive operation which would inevitably lead to the
race condition just described.

P2) A synchronization problem that invalidates the semantics of L4Go channels.

As explained before, Go channels can be used for synchronization between Go routines
(see section 3.2.1 on page 25). This fact is captured by requirement R3. In a straightfor-
ward implementation of L4Go channels employing the proxy channel approach, however,
this requirement cannot be satisfied.12 It is violated because a send operation on such a
proxy channel can unblock too early—before the element was actually received on the
receiver side.
To understand why this can happen, have another look at figure 3.4 on page 31. The
first step consists of sending an element, the integral number one in this case, using the
arrow syntax (1). After that, it will be received transparently in the background (2). This
c.Recv() method call will read the item from the channel and assign it to a variable.
At this very moment of receipt, the send operation (1), which was issued by a different
Go routine, will unblock, because the element was removed from the channel—it was
received by some receiver, but in this case, it has not reached its final destination in the
server task, but is only at a necessary intermediate location. This behavior clearly conflicts
with requirement R3 from the user’s point of view, because the item is not yet received
by the server task.

To solve this synchronization problem, the send operation would need to block until the
item was actually received in the server task. This could be achieved by adding a call to a
callback function to the implementation of the send operation, which would have to block
until the receiving task actually acknowledged the receipt, i.e., replied to the call. Again,
as the send functionality is part of the runtime library, the latter would have to be adapted
to fix this issue.

3.2.6.1 Go Channel Implementation

In order to cope with the two issues mentioned above—the race condition P1 and the syn-
chronization problem P2—adaptations of the libgo runtime library were inevitable. In order to
understand the actual implementation of the provided solutions, it is necessary to understand
the basic mechanisms of the libgo implementation with respect to the sending and receiving of
data using Go channels.

12 In fact, netchan—using the same approach—suffers from this problem as well. It might, however, not be much of
a concern there, because netchan’s remote channels are more targeted at communication between systems and not
within one and the same system but between tasks, as in my case.

37

3 Design & Implementation

The libgo runtime library provides the functionality for sending and receiving data from chan-
nels. The implementation consists of several functions for blocking and non-blocking send
operations, as well as the blocking and non-blocking receive counterparts. There are also opti-
mized versions available for channels that transport objects being 8 Bytes or less in size. When
doing a send or receive in Go code (using the arrow syntax), the compiler directly emits the
corresponding call to the libgo function.

Before an actual send action takes place, all libgo send functions call a send acquire func-
tion for requesting exclusive access to the channel and notifying other receivers that a send is
being performed. After executing the send, a send release function is called, signaling possible
receivers to wake up and relinquishing the exclusive access to the channel.

The receive action works in a comparable way, but the semantics of the operations differ. The
receive acquire function also requests exclusive access to the channel. It then inserts the channel
into the list of receivers waiting for a send to happen. After the actual receive is performed, the
corresponding receive release function notifies any synchronous sender about the success and
releases the lock that was used for granting exclusive access, just as in the send case.

3.2.6.2 Hooks

Having understood that part of the Go channel implementation, it is now possible to find a
solution to the problems described in section 3.2.6. My solution comprises three hooks that were
added to the libgo runtime library. Every hook consists of a semaphore and a corresponding
callback function. The callback function will be set to a function operating on the semaphore,
i.e., increasing or decreasing its value and thereby blocking itself or unblocking other callers,
if the channel is an L4Go channel. For “normal” Go channels (which do not have any of the
problems) it will be nil and not executed. Distinguishing between these two channel types is
possible using the initialization function used for “connecting” a channel to another L4 task—if
it is called, the channel is an L4Go channel, otherwise it is a normal Go channel.

Every hook is split in two parts, an internal one that is called by the runtime library, i.e., in
the corresponding send or receive function, and an external one which is called by the L4Go
channel implementation. Furthermore, one of these parts decreases the semaphore, i.e., waits
on it, and the other one increases it, i.e., posts on it and wakes up other waiters. Which action
is associated with which part depends on the semantics of the hook. The following three hooks
are provided:

Pre-Send-Hook: The Pre-Send-Hook is used to signal the channel implementation that there
is actually a send operation waiting that was issued by the user. Only in this case, the
internal Go routine will receive a value from the channel in order to send it to the remote
task. For this to work, the L4Go channel blocks on the associated semaphore until the
runtime unblocks it within the send acquire function. In conjunction with the Pre-Recv-
Hook, this hook solves the race condition problem P1.

Pre-Recv-Hook: The Pre-Recv-Hook signals the channel implementation that the user issued
a receive operation. By waiting on the associated semaphore before the actual receive
part takes place, the L4Go channel implementation is able to postpone the corresponding
IPC operation for receiving data. Together with the Pre-Send-Hook, this solves the race
condition problem P1.

38

3.2 L4Go Channels

Hook Pre-Send-Hook Pre-Recv-Hook Post-Send-Hook
Internal part post post wait
Executed in. . . send acquire receive acquire send release
External part wait wait post
Executed . . . before sending before receiving after sending

Table 3.2: Three hooks added to the libgo runtime library

Post-Send-Hook: The Post-Send-Hook is used to signal that the sending of data is complete.
After the runtime library finished its process of sending data, it will wait on the semaphore
associated with this hook. The L4Go channel will post on this semaphore when the actual
send operation to the destination task is finished, i.e., the call got a reply. Using this
construct, the synchronization problem P2 is resolved.

Table 3.2 shows a summary of the different implementation parts of the three hooks men-
tioned above.

3.2.6.3 No Hook Versions

The modified send and receive functions in the libgo library affect every send and receive action
taking place, i.e., not only the compiler emitted calls but also reflective ones. This is the case
because they are all implemented using the same basic functionality as provided by libgo, i.e.,
the previously mentioned various send and receive operations with their send acquire, receive
acquire, send release, and receive release parts. The reflective methods are used for instance in
the L4Go channel implementation and are provide by the reflect Go package (section 2.1.5.1
gives a brief introduction to this package). They can be seen in figure 3.4, where they appear at
steps (2) and (5) (c.Recv() and c.Send(data), respectively).

