
Texas Instruments article page 1

DSPs as flexible Multimedia
Accelerators

Robert Baumgartl, Hermann Härtig
Department of Computer Science
Dresden University of Technology

{robert.baumgartl, hermann.haertig}@inf.tu-dresden.de

ABSTRACT

The increase of multimedia data processing
requires immense processing power and transfer
bandwidth as well as the consideration of real-time
requirements. To reduce the CPU load the
integration of flexible coprocessors seems to be a
promising approach. This paper focuses on the
integration of Digital Signal Processors (DSPs) as
flexible multimedia accelerators into standard PC
architectures running microkernel-based systems.
Three components proved essential for multimedia
acceleration: First, a data transfer mechanism
capable of sustaining at least 30 Mbytes/s transfer
rate, second, a DSP kernel with static scheduling
and a very efficient context switch and third, a
microkernel server running at the host which is
responsible for data transfer between DSP and
CPU and for calculating DSP schedules.

1. INTRODUCTION

The increasing integration of multimedia data into
applications requires immense processing power and
transfer bandwidth as well as the consideration of
real-time requirements. This situation results in an
unacceptable slowdown of applications and high
latency of the system. The usual approach of
concentrating more and more computing power into
the main processor does not provide a durable
solution, because at the same time more and more
complex multimedia algorithms (data compression,
3D graphics, music synthesis) are being deployed.
One approach to this dilemma is to incorporate
specialized accelerators into the computer system and
remove computing-intensive code and interrupt load
from the CPU.

The following features render DSPs as ideal for this
task [5]:

1. DSPs allow a high degree of parallelity and
incorporate special features into the instruction set
and into arithmetic and addressing units resulting
in an extremely powerful processor core. Most

multimedia algorithms require exactly this vast
amount of computing power.

2. DSPs are designed to handle large amounts of
streamed data, which are common in multimedia
applications.

3. DSPs are comparatively easy to operate under
real-time conditions. It is much easier to predict
execution times for a given piece of DSP code
than for general purpose processor (GPP) code.
Most multimedia tasks (e.g. video or audio
codecs) run under real-time conditions.

4. The price-performance ratio of DSPs is much
better than that of GPPs.

5. DSPs are designed to operate under heavy
interrupt load which is very common in audio
processing.

6. In contrast to special chipsets, DSPs are freely
programmable. This eases migration to newly
evolving algorithms and applications.

Therefore, the aim of our work is to demonstrate
DSPs as multimedia accelerators and establish them
as component within a microkernel-based real-time
system running on standard PC hardware. This
component comprises a DSP, a bus interface to the
host, local memory and interfaces to the outside world
(e.g., audio codec, telephony interface). It obsoletes
external hardware components of the host (e.g.,
MPEG decoder, sound card).

A part of the project focuses on the analysis and
evaluation of different bus systems (e.g., ISA, SCSI,
PCI) and transfer mechanisms, to select the most
efficient hardware interface between CPU and
accelerator [1]. Other parts deal with benchmarking
DSPs, the development of application examples [7] or
the evaluation of applications with respect to their
possible acceleration by DSP architectures.

We use standard PC hardware as basis for our
experiments. The test system is a Pentium 166 MMX
equipped with 64 MBytes of RAM and 512 kBytes
2nd level cache. The DSP subsystem consists of a PCI
plug-in board equipped with a TMS320C44 DSP

Texas Instruments article page 2

module, clocked at 50 MHz and 128 kWords of static
memory each for the local and the global address
space. The board features an AMCC S5933 PCI
controller and is able to perform PCI Busmaster
DMA.

The remainder of the paper is organized as follows:
Section 2 gives a brief overview of our prototype
system. The following two sections go into some
detail focusing at some aspects of the DSP kernel
(section 3) and discussing relevant concepts of the
server running at the host in section 4. Section 5
shows the current state of the project, presents some
performance numbers and gives a short outlook.
Finally, the paper is summarized and the main lessons
learned to date are pointed out in section 6.

2. SYSTEM OVERVIEW

The aim of the project is to construct a working
prototype to demonstrate the acceleration capabilities
of DSPs in standard PC environments using
microkernels. This section gives a brief overview of
the realized system.

