Flexible-Sized Page-Objects

H. Hirtig, J. Wolter
Dresden University of Technology
Computer Science Department

{Hermann.Haertig,Jean. Wolter } @inf.tu-dresden.de

Abstract

Demand-paging memory-management systems usually
work with pages of fixed size. This is a limitation in sys-
tems relying on hierarchies of pagers to build layers of ab-
stract machines. A generalized scheme is presented that al-
lows for pages of flexible sizes and for multiple pages to be
mapped within a single page-fault operation. Performance
measurements (microbenchmarks) of a prototype implemen-
tation are presented.

1. Introduction

The invention of external pagers in the Mach system has
been a major step in the development of p-kernels. Here,
so called memory objects are mapped to regions of an ad-
dress space. A page fault is transformed by the kernel into
a message to another task (a pager) which implements the
memory object. The pager loads a page frame and returns it
to the kernel which in turn inserts it into the address space of
the faulting task. The kernel maintains a memory cache ob-
ject for bookkeeping purposes. Also, the kernel implements
page replacement policies. Once it selected a page frame
to be replaced, it sends a message to the external pager. In
detail, this results in a rather complex and inherently ineffi-
cient protocol. More recent u-kernels[3] overcome most of
these limitations and inefficiencies.

Another important invention, generally attributed to the
Mach system, are out-of-line messages. Messages are not
explicitely but lazily copied using memory mapping tech-
niques (copy on write). For such out-of-line messages the
kernel chooses a contiguous location in the receiver's ad-
dress space. In OSF's version of Mach, the receiver may
specify a sequence of areas which are filled contiguously
with the incoming message.

Both mechanisms are important for Object Orientation
in Operating Systems. They allow a server to present —
potentially very large — objects to a client in the client's
address space, either as a mapped structure using page faults

1063-5351/96 $5.00 © 1996 IEEE
Proceedings of INOOOS '96

102

J. Liedtke
IBM T.J. Watson Research Center
GMD
Jochen@watson.ibm.com

or as a copy.

However, both mechanisms in their current form are
pretty limited. They do not allow to preserve the composite
structure of an object and to make use of that structure for
efficiency and other purposes. Rather, the kernel enforces
a break down of the structure to contiguous messages or to
single page faults.

In addition, message passing as caused by page faults
and as used for out-of-line messages are subtly differ-
ent. Page faults result in temporary mapping while out-
of-line messages result in (virtual) copies. lLe., an explicit
send/receive pair may not replace a send/receive pair as ex-
ecuted as the result of a page fault.

This paper describes an alternate scheme. It allows a re-
ceiver to specify an arbitrary area (a flexpage) in its address
space and it allows a sender to place several object parti-
tions of arbitrary size (flexpages) into the area specified by
the receiver. Hence, a page fault is nothing but a kernel gen-
erated send operation with the faulting address followed by
a receive operation specifying the complete address space
as placement area. It may be replaced on the faulting side
by an explicit rpc operation. A page fault handler may re-
turn multiple pieces to be inserted into the faulting address
space.

This paper discusses the questions that immediately
arise. Is the scheme useful at all? How is the the receiv-
ing address space protected? How do sender and receiver
determine where the kernel maps flexpages? Is that scheme
efficiently implementable?

2. Application scenarios

The first simple application is informed prefetching.
E.g., once a blocked process restarts and starts faulting, the
external pager can reload the working set and place it into
the faulting address space within one page fault operation.
This, to our knowledge, is not possible with current exter-
nal pagets, but quite common in monolithic systems (e.g.
VMS). A scheme that enforces page faults per non-mapped
page may cause a severe bottleneck in a system that heav-

ily relies on hierarchies of pagers to build levels of abstract
machines [3].

More generally speaking, when an address space has
very large areas with mapped objects that are managed by
their pagers, a single receive operation for a whole area (
e.g. a single page fault) allows for the insertion of all page
frames currently available at the side of the object manager.
No knowledge can be expected on the sender's side of the
available area in the receiver's address space. No knowl-
edge can be expected at the receiver's side about the avail-
ability of page frames on the manager's side.

If everything is broken down to fixed-size single page-
faults, structural information that is available at higher lev-
els of abstraction is lost. Hence, flexpages permit to handle
larger regions as composed objects and thus support opti-
mization at the user- and u-kernel-level. For example, map-
ping and unmapping of 4 MB regions (even if the hardware
does not support 4 MB pages) or complete address spaces
can be substantially improved on some processors.

Some speculations may be allowed for the areas where
the described scheme may become very useful:

® An external pager may maintain a large database
which is partially mapped to a client's address space.
When a page-fault occurs, the pager may want to map
either a very small fraction of the memory object con-
taining just one record or a very large one to enable
the client to do extensive searches.