Having these reflection functions always execute the previously described hooks will not
work, because this confuses the L4Go channel implementation by additionally waiting or post-
ing on the semaphores in cases where no synchronization is actually necessary.

To solve this problem, two additional versions of the Recv() and Send() meth-
ods are introduced that do not execute the hooks just explained: RecvNoHook() and
SendNoHook(), respectively. In order to provide these new methods, I made small adap-
tations to the netchan package. The L4Go channel implementation was then adjusted to use
these new methods.

39

3 Design & Implementation

3.3 Keyboard Driver

To show that my work is suitable for developing services and drivers for L4, I decided to imple-
ment a keyboard driver. Special focus is laid on the usage of L4Go channels for the implemen-
tation, to demonstrate their usage. This section describes the driver that was developed.

The whole keyboard driver consists of two parts: the actual driver, which waits for keyboard
interrupts to decode the actual data describing the keyboard event and to forward this event to a
client. The client—the second part—is the component that waits for such events from the driver
and performs a certain action. The following sections explain both components in more detail.

3.3.1 Driver

The driver’s job is the receipt of interrupts and the preprocessing of event-related data, for
instance, the scancode, for providing a general and keyboard independent event or data format.
It will allow clients to subscribe for receiving these transformed keyboard events in order to
provide keyboard related functionality themselves.

Keyboards interact with the system they are connected to by triggering interrupts. These
interrupts are generally received by the operating system. An interrupt signals that data describ-
ing the keyboard event is available. This data is called a scancode. Scancodes describe the key
that belongs to the corresponding event, the state, i.e., whether the key was pressed or released,
and may contain additional data as well. A driver is notified when an interrupt occures and will
read and interpret the scancode.

In the past several keyboard types were introduced that employed different sets of available
keys and used different data format schemes: in 1981 the IBM PC/XT Keyboard was put on the
market, in 1984 came the IBM AT Keyboard, and in 1987 the IBM PS/2 Keyboard [Cha03b].
Each supports a different scancode set, the sets 1, 2, and 3, respectively, that are not compati-
ble among each other. However, as the IBM PS/2 keyboard supports format 3 optionally, but
also offers the possibility of choosing format 2, the AT and PS/2 keyboard can be regarded as
compatible. The keyboards this driver aims to support are all IBM AT keyboard types. This
means that scancode set 2 is used and must be supported (an overview is provided by Chap-
weske [Cha03a]).

The first step in the design of the driver is to decide on an event format which is abstract
enough to be not specific to one particular type of keyboard but still is able to capture the
important details of the ones of interest. The format chosen here assigns a keycode to every
possible key: a symbolic constant that is different for every supported key—this way a possible
client can handle keys in a comfortable way, e.g., within switch statements by enumerating
the various keycodes and specifying the action to execute. In addition to that, a flag describes
the state of the key, i.e., whether it was pressed or released. Both values are combined in the
Keyevent Go type.

The implementation of the actual driver on L4 is straightforward and does not provide much
room for variations: one has to request the keyboard’s hardware IRQ from the operating system,
in order to be able to receive key event notifications, as well as the associated I/O port for reading
the keyboard scancode. Notifications for this IRQ can then be received using an object of the
RecvIrq type as described in section 3.1.3.2 on page 24. When an IRQ is received, a scancode is
available on the I/O port. Reading data from the I/O port is achieved using a Go wrapper of the

40

3.3 Keyboard Driver

corresponding L4 function for reading a byte from a given port. After the data, i.e., the scancode,
is read, it is decoded and transformed into a keycode and press-flag as described above. This
process is accomplished using a lookup table like structure. In a last step, a Keyevent object
will be created from the decoded data and be sent to the client.

3.3.2 Client

The client in this sample keyboard driver performs a very simple job: it will subscribe to the
driver’s server part to get notified about key events and will print the corresponding key code
and press-state of the key of interest to the screen. For receiving key events, a Go channel is
employed: it connects the client to the server and is used to transport objects of type Keyevent.
In order to keep a good structure and isolation of components, the client is implemented as a
separate task. For the communication to work under these circumstances, the channel connect-
ing the client and the actual driver needs to be an L4Go channel, i.e., a Go channel that can be
used for transfering data between tasks (see section 3.2). Although not mentioned before, the
server part uses an L4Go channel as well to which Keyevent objects will be written.

In order for the client to get notified about any key events happening, it will issue a receive
operation on the channel. If there is no key event available yet, the client will block, i.e., the
execution of the Go routine trying to receive will be stopped and another Go routine scheduled.
It will wake up whenever a keyboard IRQ was received, handled by the driver, and a corre-
sponding Keyevent object sent through the channel. Listing 3.4 shows a stripped-down but
fully functional version of the client as implemented for this work.

1 package main
2

3 import "fmt"
4 import l4c "l4go_chan"
5 import l4k "l4go_keyboard"
6

7 func main() {
8 channel := make(l4k.Keychannel)
9 l4c.Connect(channel, "keyboard_server", true)

10

11 for {
12 e := <-channel
13

14 fmt.Println(e)
15 }
16 }

Listing 3.4: A simple Go keyboard client

41

3 Design & Implementation

3.4 Problems

During the implementation of L4Go channels, several problems occured. Two of them are
particularly interesting and will be described next.

3.4.1 IPC Cancelation

Go uses a Garbage Collector (GC) for memory management. As explained in section 2.3.2 on
page 10, the GC had to be adataped in order to use L4 mechanisms instead of POSIX signals
for interrupting Go routines that are to be garbage collected.

The adjusted implementation uses a special system call, l4 thread ex regs ret(), to
modify the state of the thread the Go routine is currently running on in order to make it execute
code to mark all used Go objects, such that unmarked objects can be cleaned up later.13 A
special property of this system call is the fact that it will cancel any in-progress IPC operations.
This cancelation has far-reaching consequences:

1) Any canceled IPC needs to be detected and transparently restarted.