The basic scheme can be described best by the
example in figure 1. The box on the left shows the
software environment of the host. At the lowest level
runs a very efficient microkernel which offers only the
most basic operating system functionality. On top of
it, a number of servers provide more complex
operating system functionality. Servers are
responsible for controlling hardware components, for
instance the file system, the network interface and the
multimedia accelerator, that is the DSP subsystem.

The latter is depicted at the right side of figure 1.
Within the DSP, a small coprocessor-optimized kernel
is run, which is responsible for activating diverse
tasks offering acceleration functionality for host
processes. Application examples include multimedia
data encoders and decoders, kryptography software or
music synthesizers.

Now consider an application running at the host and
requiring accelerator functionality, for instance
decoding of an MPEG audio stream. This application
will initiate a Quality-of-Service negotiation with the
DSP server, which is informed about the actual
workload of the DSP subsystem. Based on this
knowledge, the server either rejects or grants DSP
access to the application. It analyzes the stream to be
processed and estimates the necessary DSP resources
(CPU time, memory, access to periphery). If
necessary, it downloads application code to the DSP.
Then, a new DSP schedule is generated and
transmitted to the DSP. Finally, after the new DSP
task has been integrated into the DSP task activation
mechanism, the DSP server manages data transfer
from the application process to the DSP (and vice
versa, if necessary).

The application process is allowed to interrupt the
connection at any time, resulting in the server
determining a new DSP schedule (excluding the now
unnecessary task from further processing) and
transmitting it to the DSP. The task’s code remains in
DSP memory until the memory is required by another
task.

3. THE DSP KERNEL

The immense processing power of actual DSPs [3] led
to the idea of distributing acceleration functionality
across more than one host process at the same time,
which requires a kind of operating system for the
DSP. To make as much processing power available as
possible, this kernel has to be implemented very
efficiently. The main design decisions were:
1. We limit DSP tasks to periodic processing of

streams with constant deadlines, which is typical
for most current multimedia applications [2].
Therefore, tasks to be run at the DSP can be
described by execution length and activation
frequency.

2. The computation of schedules is complex and not
very well suited to DSP architectures. Hence, this
computation is moved into the host server. The
DSP itself does only static scheduling. A desired
side effect is a very short context switch time of
the DSP kernel.

3. To lower the kernel’s requirements of the sparse
resource (static) DSP memory, it realizes only
mechanisms fundamentally necessary for
coprocessing. For instance, dynamic memory
management and inter-process communication are
excluded from the DSP kernel.

4. It is absolutely mandantory to preserve the
communication performance of the underlying

CPU (Host) DSP (Subsystem)

µK

...

Application

OS

Video
Codec

 ...
Linux
Server

A
ud

io
 C

od
ec

DSP
Server

Display
Server

Audio
Codec

coded
Audio
data decoded

Audio
data

coded
Audio
data

Figure 1: Example of Acceleration Mechanism

Texas Instruments article page 3

hardware. In [1] we described, how an efficient
implementation of PCI busmaster DMA affects the
transfer rate. By a careful optimization process we
were able to raise the achievable transfer rate from
approximately 3 Mbytes/s to 33 Mbytes/s. We
chose PCI Busmaster DMA as appropriate transfer
mechanism for data to be processed, whereas
signalling between host and DSP kernel is done
via conventional mailboxes.

5. Due to the constant deadlines of the DSP tasks a
timer-activated context switch is useful. The
kernel manages an according table of timing
values for tasks. To prevent a task violating its
deadline of corrupting the whole system,
preemptive scheduling must be used.

6. For overhead and efficiency reasons, we consider
high level languages (HLL) as „C“ inappropriate
for implementation of the kernel. Therefore, the
whole kernel software as well as our application
examples were implemented in assembler
language.

Hence, we identified the minimum necessary kernel
functionality as follows:

• installation, start and deletion of tasks,
• context switch,
• communication with host and necessary

synchronization,
• management of buffer memory for

communication,
• management of peripheral devices (e.g., audio

codecs or modem hardware).

Note that the installation of a task is distinct from its
start. Installation includes download of the code,
initialization of the necessary kernel structures and
transmission of the timer value. The task is started
immediately after transmission of the new schedule
calculated by the host server.

