
1

Quality-Assuring Scheduling

Claude-J. Hamann Lars Reuther Jean Wolter Hermann Härtig
Technische Universität Dresden, Germany

Abstract

Quality-Assuring Scheduling (QAS) has been in-

vented to provide statistical guarantees to real-time
applications with variable execution times scheduled in
a reservation-based fixed-priority system. The admission
control is based on a probabilistic model to ensure that a
requested percentage of jobs of a periodic application is
successfully executed over a longer time span even in
permanent overload situations.

However, the original approach is restricted to task
sets with uniform periods and using nonpreemptible
resources. This work overcomes these limitations. Now
we extend the QAS admission algorithm to support task
sets with harmonic and arbitrary periods. Our evalua-
tion of the presented admission models shows the nearly
full compliance of the predicted qualities with both simu-
lations and measurements using a prototype real-time
system.

1. Introduction

Traditional real-time admission methods use fixed,

worst-case execution times (WCET) that may exceed
average-case execution times by an order of magnitude
for applications with varying real-time requirements.
This results in low resource utilization. On the other
hand, often such applications might tolerate occasional
deadline misses. Several methods using statistical ap-
proaches have been developed to handle this situation.
One of these approaches is Quality-Assuring Scheduling
(QAS) [9]. We developed QAS to improve resource
utilization while maintaining predictable system be-
havior in case of overload. QAS achieves these goals
with two ideas.
• By using probabilistic distributions to describe the

varying resource demands of a periodic application,
the QAS admission criterion accurately models the
actual scheduling in a real system: when a task does
not consume its worst-case execution time, a task
with a lower priority is started immediately.

• The jobs of a periodic task are split into one manda-
tory part and one (or more) optional part. Mandatory
parts have to be executed under all circumstances.
Optional parts may be aborted or dropped in case of
resource shortage. QAS ensures that a minimum per-
centage (specified by the application) of optional
parts is successfully completed over an arbitrary long
period of time.

In order to achieve the requested quality of optional
parts, the admission control computes the resource
amount – called reservation time – that is required by an

optional part during each period. The scheduling is based
on the periodic execution of tasks, combining fixed pri-
orities and reservations. Resource schedulers are respon-
sible for the enforcement of the reservation times; op-
tional parts are not allowed to consume more resources
within a period than assigned by the reservation time.
Resources not consumed by any task in a period can be
employed to further improve the qualities of optional
parts, but without giving any guarantees. Thus, we are
able not only to predict, but also to control the system
behavior.

We demonstrated the approach with respect to non-
preemptible resources such as disks in [9]. The admis-
sion model is given, i.e., the priority assignment and a
formula to compute the reservation times. However, the
model is restricted to uniform periods (all tasks have the
same period length), which represents a strong limita-
tion. With the work presented in this paper we remove
this limitation by extending the admission model to task
sets with harmonic periods and arbitrary periods and by
including preemptible resources.

The remainder of this paper is organized as follows.
The next section explaines basic ideas and general ap-
proach of QAS. After that, we will give a detailed
description of priority assignment and computation of
reservation times in the case of preemptible resources.
Section 4 summarizes the results for nonpreemptible re-
sources. We will validate the QAS approach by simu-
lation experiments as well as by measurements using a
prototype real-time system [11] in Section 5. Finally, a
discussion of related work and a summary conclude the
paper.

2. The QAS Approach

The basic ideas of QAS are
– to consider the varying execution times of jobs of a

periodic task as random variables with given distri-
butions,

– to split the jobs of such a task into one mandatory
part M and one optional part O (see Fig. 1),

– to express a “quality” for each task through a re-
quested percentage q of successfully completed op-
tional parts,

– to use scheduling based on fixed priorities and reser-
vations.

Figure 1. Periodic application consisting of
mandatory and optional parts.

period

M O M O ...
t

2

The reservation time r – the amount of resource to
allocate to a task’s optional parts during each period – is
calculated based on a probabilistic model. Assuming that
the scheduler aborts an optional part when it exceeds its
reservation time, the reservation time r primarily results
from the q-quantile of the execution time distribution
(see Fig. 2(a); p.d.f.: probability density function). How-
ever, the final model has to consider that an optional part
is aborted at the end of its period (the relative deadline
d), even if this part has not yet exhausted its reservation
time (Fig. 2(b)).

(a) (b)
Figure 2. Abort of an optional part.

Hence, the reservation time for the optional parts O

of a task requiring a quality q is the shortest time r where

 P(O does not run longer than r ∧
 O is completed until the period-end) ≥ q. (1)

More formally, let pi(r) denote the probability that an

optional part of task Ti is completed in the sense of For-
mula (1) (r ∈ R, i ∈ N). Then we obtain a system of
equations for a task set T = {T1,...,Tn} with requested
qualities q1,...,qn:

))(min(iii qrp|rr ≥∈= R , i = 1,...,n. (2)

Since all mandatory parts have to meet their dead-
lines under all circumstances, the general admission
criterion is

(A1) All mandatory parts must meet their deadline
(which is given by the period-end).

(A2) The system of equations in Formula (2) is solvable.