The interruption of a Go routine by the GC happens completely transparent to the pro-
gram. If it noticed this interruption, some state would have been modified and its behavior
could depend on the timing of these interruptions. Go programs that utilize, for instance,
the previously described kernel objects (see section 3.1), use IPC messages to pass com-
mands to the command thread that is used for implementing them. These IPC actions
need to be restarted in a way the application does not notice, if the Go routine that issued
the request to the command thread, is interrupted. On L4, the detection of a canceled
IPC operation is possible by evaluation of the return value of the corresponding system
call. A special value of L4 IPC SECANCELED or L4 IPC RECANCELED signals the
cancelation of a send or receive IPC action, respectively. By checking this return value on
both sides of the operation, i.e., on the side of the sender and on the side of the receiver,
it is possible to simply re-execute the system call for the IPC operation using the same
arguments as before.

2) Restarting IPC operations only works reliably in the non-nested case.

On L4, IPC call operations can be nested. Figure 3.8 illustrates the concept of these nested
operations. Object 1 is the initial caller. It does an IPC operation to Object 2. This in turn
may, after doing some work, start a call operation to yet another object, Object 3.
In order for the call initiated by Object 1 to return, it must be replied to. This can only be
done by Object 2. For this to happen, however, Object 3 must first reply to Object 2, in
order to unblock it from its call invocation.

This concept of nesting calls may not work in conjunction with the restart mechanism as
described in the first point. There are two cases to consider here:

• The call from Object 1 to Object 2 might get canceled, e.g., due to an invocation
of l4 thread ex regs ret() executed from the outside on the calling thread,

13 This procedure is commonly referred to as the mark-and-sweep garbage collection algorithm [Jon96].

42

3.4 Problems

Object 1 Object 2 Object 3

call()
call()

wait()

wait()

reply()

reply()

Figure 3.8: Nesting of multiple IPC call operations

before Object 2 was actually ready for the incoming IPC, i.e., it did not issue an IPC
receive operation and both partners did not yet rendezvous.

In that case the canceled call can just be restarted as described in point 1. There is
no need for any special handling on the receiver side, because the cancelation took
place before Object 2 actually issued the corresponding receive system call.

• Object 2 already received the incoming IPC and is blocked by its subsequent call to
Object 3.

If this is the case, the call coming from Object 1 cannot simply be restarted, because
there is no longer a corresponding receive operation at Object 2 for it is already
finished and a rendezvous happened. Now, due to the cancelation of the incoming
call, the reply capability which was created for it is no longer valid. Due to that, the
reply from Object 2 to Object 1 can never be successfully executed.
In order to solve this issue, the reply operation that would be issued by Object 2 is
replaced with a “normal” IPC send operation. For this to happen, the receiver of the
send, i.e., the issuer of the call (Object 1 in this case), must be known to Object 2.
This is easily achievable by having the caller put its capability into a special memory
area that is known to the receiver, right before the actual call operation takes place.
The receiver can then always reply by using a send operation with this capability,
instead of doing a true IPC reply.

These consequences described above influence the implementation of the Go kernel object
wrappers as depicted in section 3.1. These wrappers represent the places where IPC operations
are performed, that might get canceled due to interruption by the GC, as IPC there is initiated
between Go code, i.e., from within a Go routine, and native C code. To tackle that problem,
every IPC operation crossing that boundary had to be wrapped to incorporate the solutions as
stated above.

After adaptation, objects of these types can safely be used from any Go code, even in the
presence of a GC possibly interrupting Go routines any time.

43

3 Design & Implementation

3.4.2 Initial Memory Allocation

In order to serve future memory requests for Go objects faster, libgo’s memory allocator pre-
allocates a block of memory from the operating system, from which it can hand out pieces of
memory to clients.

In the 32 Bit version of libgo, this initially allocated block has a size of ≈800 MiB.14 This
leads to problems in conjunction with L4Re, where the allocation of a consecutive blocks is
limited to a size of 256 MiB. Due to that restriction, the part of L4Re responsible for these
allocations, the l4re vfs, had to be patched in order to allow for larger memory requests.

Another approach would be to adjust libgo’s memory allocator in order to request a smaller
chunk of memory initially or employ a completely different memory allocation strategy. But
again, as changes to the Go runtime library should be avoided or kept as few as possible, this
approach was withdrawn.

In addition to that, this amount of allocated memory is a per-task value. This means that
each started task will request this amount of memory again. As main memory is a limited
resource, this can lead to further allocation errors if there is not enough physical memory left
to the operating system that can be handed out to user tasks. This will also directly limit the
amount of Go programs that can be started in parallel, because startup will fail if this block of
memory cannot be allocated.

This is not a critical problem in current setups which were regarded here, as enough main
memory exists for all applications to startup correctly. However, if larger numbers of Go tasks
need to execute in parallel, adaptations of the allocation scheme of libgo would be inevitable in
order to not run out of memory.

14 The 64 Bit version uses a different memory allocation scheme and, thus, does not have this issue.

44

4 Evaluation

In this chapter I present experiments in order to evaluate my work. In section 4.1 I analyze the
overhead of IPC using the implemented Go objects over native L4 IPC using functions directly
provided by L4Re. I also compare the performance of “normal” Go channels to L4Go channels.
The subsequent part, section 4.2, discusses whether the Go programming language is suitable
for systems development and compares it in terms of code size to languages traditionally used.

4.1 Performance

As a major part of my thesis includes the design and implementation of L4Go channels, they
have to be analyzed in terms of performance. These channels use the L4 IPC functionality
for transfering data across task boundaries, which is wrapped in Go objects for comfortable
and easy usage (see section 3.1.2). Hence, the first step of the performance evaluation is a
comparison between these Go objects and native IPC calls using the L4 C API. The second
part will focus on the channels themselves and compares their performance to “normal” Go
channels.

All measurements were performed on a machine with an Intel® Core™ 2 Duo E6750 CPU
with 2.66 GHz and 2 GiB of main memory. The kernel and userland used is L4/Fiasco.OC
revision 40788 from SVN repository and the version of libgo was revision 179017 from SVN
as well. All measured Go programs have the GC disabled.

4.1.1 IPC Performance

In order to compare the performance of the IPC Go objects, i.e., SendIpcGate and RecvIpcGate,
to native L4 IPC, I used ping-pong benchmarks. Ping-pong refers to a message that is sent by
a sender to a receiver, which will immediately send it back. I measured the number of clock
cycles until this message arrives back at the sender.