Figure 2 summarizes some of the architectural aspects
of the kernel. One period of scheduling consists of a
number of N real-time tasks, being activated one after
another. Then, exactly one non-real-time task is
called, provided there is still DSP execution time

available within the period. This task consumes the
within the period remaining DSP processing time. A
constant number of clock cycles at the end of every
period is reserved for the kernel, which manages data
transfer between host and DSP.

To summarize, our kernel has the following features:
• static, preemptive scheduling,
• dynamic load of applications at system’s runtime,
• very exactly predictable timing of system services,
• implemented in optimized assembler language.

4. MICROKERNEL SERVER

On the host side, we rely on microkernel technology
for flexibility, security and performance reasons. The
basic idea is that a very lean (and therefore very fast)
microkernel provides only a minimal set of operating
system abstractions. More complex functionality is
built using these abstractions in servers running in
user space. Assuming a highly optimized
implementation, a port of a classical monolithic
operating system to a microkernel is almost as
efficient as its pure monolithic counterpart [4]. For
further information on microkernels we refer to [6].

Figure 3 shows the architecture of the DSP server
running at the host. In principal it consists of 5
components. An application wanting to access
accelerator functionality opens communication with
the server via the frontdoor component. The
frontdoor realizes a name server with whom
applications may find out, which acceleration services
the DSP subsystem offers (that means, for which
algorithms DSP code exists).

If the requested functionality is available, one of N
evaluators (one evaluator for every DSP
application) is activated. Its purpose is to determine
the needed DSP resources:

• by reading an appropriate stream description of
the file to be processed by the DSP, or

RTTask_1 RTTask_2 RTTask_N... non-RTTask Kernel RTTask_1

1 period

N real-time tasks with
• activation frequency fa
• execution time tr

one non-real-time task
• consumes remaining DSP time
• tr may be (temporarily) 0

DSP kernel:
• code transmission
• installation, deletion
 of tasks
• data transmission

Figure 2: DSP Scheduling

frontdoor

eval_1 eval_2 eval_N...
DSP admission control

installer

transceiver

Host DSP

stream
description

DSP
application

data to be
processed

Figure 3: Host Server Architecture

Texas Instruments article page 4

• by directly analyzing the header of the file and
extracting relevant parametes (e.g., for an MPEG
audio encoder, this may be layer number, target
bitrate and aural mode).

The evaluator estimates the prospected DSP
processing time and memory requirements and
transmits them to the admission control
component.

The admission control keeps track of the
current DSP workload and tries to determine a new
schedule for the DSP based on the new task to be
integrated. If this is not possible (for instance due to
exceeding CPU requirements), the acceleration
service is denied. Otherwise, the new DSP schedule is
transferred to the installer which transmits it to
the DSP.

Additionally, the installer checks, whether or not
the according DSP code is already present in DSP
memory and initiates the download, if necessary.

The DSP now integrates the new task into its
scheduling cycle. On the host side, the
transceiver takes control and organizes data
transfer between application process and DSP task.
Transfers can be uni- or bidirectionally.

5. RESULTS

In this section we want to discuss some performance
aspects of our protoype. First we will demonstrate
data concerning hardware data transfer mechanisms,
befor we present first performance numbers of the
DSP kernel.

Figure 4 illustrates the achieved transfer rates for
different message sizes of our hardware with different
mechanisms and implementations.

The original routines of the board´s vendor are based
on the traditional mailbox mechanism, that is a word-

by-word transfer using polling by both processors.
Regardless of the message size this mechanism
delivers a transfer rate of 1.5 Mbytes/s only which is
unacceptable for multimedia applications.
Additionally it wastes CPU and DSP resources by
actively waiting for communication.

Surprisingly, switching to PCI busmaster DMA (by
using additionally supplied vendor routines) resulted
in approximately doubling the transfer rate to 3.2
Mbytes/s only which is far away from the 132
Mbytes/s theoretically possible with 32 bit wide PCI.

