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Abstract 
 
Quality-Assuring Scheduling (QAS) has been in-

vented to provide statistical guarantees to real-time 
applications with variable execution times scheduled in 
a reservation-based fixed-priority system. The admission 
control is based on a probabilistic model to ensure that a 
requested percentage of jobs of a periodic application is 
successfully executed over a longer time span even in 
permanent overload situations.  

However, the original approach is restricted to task 
sets with uniform periods and using nonpreemptible 
resources. This work overcomes these limitations. Now 
we extend the QAS admission algorithm to support task 
sets with harmonic and arbitrary periods. Our evalua-
tion of the presented admission models shows the nearly 
full compliance of the predicted qualities with both simu-
lations and measurements using a prototype real-time 
system. 

 
 
 

1. Introduction 
 
Traditional real-time admission methods use fixed, 

worst-case execution times (WCET) that may exceed 
average-case execution times by an order of magnitude 
for applications with varying real-time requirements. 
This results in low resource utilization. On the other 
hand, often such applications might tolerate occasional 
deadline misses. Several methods using statistical ap-
proaches have been developed to handle this situation. 
One of these approaches is Quality-Assuring Scheduling 
(QAS) [9]. We developed QAS to improve resource 
utilization while maintaining predictable system be-
havior in case of overload. QAS achieves these goals 
with two ideas.  
• By using probabilistic distributions to describe the 

varying resource demands of a periodic application, 
the QAS admission criterion accurately models the 
actual scheduling in a real system: when a task does 
not consume its worst-case execution time, a task 
with a lower priority is started immediately.  

• The jobs of a periodic task are split into one manda-
tory part and one (or more) optional part. Mandatory 
parts have to be executed under all circumstances. 
Optional parts may be aborted or dropped in case of 
resource shortage. QAS ensures that a minimum per-
centage (specified by the application) of optional 
parts is successfully completed over an arbitrary long 
period of time. 

In order to achieve the requested quality of optional 
parts, the admission control computes the resource 
amount – called reservation time – that is required by an 

optional part during each period. The scheduling is based 
on the periodic execution of tasks, combining fixed pri-
orities and reservations. Resource schedulers are respon-
sible for the enforcement of the reservation times; op-
tional parts are not allowed to consume more resources 
within a period than assigned by the reservation time. 
Resources not consumed by any task in a period can be 
employed to further improve the qualities of optional 
parts, but without giving any guarantees. Thus, we are 
able not only to predict, but also to control the system 
behavior. 

We demonstrated the approach with respect to non-
preemptible resources such as disks in [9]. The admis-
sion model is given, i.e., the priority assignment and a 
formula to compute the reservation times. However, the 
model is restricted to uniform periods (all tasks have the 
same period length), which represents a strong limita-
tion. With the work presented in this paper we remove 
this limitation by extending the admission model to task 
sets with harmonic periods and arbitrary periods and by 
including preemptible resources. 

The remainder of this paper is organized as follows. 
The next section explaines basic ideas and general ap-
proach of QAS. After that, we will give a detailed 
description of priority assignment and computation of 
reservation times in the case of preemptible resources. 
Section 4 summarizes the results for nonpreemptible re-
sources. We will validate the QAS approach by simu-
lation experiments as well as by measurements using a 
prototype real-time system [11] in Section 5. Finally, a 
discussion of related work and a summary conclude the 
paper. 

 
 
 

2. The QAS Approach  
 

The basic ideas of QAS are  
– to consider the varying execution times of jobs of a 

periodic task as random variables with given distri-
butions, 

– to split the jobs of such a task into one mandatory 
part M and one optional part O (see Fig. 1), 

– to express a “quality” for each task through a re-
quested percentage q of successfully completed op-
tional parts, 

– to use scheduling based on fixed priorities and reser-
vations. 

 
 
 
 
 

Figure 1. Periodic application consisting of 
mandatory and optional parts. 
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The reservation time r – the amount of resource to 
allocate to a task’s optional parts during each period – is 
calculated based on a probabilistic model. Assuming that 
the scheduler aborts an optional part when it exceeds its 
reservation time, the reservation time r primarily results 
from the q-quantile of the execution time distribution 
(see Fig. 2(a); p.d.f.: probability density function). How-
ever, the final model has to consider that an optional part 
is aborted at the end of its period (the relative deadline 
d), even if this part has not yet exhausted its reservation 
time (Fig. 2(b)).  

 
 
 
 
 
 
 
 
 

(a)                                  (b) 
Figure 2. Abort of an optional part. 

 
Hence, the reservation time for the optional parts O 

of a task requiring a quality q is the shortest time r where 

 P(O does not run longer than r  ∧   
         O is completed until the period-end) ≥ q. (1) 

 
More formally, let pi(r) denote the probability that an 

optional part of task Ti is completed in the sense of For-
mula (1) (r ∈ R, i ∈ N). Then we obtain a system of 
equations for a task set T = {T1,...,Tn} with requested 
qualities q1,...,qn: 

))(min( iii qrp|rr ≥∈= R ,   i = 1,...,n. (2) 

Since all mandatory parts have to meet their dead-
lines under all circumstances, the general admission 
criterion is 

(A1) All mandatory parts must meet their deadline 
(which is given by the period-end). 