45

4 Evaluation

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

 27000

 30000

L4 IPC (intra) L4 IPC (inter) Go IPC (intra) Go IPC (inter)

C
lo

ck
 C

y
cl

e
s

IPC Type

Figure 4.1: Native L4 IPC and Go IPC ping-pong performance

Figure 4.1 shows the measured performance of a ping-pong message—an IPC call on the one
side and an open wait as well as a reply on the other—for four cases: native L4 IPC between
threads within the same process and between different processes, and IPC using the developed
Go objects for sending and receiving data, SendIpcGate and RecvIpcGate, again for the intra
and inter-process case. All measurements were performed without any actual payload, i.e., no
message registers were copied from the source to the destination. Shown is the average of
10000 repetitions, with implausibly high values being filtered out beforehand. This filtering
was done automatically, removing all measurements that were twice as high as the minimum
value. These high values are assumed to be caused by entering system mangement mode on the
x86 architecture or by interrupt handling performed by the kernel in between. The distinction
between intra and inter-process messaging is made, because the former is a special case of
the latter that can be optimized specifically. Although intra-process communication is quite
common in L4 programs written in C or C++, e.g., for synchronization between threads within
one address space, in Go the usage of channels would be the preferred way to go in that case.
Still, there are scenarios imaginable where the previously mentioned Go objects would also be
used for communication between threads within one program, for instance, for applications that
are meant to be distributed across several L4 tasks later on but with as few changes as possible.

As can be seen, the performance of IPC using the Go objects is nearly an order of magnitude
slower than with the native IPC C API (3247 versus 23054 clock cycles for the intra-process
version and 4683 versus 28580 in the inter-process case). This performance degradation can
be attributed mainly to the additional communication between threads that are employed in the
Go objects as well as the costs for scheduling. For the send case the former comes down to an
additional call to the command thread (see figure 3.2), which in turn then issues the actual call

46

4.1 Performance

to the client. The client does an open wait, which causes three communications to be triggered:
one to the command thread, one to the forward thread, and the actual wait call for incoming
data from the server (see figure 3.3). After the wait operation, the client executes the reply,
which again starts three IPC operations. As most of these operations are calls, there is a lot of
scheduling involved, because the calling threads must be blocked until the receiver executes the
reply. Furthermore, additional overhead is introduced for the transition from Go code to C++
and back. This is caused by additional wrapping layers, parameter encoding and decoding, as
well as error handling.

As briefly explained before, the difference in clock cycles between L4 IPC (intra) and L4
IPC (inter) is caused by special optimizations within the kernel for this scenario. The relatively
large difference in performance between the intra and inter-process case for the Go version of
≈5000 clock cycles, however, cannot be explained only be these optimizations, as this case is
not optimized specifically in Go and only the L4 IPC kernel tweaks still hold. My explanation
for this is the better locality in the intra-process case as well as the lack of task switches. Task
switches are costly operations, that not only cause direct costs, e.g., for flushing cashes (espe-
cially the Translation Lookaside Buffer (TLB)) and scheduling, but also indirect costs, because
more cache-misses occur due to caches not longer containing the correct data, which then has
to be refetched.

4.1.2 Channel Performance

Based on the Go objects that wrap the L4 IPC mechanisms, L4Go channels were implemented
(see section 3.2 for a detailed description of these channels). Next, I compare their runtime
performance to that of “normal” Go channels operating within one task.

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

 120000

 135000

 150000

Go Channel L4Go Channel

C
lo

ck
 C

y
cl

e
s

Channel Type

(Sender) Value sent
(Receiver) Value received
(Receiver) Sent internally
(Receiver) Decoded

(Receiver) Received IPC
(Sender) Encoded; before IPC
(Sender) Received internally
(Sender) Ready for internal receive

Figure 4.2: Go channel and L4Go channel performance

47

4 Evaluation

Figure 4.2 depicts the performance of both channel types, the Go channel that operates within
one task and the L4Go channel that performs communication accross task boundaries (but can
also be used for intra-process communcation). Shown are the average clock cycles of 10000
send operations of 64 Bit integral values from a sender to a receiver. The colored segments of
the graphs illustrate the cycles consumed by significant steps in the process of transfer in the
order they are executed.

The left bar graph shows the amount of cycles necessary for passing a small object between
two Go routines. It distinguishes between the time it takes until the receiver is unblocked, i.e.,
has received the value (7384 cycles, shown in red), and the time until the sender is unblocked
and continues to run subsequent code (additional 1944 cycles, shown in yellow).

The same action was performed using an L4Go channel that connects two tasks. It is shown
on the right. As can be seen, the bar is split into more segments than the one on the left. These
correspond to additional intermediate steps and are used to illustrate how the total amount of
required cycles is made up for a complete send operation: The sender begins by issuing a request
to send an object through a channel using the arrow syntax. After 15800 cycles (black), control
flow is passed to the internally used Go routine and it was signaled that a value was written to
this channel and can now be read. It takes additional 17144 cycles until the value is actually
received internally from the channel (purple). Next, the value is encoded into a special format,
such that type errors can be detected, and structural meta information are added (blue). This
comsumes supplemental 25728 cycles and happens right before the value is written into the
UTCB and the actual IPC call operation performed, that transfers the data to the receiver task.
After 7552 clock cycles the receiver has received the incoming IPC (light blue). It decodes the
value from its UTCB in 29840 cycles (green) and writes it to the channel in 21952 cycles (light
green). After that, it takes 7224 until the receiver actually received the value in client Go code
and can continue to run (red). The sender obtains control after another 5680 cycles (yellow).

As for the IPC comparison described in the previous section, the performance of inter-process
channels is approximately an order of magnitude slower compared to standard Go channels.
Some of the reasons for that are the same as well: a lot of blocking and scheduling is caused by
several IPC call operations and other higher level synchronization primitives like semaphores
and condition variables. As the previously evaluated Go wrapper objects are used for the actual
data transfer, their overhead comes into play here as well. However, as shown in the figure, the
actual IPC costs (light blue) are among the small contributors. Two major parts are the encoding
and decoding of data using the gob package, making up a total of 55568 clock cycles (≈42%).
These two steps could be removed safely without loosing any properties of the channel during
normal operation—they are only used to ensure type safety, i.e., detect transfer of incompatible
objects between tasks. The other parts of the communication process are essential and would
have to be profiled in more detail in order to find and fix bottlenecks.