An external pager may provide its clients with an
abstraction of a variable bandwidth stream. For ex-
ample, depending on the compression ratio, the next
page of a streamm may be either moderately small or
very large.

An external pager providing code images may main-
tain code files in chunks of variable size based on
prior knowledge of working set behavior. For exam-
ple, a page-fault in a certain region of the program
may result in the mapping of either a very large por-
tion of the address space or just a page corresponding
to a page as supported by the underlying architecture.

These examples show that the use of pages of variable
size is not restricted to hardware architectures supporting
several sizes but also to software determined sizes.

3. Passing flexible pages

.This section introduces a mechanism for passing flexible
pages in a stepwise manner.

103

3.1. Message passing and basic page-fault handling
inL4

L4 components of messsages that are transferred using
mapping techniques are called flexpages due to their flexible
size properties. However, since even for fixed-sized pages,
L4's message passing differs significantly from Mach and
similar systems, its semantics is explained here by contrast-
ing it to Mach's message passing.

In Mach, a send/receive pair of operations causes the ker-
nel the produce a virtual copy, i.e. the sent partition of a
memory object is virtually copied. A new virtual memory
region is created, that is backed up by the original exter-
nal pager as long as it is not written to. The kernel uses its
knowledge about memory objects, especially the memory
object cache.

In L4, sending a flexpage means only mapping it. The
operations merely establishes a temporary mapping into the
receiver's address space. It is neither permanent nor it is a
copy. At any given time, the sender may flush the mapping
again.

When a page fault occurs, the faulting thread traps into
the kernel (see Figure 1). The kernel generates a blocking
RPC to the appropriate pager (which is a thread attribute set
by the user). Basically, the virtual fault address and access
type (read/write) are sent to the user-level pager. The pager
makes the page available (allocates page frames, loads them
from disk etc.) and then passes the appropriate flexpage
to the faulting thread. The receive part of the p-kernel-
generated RPC maps the received flexpage into the address
space of the faulting thread. (Note that there is nothing spe-
cial on a kernel-generated page-fault RPC. The user can ex-
ecute the same RPC explicitly and will get the same flex-
page mapped.)

Here is another notable difference to Mach: the region
structure of an address space as maintained by the Mach
kernel is in L4 systems generally maintained at user level
(by the involved pagers), not in the p-kernel. This situation
is illustrated in Figure 2. A kernel generated pagefault is
sent first to a pager acting as region manager, i.e. maintain-
ing information which objects are mapped to which regions
of an address space. The region manager uses an arbitrary
protocol to communicate with an object manager. E.g., the
region manager sends an address indicating at which object
offset the pagefault occurred. The receive operation exe-
cuted by the region manager uses at most the involved re-
gion as a flexpage, since it trusts the object manager only
with respect to that region.

One advantage of using message passing for mapping
is that the principle of independence is not violated: The
pager determines whether it will send a page, which page
and page size it is willing to supply. The recipient deter-
mines, whether it accepts a page, at which region in its own

pager client
virtual address

o R

(ORISR
: page handle
pager code (user) client code (kernel)
receive pf message call pager
lookup page
reply flex page

Figure 1. Basic Page-fault Handling.

object
manager

(O

object manager
code (user

region
manager

client

virtual address
Q O
receive:

full address space
as flex page

object offset

receive:
flex page region

%101’! man ager

e (user) client code (kernel)

receive pf message

lookup object’s flex
pages

reply flex pages

receive pf message

compute region,
object offset

call object manager

call region manager

Figure 2. Generalized Page-fault Handling.

address space and up to which size.

Similar to other types of messages, these messages can
be intercepted by chiefs. In particular, a chief may substi-
tute another page mapping to forward to the faulting thread.

The next subsection discusses flexpages in more detail
using examples as they arise in the context as shown in Fig-
ure 2.

3.2. Flexible pages

A flexpage is an address space interval of the size
2" x HW-pagesize. Locations of flexpages are aligned to
multiples of their size. The binary representation as shown
in Figure 3 is chosen to achieve very high efficiency for the
implementation.

A receive operation specifies a flexpage in the receiver's
address space, a send operation a flexpage in the sender’s
address space and an offset. These flexpages can be of ar-
bitrary size. The parameters suffice to determine the map
address without any further negotiation protocol. That is
described in the following using page-fault handling as an
example.