(A2) The system of equations in Formula (2) is solvable. 

Whereas [9] demonstrates the approach for nonpre-
emptible resources, we choose preemptible resources 
here in order to explain the approach in detail. In this 
context, preemptible means that the scheduler suspends a 
job when a higher prioritized job becomes ready. Addi-
tionally, the scheduler aborts a job at the end of the res-
ervation time or at the end of the period and the job (or 
part) is not accounted for the successfully executed op-
tional parts. 

 
 
 

3. QAS for Preemptible Resources 
 
First, we formalize the task model concerning pre-

emptible resources. After that we will describe QAS in 
three steps: task sets with uniform periods, harmonic 
periods, and arbitrary periods. Each step includes the 

discussion of priority assignment and the admission 
criterion.  

 
 

3.1. Task Model 
 
Each task Ti is a sequence of jobs Jij to be processed 

periodically: 

Ti =(Jij)j=1,2,...   i = 1,...,n (3) 

where n ∈ N denotes the total number of tasks in the 
task set T = {T1,...,Tn}. Each job consists of one manda-
tory part Mij and one optional part Oij. Mij is released at 
the beginning of its period, Oij becomes ready when Mij 
is completed. The period-end is the relative deadline of 
both parts. The execution time of the parts may vary (the 
mandatory parts do not exceed the WCET wi), described 
by random variables. We assume that all random vari-
ables of all tasks are pairwise independent, and for each 
task Ti the random variables describing the mandatory 
parts are assumed to be identically distributed as well as 
for all optional parts. Finally, an application may specify 
a percentage qi of optional parts that have to be com-
pleted successfully. In summary, the following defini-
tion describes a task. 
 

Definition 1. A task Ti is a tuple   
 Ti = (Xi, Yi, wi, qi, di) 

where 
Xi nonnegative random variable; execution time of the 

mandatory part; 
Yi nonnegative random variable; execution time of the 

optional part; 
wi nonnegative real number less or equal to di; worst 

case execution time of the mandatory part; 
qi real number 0 ≤ qi ≤ 1; quality parameter, probability 

that an optional part is completed; 
di positive real number; period length = relative dead-

line. 
 

For simplicity, we identify the parts with their ran-
dom variables, considering each mandatory part Mij as a 
realization of Xi and each Oij as a realization of Yi. Obvi-
ously, Yi ≡ 0 enables us to model tasks consisting of 
mandatory parts only (likewise for optional parts only).  

The admission goal is to derive the “output parame-
ters”, namely the priorities pr(Xi) and pr(Yi) of manda-
tory and optional parts and the reservation time ri from 
the “input parameters” listed above to generate a feasible 
schedule, which means that all mandatory parts meet 
their deadlines and all optional parts meet their quality 
requirements. 

 
 

3.2. QAS for Task Sets with Uniform Periods 
 
In this section, we will describe the priority assign-

ment and the admission criterion formula in the case of 
tasks with uniform periods, i.e.  

 di = d      ∀i = 1,...,n. (4) 

t 

p.d.f. 

q 

r  

M O 
d 

p.d.f. 

q

r

M O 
td 

aborted part of O 



3 

3.2.1. Priority Assignment. Since each mandatory part 
precedes its optional part and must meet its deadline 
even in worst-case situations, we give Xi an arbitrary but 
high priority. For the priority assignment of optional 
parts we introduced “Quality-Monotonic Scheduling” 
(QMS) in [9] analogous to the well known rate mono-
tonic scheduling RMS: the higher the quality, the higher 
the priority. Additionally, the priorities of the optional 
parts have to be lower than the priorities of the manda-
tory parts. 

This priority assignment is claimed to be optimal in 
respect of feasibility. That means: if a feasible schedule 
does not exist under QMS then such a schedule does not 
exist under any other fixed priority assignment (using 
reservations). However, this was not proved. We scruti-
nized this claim for both preemptible and nonpreempti-
ble resources if all tasks have uniform periods. Although 
we constructed some examples confirming the assump-
tion, we could neither proof nor rebut the proposition. 
An exact proof based on transformations of the admis-
sion criterion formula fails due to the structure of this 
formula (see below). Moreover, the problem to find 
optimal schedules seems to be NP-complete already for 
uniform periods (similar to the scheduling of C-jobs with 
Imprecise Computations [5]). Up to now, a successful 
investigation failed due to a further reason: the problem 
does not match any of the well-known NP-complete 
problems [6]. 