In summary, it can be stated that although the performance of L4Go channels is not optimal,
they are easily usable and fulfill their purpose: enhancing standard Go channels for means
of inter-process communication. As was explained in section 3.2.4.2, performance was not a
primary goal in the implementation, but rather a low amount of changes to existing code, and
especially to the libgo runtime library, was desired.

48

4.2 Code Size

4.2 Code Size

Another goal of the thesis is to evaluate the usability and practicability of Go for systems devel-
opment in general and for L4 in particular. I will do this using a code complexity metric—the
lines of code necessary to achieve a certain task.

The languages traditionally used for development of drivers and services on L4 are C and
C++ and, if necessary, assembly for the associated architecture if certain features cannot be
accessed by means of these other two languages directly. Most of the functionality provided
by L4Re is implemented using these languages. In order to compare them to Go, I choose to
compare two programs equal in functionality but implemented in C++ and Go, respectively, in
terms of the Lines of Code (LOC) they are made up from.

LOC, sometimes also referred to as SLOC—Source Lines of Code—, is a metric to estimate
the size of a software program by counting the number of lines of its corresponding source
code. It is frequently used, for example, to estimate the number of man years necessary to
write a certain software from scratch or to compare two software projects in terms of their
“size” [AG83, CKHM12]. Although the LOC count is often considered a subpar metric for work
estimation, due to its dependence on the formatting of the source code, and the programmer’s
coding style (e.g., the amount and placement of parentheses), as well as the numerous ways
for solving a problem in general, most of the arguments against it do not hold in my case. For
instance, the programs that are to be compared are all written by myself and in a consistent
style. They also serve the same job by employing comparable means. As the LOC count is
easily measurable, I choose to use it as the measure for comparison.

All LOC measurements were performed using the CLOC tool developed by Al
Danial [Dan12]. It has support for a huge amount of programming languages, only some
of which are actually used here. I will use the keyboard driver as explained in section 3.3 as an
evaluation program. For that, I implemented a second version producing the same output using
C++ as the development language.

Tables 4.1 and 4.2 show the LOC count as produced by CLOC for the keyboard drivers
written in Go and C++, respectively. As can be seen, some additional files are listed there as
well: the Go driver contains seven Makefiles and one Lua script. The Makefiles are needed as
part of the integration into BID (see section 2.3.1). The Lua code is used as a start up script
for running the compiled program on L4. The C++ version has comparable files for the same
purposes. The Makefile and Lua values, as well as the numbers of blank and comment lines, are
included for the sake of completeness here and are not of further interest.

The relevant parts for the comparison are the numbers for Go and C++ code (the latter being
made up of the C/C++ Header and the C++ table entries). According to these numbers, the Go
version of the keyboard driver requires only two third of the lines of code of the corresponding
C++ version (341 versus 510 lines of code for Go and C++, respectively).

This reduction in code size for the Go version in comparison to the one implemented using
C++ can be attributed to two reasons:

• Go code is slightly more compact than C++ code.

This fact is caused by syntactical differences between Go and C++. For instance, Go
allows for multiple values to be returned directly from a function and assigned to vari-
ables, which is often useful for passing error codes or the like. In C++, one would need

49

4 Evaluation

Language files blank comment code
Go 5 51 111 341
make 7 35 0 39
Lua 1 6 1 16
Sum: 13 92 112 396

Table 4.1: Lines of code of keyboard driver written in Go

Language files blank comment code
C/C++ Header 3 40 43 258
C++ 4 52 81 252
make 4 13 0 22
Lua 1 6 1 16
Sum: 12 111 125 548

Table 4.2: Lines of code of keyboard driver written in C++

to create a new data type for this purpose.
The defer-panic-recover mechanism [Ger10] used for resource deallocation in the case
of an error is also less verbose when compared to the exception mechanism in con-
junction with the Resource Acquisition Is Initialization (RAII) idiom as often used in
C++ [Str00, Pib05].

• The Go driver uses a high-level communication mechanism.

As explained in the corresponding section, the Go driver employs an L4Go channel in
order to communicate keypress events. It abstracts from several details that have to be
implemented explicitly in the C++ version—for instance, registering a new service in the
environment and performing various sanity checks, e.g., regarding the protocol to use.
There is also no need to worry about synchronization in the Go version, as the channel
handles this transparently. In C++, one explicitly needs to perform a call on one side and
a reply on the other.

This comparison shows, that it is indeed possible to write a compact driver for L4 using
Go. All measurements have to be taken with a grain of salt, however, as it would also be
possible to outsource low-level details of the C++ version into a library and provide a more
abstract interface to this functionality (e.g., a similar mechanism to L4Go channels could be
implemented), which would reduce the LOC count if this new library is assumed to be provided
by the system and thus factored out from the evaluation.

50

5 Conclusion & Outlook

5.1 Future Work

During my work, many ideas for future work and improvements for my implementation came
to mind, which could not be incorporated into this thesis due to timing constraints or because
they were out of scope of my thesis. These include:

• Investigating the possibility of migrating channels between tasks.

In native Go it is possible to create channels of channels, e.g., chan chan int—
a channel that transports objects of type “channel of int”. In the inter-process case, i.e.,
between address spaces, this migration is challenging. The difficulties include, in addition
to the implementation itself which involves the mapping of IPC gates between tasks,
making decisions about the ownership of a channel, i.e., who is responsible for a channel
if a participating task is terminated, and the transfer of ownership.
My implementation was designed with migration of channels in mind as there is a basic
notion of a channel owner that is allowed to have a buffered channel—the client cannot
have a buffered channel—but migration itself is not supported by now.

• Wrapping of more kernel objects.