We then applied a careful analysis to the
communication libraries and implemented our own
hand-optimized version. By exploiting the main
architectural features of the DSP we lowered the
length of the innermost transmission loop from 15 to 1
instruction cycles. As a result, we achieved almost ten
times the transfer rate as with the unoptimized
routines with a peak performance of 33.5 Mbytes/s for
messages of 64kBytes length. This result emphasizes
the importance of a very efficient implementation of
the basic data transfer mechanism. Discussions with
the PCI controller vendor and with other researchers
hinted that this is the maximum transfer rate
achievable with this PCI controller.

Due to the still ongoing development process we are
able to present preliminary kernel performance
numbers only. For more up-to-date results we refer to
our web pages (cf. section 6).

Firstly, the context switch needs 110 instruction
cycles. Because the TMS320C44 DSP comprises 40
registers necessary to preserve per task, 80 cycles are
necessary to save and restore them. The remaining 30
cycles implement the switch mechanism,
demonstrating a very low overhead. Based on a clock
frequency of 50 MHz, the context switch needs 4.4
microseconds.

Second, the interrupt latency (the time between
raising the interrupt signal on the processor pin and
the execution of the first instruction of the interrupt
service routine) is bound by the processor’s hardware
only. In contrast to other DSP operating systems, we
do not need to switch off the processor’s interrupts.
Therefore, the latency is as low as 3 instruction
cycles.

Third, the current kernel implementation needs
approximately 4 kwords of DSP memory, which we
consider acceptable for the offered functionality.

10

Transfer Rate
 [Mbytes/s]

2 4 8

31.3

18.120

30

32

25.0
28.6

Message Length
 [kBytes]

16 64

33.532.7

2.9 3.0 3.1 3.2 3.2 3.2

unoptimized DMA

optimized DMA

40 vendor OS (Mail-
boxes)

1.5

Figure 4: Communication Performance

Texas Instruments article page 5

6. CONCLUSION & OUTLOOK

As we have demonstrated, it makes sense to integrate
DSPs as flexible accelerators into standard PC
architectures, if the following conditions are satisfied:

• hardware communication mechanism capable of
delivering at least 30 Mbytes/s (e.g., PCI or
FireWire),

• efficient DSP kernel with minimal coprocessor
abstractions,

• efficient control component running at the host,
• wide software base for the DSP.

As a next stage of the project we want to explore
methods and tools for the automated generation of
DSP kernel and microkernel server for heterogeneous
DSP and microkernel architectures. Second, the
possible adaptation of the kernel to a DSP
multiprocessor system will be investigated.

To find out more about our project, we refer to our
webpages which can be found at:

http://os.inf.tu-
dresden.de/~baumgrtl/work.html

ACKNOWLEDGEMENTS

The authors want to thank Jean Wolter, Michael
Hohmuth, Martin Borriss, Sebastian Schönberg and
Lars Reuther for discussion, proofreading and helpful
comments.

REFERENCES

[1] Baumgartl, Robert; Härtig, Hermann: Efficient
Communication Mechanisms for DSP-based
Multimedia Accelerators, Proceedings of the 8th

International Conference on Signal Processing
Applications & Technology (ICSPAT´97), San Diego,
1997

[2] Baumgartl, Robert; Stuhlemmer, Kai; Härtig,
Hermann: Data Dependency in MPEG Audio Frame
Decoding Time on a DSP Accelerator, accepted for
publication at the 9th International Conference on
Signal Processing Applications & Technology
(ICSPAT’98), Toronto, September 1998

[3] Bier, Jeff et al: Buyer’s Guide to DSP Processors,
Berkeley Design Technology Inc., Berkeley, 1997

[4] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg,
J. Wolter: The Performance of µ-Kernel-based

Systems, Proceedings of the 6th Symposium on
Operating System Principals (SOSP); St. Malo, 1997

[5] Lapsley, Phil: DSP Chips enable PC Multimedia,
Microprocessor Report, 8(1994)

[6] Liedtke, Jochen: On Micro-Kernel Construction,
Proceedings of the 5th Symposium on Operating
System Principles (SOSP), Copper Mountain Resort,
1996

[7] Stuhlemmer, Kai: Echtzeitfähiger MPEG-Audio-
Encoder für DSP, Master´s Thesis, Dresden
University of Technology, 1998 (in german)