As the conclusion, we use QMS as a heuristic prior-
ity assignment here (f means higher for priorities):   

 pr(Xi) f pr(Yj) 
 pr(Yi) f pr(Yj)  if  qi > qj 
 
 

3.2.2. Reservation Times. Since the mandatory parts are 
higher prioritized than the optional parts, Condition (A1) 
of the admission criterion obviously holds if and only if  

 dw
n

i
i ≤∑

=1
    

or equivalent     

 ∑
=

n

i

i

d
w

1
 ≤ 1. (6) 

 
To derive the reservation times ri it is sufficient to 

consider the first period [0, d] under the assumption that 
all tasks are ready at instant 0. Obviously, the reservation 
time must be smaller than the period length (i.e., ri ≤ d 
for all i). Due to the priorities of Xi the mandatory parts 
of all tasks Ti are scheduled before any optional part is 
scheduled. Hence, let X denote the sum of the execution 
times of all mandatory parts: 

 ∑
=

=
n

i
iXX

1
. (7) 

Without loss of generality, we assume that T is or-
dered according to the priorities of the optional parts; so 
Y1 (immediately scheduled and executed after the last 
mandatory part) has highest priority (but lower than the 

priority of any Xi) and so on. Thus, Y1 is only success-
fully completed if it neither exceeds its reservation time 
r1 within the period (Fig. 3(a)) nor it exceeds the period-
end (Fig. 3(b)). So it follows  

p1(r) = P(Y1 is completed) = P(Y1 ≤ r  ∧  X + Y1 ≤ d). (8) 
 
 
 
 
 
 

(a)                                           (b) 
Figure 3. Deriving the probability 

P(Y1 is completed). 
 
If i ≥ 2, we have to take into account that each job Yj, 

j < i, with a higher priority than Yi has been started, in-
dependent of whether Yj could be completed (Fig. 4(a)) 
or not (Fig. 4(b)), but Yj was aborted when it reached its 
reservation time rj. Thus,  

p2(r) = P(Y2 ≤ r  ∧  X + min(Y1, r1) + Y2 ≤ d). (9) 
 
 
 
(a) 
 
 
 
(b) 
 
 
 

Figure 4. Deriving the probability 
P(Y2 is completed). 

 
In general, the probability pi(r) that an optional part 

Oi is completely executed within a given reservation time 
r is defined by: 

pi(r) = P(Yi ≤ r  ∧  X + ∑
−

=

1

1
),min(

i

j
jj rY  + Yi  ≤  d), 

 i = 2,...,n. (10) 
 
Now we can successively solve the system of equa-

tions (2) for all optional parts. To find a numerical solu-
tion to (10), we assume that all Xi, Yi are discrete random 
variables; their values are natural numbers (as well as the 
period lengths). This assumption specifically holds 
whenever the random variables are given by an empirical 
distribution law resulting from measurements. Otherwise 
we substitute a continuous distribution function by a 
sufficiently precise decomposition of the set of values 
into disjoint classes. If we write the equations in a recur-
sive form, which is more suitable for the numerical 
treatment, it results from (2) and (10) due to the laws of 
the probability algebra: 

 
Theorem 1. For a given task set T = {T1,...,Tn} with 

di = d for all i the reservation times ri can be calculated 
as 

X Y1 

r1 d 0 

r 

Y2 

X Y1 

r1 
d 0 

r 

Y2 

Y1 aborted 

aborted part of Y1              time not used 

∀i,j = 1,...,n.          (5)

r

YX 

d0 

X Y

r

d0

r
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   ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥=⋅−≤∈= ∑

=

r

k
iiii qkYkdAdrr

0
|],0[min PP , 

 i = 1,..., n   (11) 
where 

A1 := ∑
=

=
n

i
iXX

1
,   

 Ai := Ai-1 + min(Yi-1, ri-1),   i = 2,..., n. (12) 
  □ 

The computation of P(Ai ≤ d – k) requires the re-
peated convolution of distribution functions because of 
(7) and (12). Since the probabilities pi(r) obviously in-
crease monotonically with time r, we can use binary 
search to find the reservation times. 
 
 
3.3. Harmonic Periods 

 
Now we will remove the limitations of the original 

QAS admission model. First, we consider task sets with 
harmonic periods, i.e., any longer period must be an 
integer multiple of all shorter periods:  

 di < dj  →  di | dj   ∀i,j = 1,...,n. (13) 
 

3.3.1. Priority Assignment. For the reasons described in 
Sect. 3.2.1, we choose the following heuristic priority 
assignment denoted as Extended QMS (EQMS). The task 
set T is decomposed into m disjoint subsets T1,...,Tm; a 
subset consists of all tasks with the same period length di 
(i = 1,...,m). The subsets are ordered according to period 
length (T1 contains the shortest periods and so on, see 
Fig. 5). Now priorities are assigned according to QMS to 
both the mandatory and the optional parts of T1. After 
that we treat T2 just the same way, but the highest as-
signed priority must be lower than any priority of T1, and 
so on. A simple example below will show that this pri-
ority assignment is not optimal. 