104

significant Eart of flex page
dress

\ e

size

length = 32 - log, (size)

Figure 3. Binary Representation of Flex
Pages. '

First, let us assume that a region in an address space con-
sists of just one flexpage and a pager maintains a memory
object in multiples of flexpages of the same size as the re-
gion (Figure 4). Then, a page-fault message containing the
memory object offset is used by the pager to identify the
flexpage to be sent back to the faulting thread. Since both
flexpages are the same size, the mapping to be performed
by the implementation of the receive operation is obvious.

client’s address
space

}

pager’s address
space

receive flex
page

send flex
page

N

Figure 4. Sender's and receiver's flexpages
are the same size

However, the assumption that a client uses regions of
memory objects only in such sizes as used by a pager imple-
menting the memory object is overly restrictive. In general,
the following page-fault situations are common:

o the flexpage identified by the pager is larger than the
region (Figure 5)

e the flexpage is smaller (Figure 6)

e the pager uses some small scattered flexpages to fill a
receiver's flexpage (Figure 7).

These three cases and their treatment are discussed be-
low.

In the case shown in Figure 5, only a fraction of flexpage
as specified by the pager is mapped. The address of the
fraction to be mapped is derived from the base address of
the receiver's flexpage as indicated in Figure 5.

pager’s address client’s address
space space
|-~ |y receive flex

page
send flex
page

fraction

significant high order
bits of sender’s base
/_/;_.\ .

[S31 Snl |

\

[S37 - Sp|Rup - Ry| O

/

Ry . Ry Ry j Ry

fraction

7/

vV
significant high order
bits of receiver’s base

Figure 5. Large Send Flexpage

In the case shown in Figure 6, the fraction of the re-
ceiving flexpage cannot be chosen without prior knowledge
about its position. To that purpose the sender returns a po-
sitioning address, which is used by the kernel to derive the
position of the sent page within the receiving flexpage as
indicated in Figure 6.

The scheme can also be used to handle case 3 as de-
" scribed above. If a thread specifies a flexpage in a receive
operation then a pager thread can send arbitrary many flex-
pages, e.g. all pages currently present in main memory. For
each flexpage sent by the pager, its positioning address is
sent along leading to the situation shown in figure 7. It also
makes sense to reply no flexpages. E.g., in the situation as
illustrated in Figure 2, the region manager may be a thread
sharing the client's address space. Then, all the all neces-
sary mapping has been done as effect of the region man-
ager's receive operation.

4. Performance measurements

This section gives performance figures as obtained from
the initial implementation on a 33 Mhz 1486 based PC. The
measurement scenario is as follows. Flex pages are sent

105

client’s address
space

pager’s address
space

"+

fraction

send flex
page L= receive flex
B page

significant high order
bits of receiver’s base
e N

R3; Ry | |

T

|R3I ...,Rn | On-l

/V map address

TEAEEEN

signiﬁcant\ﬂigh order
bits of returned offset

o0 .0

Figure 6. Small Send Flexpage

from a sender to a receiver and returned back. Figure 8
shows the time needed to send and receive a flexpage of
size between 4 and 1024 Kbytes. Figure 9compares sending
and receiving flexpages when send and receive operations
specifies flexpages of different size. ‘

Figure 10 shows the effect of multiple flexpage param-
eters. In the measurement, the sender specified 1, 2, 4, 15
flexpages of 4 Kbyte size each.

5. Summary

A new message passing primitive has been presented,
which has two distinguishing properties;

¢ it establishes a temporary mapping of the sent mes-
sage into the receiver's address space rather than pro-
viding a copy to the receiver:

o pages of arbitrary size can be sent and received with-
out prior knowledge on either receiver's or sender's
part.

pager’s address client’s address

space space
sendﬂex{ receive flex 'é
pages page 3
()
g
g
{ g
.5
4—4 4—16 16—4
Figure 7. Multiple Send Fiexpages size of send and receive flex page in Kbyte
2 300 Figure 9. Sending and Receiving Single Flex
g 250 Pages of different Sizes
g 200
5 150
E
I 100
= 50
0
~t \O ~t Ne) <t
— O vy [\
o =
size of flex page in Kbyte

Figure 8. Sending and Receiving Single Flex
Pages

120

100
80

60

40
20

The new primitive is especially useful for external pagers
that handle pages of varying size. Furthermore, it permits to
handle larger regions as composed objects and thus supports
optimizations at the user and p-kernel level.

t in microseconds

References

[11 B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. In 12th ACM number of sent flex pages
Symposium on Operating System Principles, pages 102-113,
Lichfield Park, December 1989.

[2] K. Harty and D. Cheriton. Application-controlled physical
memory using external page cache management. In ASPLOS
V, pages 187-197, Boston MA, October 1992.

{31 J.Liedtke. Towards real micro-kernels. to appear in CACM,
September 1996.

Figure 10. Multiple flexpage components

106