In this work, I focussed on the usage of L4 kernel objects that can be used for communica-
tion. But as explained in section 3.1, IPC gates and IRQs are not the only kernel objects
available on L4. Further work could provide easy to use wrappers for these remaining
kernel objects in Go.

• Implementation of garbage collection for L4Go channels.

Go uses a Garbage Collector for releasing no longer used memory. As Go channels are
language objects, they are automatically targeted by the GC as well. My extensions, i.e.,
the additional threads and IPC gates, however, are not cleaned up automatically because
there is no standardized way to tell the GC what destruction method to call. Rather, the
user has to release these resources explicitly.
Future work could investigate the implementation of the GC and add support for auto-
matic destruction of these L4Go channels. In addition, a standardized interface could be
implemented that allows for registering destruction functions for any user-defined object,
even accross different Go implementations.

• Performance evaluation of full-fledged Go applications that use L4Go channels for vari-
ous purposes.

The performance measurements of L4Go channels were performed in the form of micro-
benchmarks, i.e., only the process of sending and receiving a small object in a tight loop

51

5 Conclusion & Outlook

was considered. For better estimation of the impact of the performance of these channels
on total application performance, measurements should be conducted for larger applica-
tions under real world conditions, which employ L4Go channels for achieving different
goals: communication and synchronization (macro-benchmarks).

• Further comparison of Go to C++ or other languages.

My evaluation provides a comparison between Go and C++ based on one metric that
is measured on two functionally equivalent implementations of one application in both
languages: the LOC count. For more reliable results, more programs of a wider variety
of application areas should be compared. In addition, more metrics could be considered,
for instance, the development speed and the average number bugs for a certain amount of
lines of code.

• Porting of Go to other systems.

For this thesis, the system to use—L4 with its L4Re—was predetermined. Future work
could focus on porting Go to other operating systems. Ways for intergrating special fea-
tures or mechanisms of these systems into the language could be found and the result
compared in terms of effort necessary for the implementation and/or the performance
achieved. This way, these system features of interest could be improved to be represented
more easily in languages like Go.

• Adjusting L4Re and the L4 kernel to ease the implementation.

Some of the problems that occured during the implementation were posed by the L4
system itself, for instance, the binding of certain kernel objects to threads that clashes with
the way Go routines are managed. Further work could investigate changes to the system in
order to avoid costly workarounds for these problems and to simplify the implementation
of the kernel object wrappers and L4Go channels.

• Implementation of L4Go channels within the libgo runtime library.

My implementation of L4Go channels is based on a proxy approach. The decision for this
was founded mainly by the unnecessary high amount of changes that were required to the
Go compiler and runtime library by alternative approachs. However, my solution showed
that changes to the libgo runtime library are inevitable for preserving certain channel
properties. Such being the case, L4Go channels could be implemented entirely within the
libgo, as this could yield significant performance improvements, because of the removal
of one level of indirection and the direct usage of the L4 IPC C API.

52

5.2 Conclusion

5.2 Conclusion

The goal of my thesis is to evaluate the suitability of the Go programming language for the
development of services for the L4 microkernel, with focus on the integration of communication
primitives provided by the language, and compare it to languages traditionally used in the area
of systems programming.

For the implementation part, I did not have to start from scratch but could rely on my previous
work that included the porting of the Go runtime to L4—allowing generic Go programs to run
on the microkernel. My work comprises three main parts:

• Wrapping of L4 kernel objects used for communication.

I represent IPC gate and IRQ kernel objects as objects in Go. This approach works well
from a user’s point of view, who wants to access these kernel objects using Go.
The evaluation showed that the performance is nearly an order of magnitude lower com-
pared to the IPC performance using the native C API. This performance degradation is
mainly caused by communication between additional threads that were introduced. These
threads were necessary due to the L4 specific characteristic of having the kernel objects
bound to a specific thread—a feature that clashes with Go’s Go routines, which can be
mapped freely to operating system threads in a way the runtime library decides.

• Adaptation of Go channels for incorporation of IPC on L4.

The extension of Go channels to send data not only between Go routines but accross
processes boundaries is based on the Go kernel object wrappers. These L4Go channels
preserve the special Go channel syntax and their synchronization semantics and hence
can be used by developers in a familiar way to easily distribute work in Go applications
accross several L4 tasks. Unfortunately, in order to preserve the Go channel semantics, it
was inevitable to apply changes to the libgo runtime library—the gccgo compiler, how-
ever, could be left unmodified.
The performance of these channels is also an order of magnitude slower compared to the
standard intra-process Go channels. However, these channels were not implemented with
high performance in mind and there are possibilities for optimizations. If high throughput
is required, other means like communication via shared memory are available and should
be preferred.

• Implementation of a keyboard driver.

The developed keyboard driver showed, that it is possible two write drivers and services
for L4 using Go. This driver was also used as the basis for a comparison with a function-
ally equivalent one written in C++. The evaluation showed that Go allows for a one third
decrease in the lines of code compared to C++.

53

Glossary

ABI Application Binary Interface.

API Application Programming Interface.

BID Building Infrastructure for DROPS.

CLOC Count Lines of Code.

CML Concurrent ML.

DROPS Dresden Realtime Operating System.

Garbage Collector A program or routine for releasing no longer needed, i.e. referenced,
memory. When a GC is in use, the user does not need to take care of releasing dynamically
allocated memory.

GAS GNU Assembler.

GCC GNU Compiler Collection.

GNU Build System A set of tools for automating the process of building applications and
libraries for UNIX based systems. It consists of GNU Autoconf, GNU Autoheader, GNU
Automake, and GNU Libtool.

GPG GNU Privacy Guard.

IPC Inter Process Communication.

JNI Java Native Interface.

L4Env L4 Environment.

L4Re L4 Runtime Environment.

LD GNU Linker.

LOC Lines of Code.

MPL Meta Packet Language.

OCaml Objective CAML.

Plan9 A research operating sytem developed at Bell Labs beginning in the 1980s. The initial
developers were, among others, Ken Thompson and Rob Pike who are also main initiators
of the Go programming language [Lab].

55

Glossary

RAII Resource Acquisition Is Initialization.

SLOC Source Lines of Code.

TCB Thread Control Block.