 
 
 
 
 
 
 

Figure 5.  Task set structure. 
 

3.3.2. Admission Criterion and Reservation Times. 
We use the following notations (i = 1,...,m,  j = 1,...,ni): 

Ti = {Ti1,..., }, iniT  ith task subset 
di  uniform period length of the tasks in Ti 

qij  quality parameter of task Tij 

Xij, Yij mandatory resp. optional part of task Tij 

∑
=

=
in

j
iji XX

1
  

wij WCET of Xij 

rij  reservation time of Yij 

n*X n-times sum of the random variable X  
 (n ∈ N). 
 

To check Condition (A1) of the admission criterion, 
we consider the worst case (see Fig. 6): all mandatory 
parts consume their WCET, all optional parts completely 
use their reservation time. Then, the task set T can be 
admitted with respect to the mandatory parts if and only 
if the following condition holds: 

∑ ∑ ∑
−

= = =

≤+
+

⋅
1

1 1 1
1

i

k

n

l

j

k i

ik

k

klkl

k

i
k

d
w

d
rw

d
d  

                                     ∀i = 1,...,m ∀j = 1,...,ni. (14) 
 
 
 
 
 
 
 
 
 
Figure 6.  Admission of mandatory parts. 

 

To derive the reservation time of an optional part, we 
have to take into consideration: 
(a) mandatory parts of a task with longer periods are 

lower prioritized than optional parts of a task with 
shorter periods, 

(b) optional parts are aborted by the end of the reserva-
tion time, 

(c) optional parts are aborted by the end of the period,  
(d) a period of the length di contains di/dk periods of the 

shorter period of length dj. 
 

Thus, we have 

Theorem 2. For a given task set T with harmonic pe-
riods, the reservation times rij under EQMS priority 
assignment can be calculated as follows: 

 
    ))(|min( ijiijiiijij qdYBArYrr ≥≤++∧≤∈= PR  

 ∀i = 1,...,m ∀j = 1,...,ni (15) 

where 

( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑∑

=

−

=

kn

l
klklkk

i

k k

i
i rYXd

d
dA

1

1

1
,min,min*  (16) 

 execution time of all subsets Tk with k < i  (A1 := 0), 

∑
−

=

+=
1

1
),min(

j

k
ikikii rYXB    (17) 

 

  □ 
execution time of all mandatory parts 
of subset Ti 

execution time of all parts of Ti  
higher prioritized than Yij. 

w11 r11 

w12 r12 

w21 
w12 r12 

w11 r11 

r21 

d1 2d1 = d2 

X21 preempted 

T11 
T12 
T21 
T22 
T23 

d1            2d1        3d1 = d2 
T1 

T2 
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The term di/dk in Ai results from property (d) listed 
above, the min-operations from properties (c) and (b), 
respectively. 

As mentioned earlier, EQMS is a heuristic priority 
assignment. The following example shows that EQMS is 
not optimal.  

Let T = {T1, T2} where X1, X2, Y1 identically unifor-
mally distributed like Z :     
 
                      

and 
 Y2 ≡ 0     d1 = 3.5     d2 = 7     q1 = 0.4; 

then the reservation time for Y1 is r1 = 1; 
admission test for X2:    

 1
2

2

1

11 ≤+
+

d
w

d
rw       fails since  1

7
8
> . 

However, the task set is schedulable if the priority of 
X2 is higher than the priority of Y1, because then Y1 can 
be scheduled at least in every second period (see Fig. 7).  

 
 
 
 
 
 

Figure 7. Worst-case scenario 
for the example task set. 

 
It should be mentioned that assigning all mandatory 

parts higher priorities than all optional parts (the latter 
according to EQMS) is also not optimal. 

 
 

3.4. Arbitrary Periods    
 
To derive a formal model for arbitrary periods and to 

explain the increased complexity of such a model, we 
consider an example first. The reason for this increase is 
the existence of “overlapping periods” (see Fig. 8): such 
a period ends in another period of the next lower priori-
tized task than it begins in. 

 
 
 
 
 
 
 
 

Figure 8. Overlapping periods            and task 
phases for a task set with nonharmonic periods. 

 
For clarity we assume d1 < d2 < … < dn throughout 

this section. Hence, priorities pr are simply assigned ac-
cording to  pr(X1) f pr(Y1) f pr(X2) f pr(Y2) f … . 

 
Following the common terminology in real-time 

scheduling theory, the hyperperiod of two tasks T1, T2 

with periods d1 < d2 is the interval [0, H] where  
H = lcm(d1, d2). The hyperperiod contains H/d2 phases of 
periods of task T2. The time span available for task T2 
within its first phase Φ1 is determined by the value of the 
random variable  

 
( )( )( )

( )( ),,min,min

,min,min*

11121

1111
1

2
21

rYX

rYXd
d
d

Z

++

++⎥
⎦

⎥
⎢
⎣

⎢
=

δ

 (18) 

 ⎥
⎦

⎥
⎢
⎣

⎢
⋅−=

1

2
1221 d

d
ddδ . 

 
The min-operations reflect the actual scheduling be-

havior (see Fig.8): 
min(Y1, r1): the optional part Y1 is aborted at the end of 

its reservation time r1; 
min(d1, …): the execution of task T1’s first job is abor-

ted at the end of its period d1; 
min(δ12, …): the amount of time an overlapping job ex-

ceeds phase Φ1 does not restrict the time 
span available for task T2’s first job. 

Finally, ⎥
⎦

⎥
⎢
⎣

⎢

1

2

d
d  is the number of complete (non-overlap-

ping) jobs of task T1 within phase Φ1. 
 

Thus, the corresponding reservation time r21 (task T2 
within its first phase Φ1) is 

  ))(min( 222122221 qdZYXrY|rr ≥≤++∧≤∈= PR . 
  (19) 
 

To derive the next reservation time r22 (task T2 within 
its second phase Φ2) we have to take into account: 

– all the jobs executed in non-overlapping periods dur-
ing phase Φ2; their number is  

  ⎥
⎥

⎤
⎢
⎢

⎡
−⎥

⎦

⎥
⎢
⎣

⎢

1

2

1

22
d
d

d
d ; 

– the potentially remaining portion of task T1’s over-
lapping job at the beginning of phase Φ2 which is 

  max(0, min(d1, X1 + min(Y1,r1)) – δ21); 

– the portion of task T1’s overlapping job at the end of 
phase Φ2 during the time intervall of length 

  ⎥
⎦

⎥
⎢
⎣

⎢
⋅−=

1

2
1222

22
d
dddδ . 

In the last step (phase Φ3 in the example), we either 
successfully get all reservation times or we can compute 
the maximal achievable quality during each phase of task 
T2. Since it may occur that the admission of Y2 fails 
within one (or more) of the phases but within another 
phase there is enough time to reach more than the re-
quested quality, an equalization process should be done. 

Z 1 2 
p 0.5 0.5 

X1 X2 X1 X2′ Y1 

0 7d1 

X2′: rest of X2 after preemption at d1 

phase 1 phase 2 phase 3 
T1 
T2 

δ21 

d1 

d2 δ22 
0 H 
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The final formula describing the general case uses 
the following notations: 

– H = lcm(d1,…,dn) hyperperiod length 

– 
i

i
i d

Hh =  number of phases of task Ti 

– ⎥
⎥

⎤
⎢
⎢

⎡ −
−

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=∆

1

2)( )1(
d

dk
d
kd

j

ik
ij  

– 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⋅−=

j

i
ji

k
ij d

kd
dkd)(δ  

– Ai = Xi + min(Yi, ri) 

– Bi = min(di, Ai) actual resource usage of task Ti 
within a period 

– ),min(* )()()(
j

k
ijj

k
ij

k
ij ABZ δ+∆=  

– pik(r) probability that task Ti’s job in phase Φk is 
completely executed within its period and time r 

– rik  reservation time of task Ti’s job in phase Φk 

– ),0max( yxyx −=−&  nonnegative subtraction 

where 

 i = 1,…,n   current task index 
 j = 1,…,i–1 lower prioritized task index 
 k = 1,…,hi phase index. 
 
Then we summarize: 

Theorem 3. For a given task set T = {T1,...,Tn} with 
d1 < d2 < … < dn and pr(X1) f pr(Y1) f pr(X2) f … 
pr(Yn)  the reservation times result from 

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤++∧≤= ∑

−

=

1

1

)1(
1 )(

i

j
iijiiii dZYXrYrp P , 

 

( )( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤−+++∧≤= ∑

−

=

−
i

i

j

k
ijj

k
ijiiiik dBZYXrYrp

1

1

)1()()( δ&P

 i = 1,…,n,   k = 2,…,hi. (20) 
  □ 
 

Due to the priority assignment, we can compute the 
reservation times for each task individually in descend-
ing priority order. Each step includes the admission test 
for the mandatory parts, for which we use time-demand 
analysis [13] (or another necessary and sufficient crite-
rion) with a slight modification: the reservation time 
must be added to the WCET of all lower prioritized 
tasks. 

As above (Sect. 3.2.2.), we apply a binary search al-
gorithm to calculate the reservation times. It may occur 
that rik does not exist due to the restriction by the period 

length since a low prioritized task requesting a high 
quality is released late within its period. Then the algo-
rithm yields the largest achievable quality iq~  and the 
corresponding reservation time ikr~  so that 

iiikik qqrp <= ~)~( . Now we have three alternatives: we 
can 
– abort the admission procedure because the given task 

set T is not schedulable; 
– accept the lower quality and continue the algorithm; 
– try to compensate the loss of quality in later (or ear-

lier) phases of task Ti. 
The latter makes sense because each task is assigned 

a tuple of reservation times corresponding to its phases. 
However, this tuple is not uniquely determined since the 
requested qualities can be modified (for instance, (70%, 
70%) and (60%, 80%) results in the same overall qual-
ity). The consequence is a fnite but expensive iterative 
equalization process. 