TCP Transmission Control Protocol.

TLB Translation Lookaside Buffer.

UTCB Userlevel Thread Control Block.

56

Bibliography

[AG83] A. J. Albrecht and J. E. Gaffney. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans. Softw.
Eng., 9(6):639–648, 11 1983.

[Ale01] Andrei Alexandrescu. Modern C++ Design, Generic Programming and Design
Patterns Applied. Addison-Wesley Professional, 2 2001.

[Cha03a] Adam Chapweske. Keyboard Scan Codes: Set 2. http://www.
computer-engineering.org/ps2keyboard/scancodes2.html,
2003. [Online; accessed Tuesday 10th April, 2012].

[Cha03b] Adam Chapweske. The PS/2 Keyboard Interface. http://www.
computer-engineering.org/ps2keyboard, 2003. [Online; accessed
Tuesday 10th April, 2012].

[CKHM12] Jonathan Corbet, Greg Kroah-Hartman, and Amanda McPherson. Linux Ker-
nel Development: How Fast it is Going, Who is Doing It, What They are
Doing, and Who is Sponsoring It. http://go.linuxfoundation.org/
who-writes-linux-2012, 2012. [Online; accessed Wednesday 28th March,
2012].

[Dan12] Al Danial. CLOC – Count Lines of Code. http://cloc.sourceforge.
net/, 2012. [Online; accessed Sunday 20th May, 2012].

[fITS03] International Committee for Information Technology Standards. International
Standard ISO/IEC 14882 — Programming Languages - C++. American National
Standards Institute, 2nd edition, 10 2003.

[Ger10] Andrew Gerrand. Defer, Panic, and Recover. http://blog.golang.org/
2010/08/defer-panic-and-recover.html, 8 2010. [Online; accessed
Monday 21st May, 2012].

[Ger11] Andrew Gerrand. C? Go? Cgo? http://blog.golang.org/2011/03/
c-go-cgo.html, 3 2011. [Online; accessed Wednesday 22nd February, 2012].

[Gro] Numerical Algorithms Group. Calling C Library DLLs from C# – Utilizing legacy
software. http://www.nag.co.uk/IndustryArticles/Calling_C_
Library_DLLs_from_C_sharp.pdf.

[Gro03] Operating Systems Research Group. L4Env - An Environment for L4 Applications.
http://os.inf.tu-dresden.de/l4env/doc/l4env-concept/
l4env.pdf, 6 2003.

57

http://www.computer-engineering.org/ps2keyboard/scancodes2.html
http://www.computer-engineering.org/ps2keyboard/scancodes2.html
http://www.computer-engineering.org/ps2keyboard
http://www.computer-engineering.org/ps2keyboard
http://go.linuxfoundation.org/who-writes-linux-2012
http://go.linuxfoundation.org/who-writes-linux-2012
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://blog.golang.org/2010/08/defer-panic-and-recover.html
http://blog.golang.org/2011/03/c-go-cgo.html
http://blog.golang.org/2011/03/c-go-cgo.html
http://www.nag.co.uk/IndustryArticles/Calling_C_Library_DLLs_from_C_sharp.pdf
http://www.nag.co.uk/IndustryArticles/Calling_C_Library_DLLs_from_C_sharp.pdf
http://os.inf.tu-dresden.de/l4env/doc/l4env-concept/l4env.pdf
http://os.inf.tu-dresden.de/l4env/doc/l4env-concept/l4env.pdf

Bibliography

[Gro10] Operating Systems Group. L4 Runtime Environment. http://os.inf.
tu-dresden.de/L4Re, 2010. [Online; accessed Thursday 8th December,
2011].

[Inc09a] Google Inc. Command cgo. http://golang.org/cmd/cgo, 2009. [Online;
accessed Wednesday 22nd February, 2012].

[Inc09b] Google Inc. FAQ. http://golang.org/doc/go_faq.html#
overloading, 2009. [Online; accessed Tuesday 21st February, 2012].

[Inc09c] Google Inc. Go For C++ Programmers. http://golang.org/doc/go_
for_cpp_programmers.html, 2009. [Online; accessed Saturday 21st Jan-
uary, 2012].

[Inc09d] Google Inc. The Go Programming Language. http://golang.org, 2009.
[Online; accessed Monday 5th December, 2011].

[Inc09e] Google Inc. Package fmt. http://golang.org/pkg/fmt, 2009. [Online;
accessed Tuesday 13th March, 2012].

[Inc09f] Google Inc. Package gob. http://golang.org/pkg/gob, 2009. [Online;
accessed Wednesday 25th January, 2012].

[Inc09g] Google Inc. Package io. http://golang.org/pkg/io, 2009. [Online;
accessed Tuesday 13th March, 2012].

[Inc09h] Google Inc. Package netchan. http://golang.org/pkg/netchan, 2009.
[Online; accessed Monday 5th December, 2011].

[Inc09i] Google Inc. Package opengpg. http://golang.org/pkg/crypto/
openpgp, 2009. [Online; accessed Tuesday 13th March, 2012].

[Inc09j] Google Inc. Package reflect. http://golang.org/pkg/reflect, 2009.
[Online; accessed Monday 6th February, 2012].

[Inc09k] Google Inc. Package zip. http://golang.org/pkg/archive/zip, 2009.
[Online; accessed Tuesday 13th March, 2012].

[Inc09l] Google Inc. Package zlib. http://golang.org/pkg/compress/zlib,
2009. [Online; accessed Tuesday 13th March, 2012].

[Ing02] Brian Ingerson. Inline::C. http://search.cpan.org/˜ingy/
Inline-0.44/C/C.pod, 2002. [Online; accessed Wednesday 22nd February,
2012].

[Jon96] Richard Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley, 1st edition, 9 1996.

[Kau06] Bernhard Kauer. L4Env-core Interface. http://os.inf.tu-dresden.de/
opentc/download/l4env-core.pdf, 5 2006.