If some of the tasks have the same period length we 
use EQMS again. The only modification of the reserva-
tion time algorithm is to adapt the execution time of the 
mandatory parts reflecting their higher priority than that 
of optional parts inside a task subset Ti:  Xi is substituted 

by ∑
−

=

1

1

j

l
ilX to compute rij. 

The equalization process mentioned above is one of 
the reasons why we did not implement the model 
described in this section. A more important reason are 
the enormously increased costs to compute the 
reservation times because the hyperperiod may become 
very large even for small task sets with close-by period 
lengths (like 503 and 510) and all phases must be 
considered. So in future work we will look for a different 
approach to overcome this difficulty.  
 
 
 
4. QAS for Task Sets Using Nonpreemptible 
Resources 

 
First, we summarize the QAS approach for nonpre-

emptible resources described in [9] in the case of uni-
form periods. Thereafter, we will extend it on harmonic 
and arbitrary periods. 

 
 

4.1. Uniform Periods 
 

To make the basic ideas of QAS with respect to disk 
requests applicable, the optional parts of each task Ti are 
divided into a fixed number mi of subjobs (otherwise all 
parts of a task achieve a quality of either 100% or 0%). 
Yi now describes the execution time of such a subjob. 
Priorities are assigned according to QMS; the task set 
has to be ordered according to these priorities. The res-
ervation time ri is determined for the optional parts as a 
whole of task Ti. During this time, a varying number of 
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subjobs can be started within each period. Si (random 
variable) denotes this number. Due to the nonpreempti-
bility, each subjob that is started is successfully com-
pleted. qi denotes the requested percentage of such sub-
jobs (not optional parts!). Thus the admission criterion is 

 ∃r1,…,rn ∈ R ∀i = 1,…,n: 

 ri = min(r ∈ R | ESi ≥ qimi)  (21) 

where 

Si = Si(r,r1,...,ri-1) number of completed subjobs of 
task Ti within a period 

ESi = ∑
=

=⋅
im

k
i kSk

1
)(P  

 expected value of the random variable Si. 
 

To derive the reservation time formula, random vari-
ables Uik are defined describing the time to execute ex-
actly k subjobs of an optional part of task Ti (k = 1,...,mi) 
respecting the fact that a started subjob cannot be 
aborted and so it may exceed its reservation time (see 
Fig. 9). Then the total execution time Ui is the sum of Uik 
weighted by the corresponding probabilities: 

 ik

m

k
ki UkSPU

i

⋅== ∑
=

)(
1

.    (22) 

 
 
 
 
 
 
 
 

Figure 9. Reservation time ri and execution time 
Uik of an optional part of task Ti. 

 
The approach presented in [9] ignores “pending” 

subjobs. Such jobs reduce the next period P of task Ti for 
two reasons: a subjob of Ti exceeds the end of its own 
period or a lower prioritized subjob overlaps P. We can 
handle this situation using an accurate but complex 
model or easily avoiding such subjobs. For the latter, we 
introduce a subjob WCET wO,i now. We diminish the 
period of Ti by wO,i and the longest WCET of all lower 
prioritized optional parts for the admission control: 

)(max' ,, jO
ij

iOii wwdd
>

−−= . (23) 

This results in a slightly lower resource utilization 
but avoids the pending subjobs. 

 
 
4.2. Harmonic and Arbitrary Periods 
 

For harmonic periods, again we assign priorities ac-
cording to EQMS. Within a task subset Ti, the admission 
control is done as described for uniform periods, but 
considering the time which is consumed by the task 
subsets with shorter periods. This time is calculated 
based on Ui (Eqn. (22)) and the ratio of the period 

lengths. Similar to the pending subjobs at the end of a 
period described above, the execution of a task with a 
shorter period can be delayed due to the execution of a 
subjob of a task with a longer period. This is already 
solved by the inclusion of the subjob WCET wO,i. We 
apply the same procedure for arbitrary periods. 

 
 
 

5. Evaluation 
 
We use both simulations and measurements to evalu-

ate the accuracy of our admission models. The simula-
tions generate a sequence of jobs with execution times 
based on the distributions used to calculate the reserva-
tion times. At the end of this section we will investigate 
complexity and on-line overhead of the QAS approach. 

 
 

5.1. Preemptible Resources 
 
To demonstrate the almost full compliance of the re-

quested quality q and the achieved quality qach, we show 
two simulation experiments. The first experiment uses 
modified normal distributions (truncated at 0 and at the 
WCET). Table 1(a) shows the parameter and results of 
the task set T = {T11, T12, T2}. The second experiment 
uses empirical distributions. The values of X11, X12, and 
X2 vary between 1 and 20, those of Y11, Y12, and Y2 be-
tween 1 and 15. The period lengths are d1 = 65, d2 = 195. 
Table 1(b) shows the requested and the achieved quali-
ties as well as the reservation times.  

 
Table 1. Experimental results based on 

(a) normal distributions   
 
 
 
 
 
 

(b) empirical distributions 
 
 
 
 
 
 

5.2. Nonpreemptible Resources 
 
We chose disk drives to evaluate the admission 

model for nonpreemptible resources, because disk re-
quests cannot be aborted once they are sent to the disk 
drive. A disk request can be mapped to a subjob of a task 
part, so the mandatory and optional parts of a task de-
scribe data streams read from or written to the disk. As-
suming a fixed request size, the number mi of subjobs of 
a part determines the bandwidth of the data stream. The 
execution time variance of a disk request is caused by 
the disk drive. Fig. 10 shows the distribution for the disk 
we used in our experiments. 

Task X: µ σ w Y: µ σ q d r qach 

T11     4  1 5    3  1 0.70 20 3.52 0.7001 
T12     3  2 6    2  1 0.50 20 2.00 0.5016 
T2     6  3 10    9  6 0.91 60 19.04 0.9101 

Task q r qach 
T11 0.75 13 0.7500 
T12 0.57 5 0.5699 
T2 0.84 9 0.8399 

X Yi Yi Yi 

(k – 1)-times

ri 

Uik 

... ...
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Figure 10. Request service time distribution 
(Seagate Cheetah 36ES disk drive;  

WCET = 40ms; 32 KByte read requests; 
random, uniformly distributed workload). 

 
To evaluate the admission model, we implemented a 

SCSI resource scheduler in the Dresden Real-Time 
Operating System DROPS based on the scheme of 
cooperating resources managers [11]. The disk scheduler 
of our system periodically executes the disk requests of 
its clients and measures the execution time of each disk 

request. Requests were executed as long as the client did 
not exceed its time budget for the period.. The budget is 
set to the reservation time at the beginning of each new 
period. 

Table 2 shows the task set we used in the evaluation. 
It is a “maximum” task set, meaning that it fully utilizes 
the disk drive according to the admission control. The 
last row shows the bandwidth achieved by a best-effort 
stream executed in parallel to the real-time streams. The 
bandwidths represent typical values for compressed 
video and audio streams. The results of the measurement 
as well as the simulation demonstrate that we achieve the 
requested qualities except for the last stream, which 
achieves a higher quality. This difference is caused by 
our approximation of the overlapping of requests at the 
period-end as discussed in Sect. 4.1. The results also 
show that we in fact fully utilize the disk drive, denoted 
by the low bandwidth (0.7%) that is left over for a best 
effort stream executed in parallel to the real-time 
streams, as shown in the last row of Table 2. 

 
All the examples convince of the accuracy and feasi-

bility of both models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. Computational Complexity and Admission 
Overhead 

 
The computational complexity of the admission 

models for preemptible resources is dominated by the 
number of convolutions of distributions required to 
compute Ai, Bi, or Zij

(k) in Eqn. (12), (16/17), or (20), 
respectively. Those terms must be calculated for each 
task of a task set. With discrete random variables X, the 
complexity of one convolution is v2, where v is the num-
ber of values of X. The reservation time computation is 
solved using nested intervals which results in a com-
plexity of nv⋅log v. Hence, the overall complexity for 
uniform, harmonic, and arbitrary periods is O(n⋅v2), 
O(n2⋅v2), resp. O((n–1)!⋅v2) (the latter due to the consid-
eration of the hyperperiod). 

The complexity of the admission control for 
nonpreemptible resources is influenced by the costs to 
compute Ui in Eqn. (22). Their complexity is O(s⋅v3) 

where s is the sum of all optional subjobs of the task set 
T. 

Table 3 shows the actual costs of the admission con-
trol for the first example task set used in Sect. 5.1 for 
various class sizes of the used distributions.  

 

Table 3. Admission costs for task set used in 
example 1, see Table 1(a) (Pentium M 1.6 GHz) 

 

 
 
 
The admission for the task set used in Sect. 5.2 takes 

about 3s for a class width of 0.5ms. Finally, the run-time 
overhead caused by the scheduler (manipulations of the 
ready queue) is negligible independent of the type of 
resources and the type of periods. 

 
 

Class size 0.10 0.05 0.01 
Admission time (ms) 2.1 8.2 198.0 

Data 
stream 

Period 
length (s) 

No. 
subjobs 

Quality 
requ. 