58

http://os.inf.tu-dresden.de/L4Re
http://os.inf.tu-dresden.de/L4Re
http://golang.org/cmd/cgo
http://golang.org/doc/go_faq.html#overloading
http://golang.org/doc/go_faq.html#overloading
http://golang.org/doc/go_for_cpp_programmers.html
http://golang.org/doc/go_for_cpp_programmers.html
http://golang.org
http://golang.org/pkg/fmt
http://golang.org/pkg/gob
http://golang.org/pkg/io
http://golang.org/pkg/netchan
http://golang.org/pkg/crypto/openpgp
http://golang.org/pkg/crypto/openpgp
http://golang.org/pkg/reflect
http://golang.org/pkg/archive/zip
http://golang.org/pkg/compress/zlib
http://search.cpan.org/~ingy/Inline-0.44/C/C.pod
http://search.cpan.org/~ingy/Inline-0.44/C/C.pod
http://os.inf.tu-dresden.de/opentc/download/l4env-core.pdf
http://os.inf.tu-dresden.de/opentc/download/l4env-core.pdf

Bibliography

[LA10] Jork Löser and Ronald Aigner. Building Infrastructure for DROPS (BID) Specifi-
cation, 4 2010.

[Lab] Bell Labs. Plan 9 from Bell Labs. http://plan9.bell-labs.com/plan9.
[Online; accessed Thursday 8th December, 2011].

[Li04] Peng Li. Safe Systems Programming Languages. 2004.

[Lia99] Sheng Liang. The Java™ Native Interface – Programmer’s Guide and Specifica-
tion. Addison-Wesley Longman, 7 1999.

[Lie96] Jochen Liedtke. L4 Reference Manual - 486, Pentium, Pentium Pro. 1996.

[MHD+07] Anil Madhavapeddy, Alex Ho, Tim Deegan, David Scott, and Ripduman Sohan.
Melange: creating a “functional” internet. SIGOPS Oper. Syst. Rev., 41(3):101–
114, 3 2007.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[MYS03] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths Demolished.
2003.

[Pib05] Roland Pibinger. RAII, Dynamic Objects, and Factories in
C++. http://www.codeproject.com/Articles/10141/
RAII-Dynamic-Objects-and-Factories-in-C, 4 2005. [Online;
accessed Monday 21st May, 2012].

[Poh08] Aaron Pohle. Eine Shell für L4Env. Belegarbeit, Technische Universität Dresden,
5 2008.

[Rei91] Martin Reiser. The Oberon System. User’s Guide and Programmer’s Manual (ACM
Press). Addison-Wesley, 5 1991.

[Rep91] John H. Reppy. CML: A higher concurrent language. SIGPLAN Not., 26:293–
305, 5 1991.

[RRX09] John H. Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel Concurrent ML.
SIGPLAN Not., 44:257–268, 8 2009.

[RW92] Martin Reiser and Niklaus Wirth. Programming in Oberon - Steps beyond Pascal
and Modula. Addison-Wesley, 3 1992.

[Sco09] Michael L. Scott. Programming Language Pragmatics, Third Edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2009.

[Str00] Bjarne Stroustrup. The C++ Programming Language: Special Edition; Appendix
E: Standard-Library Exception Safety. Addison-Wesley Longman, 3nd edition, 2
2000.

59

http://plan9.bell-labs.com/plan9
http://www.codeproject.com/Articles/10141/RAII-Dynamic-Objects-and-Factories-in-C
http://www.codeproject.com/Articles/10141/RAII-Dynamic-Objects-and-Factories-in-C

Bibliography

[Sut02] Herb Sutter. The New C++: Smart(er) Pointers. http://www.drdobbs.
com/184403837, 8 2002. [Online; accessed Thursday 31st May, 2012].

[Tea] The GCC Team. GCC, the GNU Compiler Collection. http://gcc.gnu.
org/. [Online; accessed Thursday 8th December, 2011].

[Tho] Ken Thompson. Plan 9 C Compilers. http://plan9.bell-labs.com/
sys/doc/compiler.html. [Online; accessed Wednesday 4th January, 2012].

[WG92] Niklaus Wirth and Jörg Gutknecht. Project Oberon. The Design of an Operating
System and Compiler (ACM Press Books). Addison-Wesley, 11 1992.

[Wik11] Wikipedia. Go (Programming Language). http://en.wikipedia.
org/w/index.php?title=Go_(programming_language)&oldid=
484405078, 2011. [Online; accessed Wednesday 28th March, 2012].

[Wir88] Niklaus Wirth. The programming language Oberon. Softw. Pract. Exper.,
18(7):671–690, 7 1988.

[WL11] Alexander Warg and Adam Lackorzynski. Rounding Pointers – Type Safe Capabil-
ities with C++ Meta Programming. Sixth Workshop on Programming Languages
and Operating Systems, 10 2011.

60

http://www.drdobbs.com/184403837
http://www.drdobbs.com/184403837
http://gcc.gnu.org/
http://gcc.gnu.org/
http://plan9.bell-labs.com/sys/doc/compiler.html
http://plan9.bell-labs.com/sys/doc/compiler.html
http://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=484405078
http://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=484405078
http://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=484405078

	Introduction
	Motivation
	Document Structure

	State of the Art
	
	[s]
	[s]
	Example
	Implementations
	Packages
	Reflect
	Netchan
	Gob

	L4
	Kernel Objects
	[s]
	IPC
	Capabilities

	 on L4
	bid
	Building Programs
	Language Interaction

	Related Work

	Design & Implementation
	Kernel Objects
	 Objects
	[s]
	Command Thread
	Send
	Receive
	Reply
	SendIpcGate
	RecvIpcGate
	Capabilities

	[s]
	SendIrq
	RecvIrq

	L4Go Channels
	Requirements
	Preconditions
	Usage of Netchan
	Design
	The Interface
	Possible Implementations
	Proxy Channels

	Implementation
	IPC Channels
	Multiplexing of Channels
	Shared Memory Channels

	Runtime Library Modifications
	 Implementation
	Hooks
	No Hook Versions

	Keyboard Driver
	Driver
	Client

	Problems
	ipc Cancelation
	Initial Memory Allocation

	Evaluation
	Performance
	IPC Performance
	Channel Performance

	Code Size

	Conclusion & Outlook
	Future Work
	Conclusion

	Glossary
	Bibliography