Reservation 
time (ms) 

Quality 
measured 

Quality 
simulated 

Bandwith 
meas. (KByte/s) 

1 1 24 1.00     -  1.000 1.000 768.0  
2 1 24 0.95 206.40  0.953 0.951 731.9  
3 1 20 0.95 171.60  0.954 0.951 610.8  
4 1 24 0.85 184.40  0.863 0.857 662.7  
5 1 20 0.85 151.80  0.856 0.851 547.7  
6 8 12 0.95 101.60  0.946 0.950 45.4  
7 8 8 0.95 66.80  0.952 0.952 30.5  
8 8 12 0.90 95.20  0.903 0.902 43.4  
9 8 8 0.87 73.20  0.957 0.938 30.6  
- - - -     -  - - 23.6  

Table 2. Measurement and simulation results
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6. Related Work 
 
The existing literature offers a large amount of work 

on 
– supporting a predictable system behavior in transient 

or permanent overload situations,  
– providing statistical guarantees for firm real-time 

applications (which tolerate occasional misses of 
hard deadlines), 

– considering of varying execution times to improve 
resource utilization, 

– enforcing of time restrictions by a reservation based 
scheduler. 

To the best of our knowledge, QAS is the only ap-
proach which achieves all these goals together. More-
over, QAS is not restricted for specific resources or ap-
plications in contrast to other methods. 

The approach closest to QAS is Statistical Rate 
Monotonic Scheduling (SRMS) [3]. The idea is to assign 
an “allowance” (similar to reservation time) to a task 
during its “superperiod” (i.e., the period of the next 
lower prioritized task according to RMS). A local admis-
sion – executed at the release time of any job – assures 
each task a percentage of successful jobs. However, 
SRMS has some disadvantages and limitations: jobs 
cannot be divided in parts or subjobs, it cannot handle 
nonpreemptible resources, and above all the actual exe-
cution time must be known at the release time of each 
job. 

The idea to divide jobs into mandatory and optional 
parts is taken from the Imprecise Computation Model 
(ICM) [5]. It attempts to minimize the total error in the 
results of jobs which need not be completed (N-jobs) or 
must be completed in one period among several con-
secutive periods (C-jobs). A class of preemptive, pri-
ority-driven scheduling algorithms is proposed but based 
on WCET, and not applicable for nonpreemptible re-
sources. The same holds for other models of firm real-
time systems. One of them is the (m,k)-firm tasks model 
[10] in which a task must meet at least m deadlines 
within a “window” of k consecutive invocations. In [2] 
the ICM approach is employed for managing of quality 
of service of real-time databases even for transient 
overload.  

In a similar way TIA [17] et al. proposed a “transform 
task method” to provide probabilistic schedulability 
guarantees to semi-periodic real-time tasks where the 
ratio of maximum computation time to period is larger 
than 1. The authors transform each task into a periodic 
task followed by a sporadic task, comparably mandatory 
and optional parts. They compute the probability that 
each task will meet its deadline, and develop a prob-
abilistic time demand analysis which substitutes the 
sums of fixed execution times with convolutions of 
probability density functions. The method demands that 
the exact computation time of each request (job) of a 
task becomes known when the task is released. 

DIAZ et al. [7] describe a stochastic analysis method 
for a wide class of periodic real-time systems. The pro-
posed method computes the response time distribution of 

each task based on a Markovian modeling, thus making 
it possible to determine the deadline miss probability of 
individual tasks. The computation of the complete prob-
ability function of the response time is similar to our 
approach (the “shrinking” operation corresponds to the 
min-operation). Several other papers propose analysis 
methods for real-time tasks with variable execution 
times and offer algorithms to compute deadline miss 
probabilities [1, 4, 8, 14, 15]. However, the presented 
approaches do not allow the governing of systems to 
achieve a requested system behavior. 

In [12] the problem of temporal consistency mainte-
nance of real-time data objects is studied where a certain 
degree of temporal inconsistency is tolerable. A transac-
tion T periodically updates such an object. The job ad-
mission of T guaranteeing a requested percentage of 
updates (quality) is based on the quantile of the compu-
tation time distribution of T. However, that is a local 
admission without CPU reservation. The admission 
demands to know the job computation time a priori 
(similar to SRMS). Finally, the goal is to maximize the 
overall quality but not to produce feasible schedules. 

Several approaches use statistical methods to im-
prove the utilization of disk drives in multimedia servers. 
All of these methods aim to calculate the probability of 
deadline misses for a given workload, based on either a 
probabilistic model of the disk drive [16, 19] or the 
measured execution time distribution of disk requests 
[18]. In contrast to these approaches, QAS provides 
alogorithms to calculate the amount of resources that is 
required to achieve a requested quality. This allows the 
use of more flexible scheduling algorithms, for example 
the use of slack-stealing scheduling to include tasks not 
accounted by the admission control, such as sporadic and 
best-effort tasks. 

 
 
 

7. Summary 
 
This paper overcomes the limitations of the “Quality-

Assuring Scheduling” approach presented in [9]. We 
give in detail the admission criteria and the formulae to 
compute the reservation times for preemptible and non-
preemptible resources in the case of harmonic and arbi-
trary periods. Both simulation experiments and system 
measurements affirm the efficiency of the approach. 
Future work should reduce the high admission costs for 
task sets with nonharmonic periods. 
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