Whereas [9] demonstrates the approach for nonpre-
emptible resources, we choose preemptible resources
here in order to explain the approach in detail. In this
context, preemptible means that the scheduler suspends a
job when a higher prioritized job becomes ready. Addi-
tionally, the scheduler aborts a job at the end of the res-
ervation time or at the end of the period and the job (or
part) is not accounted for the successfully executed op-
tional parts.

3. QAS for Preemptible Resources

First, we formalize the task model concerning pre-

emptible resources. After that we will describe QAS in
three steps: task sets with uniform periods, harmonic
periods, and arbitrary periods. Each step includes the

discussion of priority assignment and the admission
criterion.

3.1. Task Model

Each task Ti is a sequence of jobs Jij to be processed

periodically:

Ti =(Jij)j=1,2,... i = 1,...,n (3)

where n ∈ N denotes the total number of tasks in the
task set T = {T1,...,Tn}. Each job consists of one manda-
tory part Mij and one optional part Oij. Mij is released at
the beginning of its period, Oij becomes ready when Mij
is completed. The period-end is the relative deadline of
both parts. The execution time of the parts may vary (the
mandatory parts do not exceed the WCET wi), described
by random variables. We assume that all random vari-
ables of all tasks are pairwise independent, and for each
task Ti the random variables describing the mandatory
parts are assumed to be identically distributed as well as
for all optional parts. Finally, an application may specify
a percentage qi of optional parts that have to be com-
pleted successfully. In summary, the following defini-
tion describes a task.

Definition 1. A task Ti is a tuple
 Ti = (Xi, Yi, wi, qi, di)

where
Xi nonnegative random variable; execution time of the

mandatory part;
Yi nonnegative random variable; execution time of the

optional part;
wi nonnegative real number less or equal to di; worst

case execution time of the mandatory part;
qi real number 0 ≤ qi ≤ 1; quality parameter, probability

that an optional part is completed;
di positive real number; period length = relative dead-

line.

For simplicity, we identify the parts with their ran-
dom variables, considering each mandatory part Mij as a
realization of Xi and each Oij as a realization of Yi. Obvi-
ously, Yi ≡ 0 enables us to model tasks consisting of
mandatory parts only (likewise for optional parts only).

The admission goal is to derive the “output parame-
ters”, namely the priorities pr(Xi) and pr(Yi) of manda-
tory and optional parts and the reservation time ri from
the “input parameters” listed above to generate a feasible
schedule, which means that all mandatory parts meet
their deadlines and all optional parts meet their quality
requirements.

3.2. QAS for Task Sets with Uniform Periods

In this section, we will describe the priority assign-

ment and the admission criterion formula in the case of
tasks with uniform periods, i.e.

 di = d ∀i = 1,...,n. (4)

t

p.d.f.

q

r

M O
d

p.d.f.

q

r

M O
td

aborted part of O

3

3.2.1. Priority Assignment. Since each mandatory part
precedes its optional part and must meet its deadline
even in worst-case situations, we give Xi an arbitrary but
high priority. For the priority assignment of optional
parts we introduced “Quality-Monotonic Scheduling”
(QMS) in [9] analogous to the well known rate mono-
tonic scheduling RMS: the higher the quality, the higher
the priority. Additionally, the priorities of the optional
parts have to be lower than the priorities of the manda-
tory parts.

This priority assignment is claimed to be optimal in
respect of feasibility. That means: if a feasible schedule
does not exist under QMS then such a schedule does not
exist under any other fixed priority assignment (using
reservations). However, this was not proved. We scruti-
nized this claim for both preemptible and nonpreempti-
ble resources if all tasks have uniform periods. Although
we constructed some examples confirming the assump-
tion, we could neither proof nor rebut the proposition.
An exact proof based on transformations of the admis-
sion criterion formula fails due to the structure of this
formula (see below). Moreover, the problem to find
optimal schedules seems to be NP-complete already for
uniform periods (similar to the scheduling of C-jobs with
Imprecise Computations [5]). Up to now, a successful
investigation failed due to a further reason: the problem
does not match any of the well-known NP-complete
problems [6].

As the conclusion, we use QMS as a heuristic prior-
ity assignment here (f means higher for priorities):

 pr(Xi) f pr(Yj)
 pr(Yi) f pr(Yj) if qi > qj

3.2.2. Reservation Times. Since the mandatory parts are
higher prioritized than the optional parts, Condition (A1)
of the admission criterion obviously holds if and only if

 dw
n

i
i ≤∑

=1

or equivalent

 ∑
=

n

i

i

d
w

1
 ≤ 1. (6)

To derive the reservation times ri it is sufficient to

consider the first period [0, d] under the assumption that
all tasks are ready at instant 0. Obviously, the reservation
time must be smaller than the period length (i.e., ri ≤ d
for all i). Due to the priorities of Xi the mandatory parts
of all tasks Ti are scheduled before any optional part is
scheduled. Hence, let X denote the sum of the execution
times of all mandatory parts:

 ∑
=

=
n

i
iXX

1
. (7)

Without loss of generality, we assume that T is or-
dered according to the priorities of the optional parts; so
Y1 (immediately scheduled and executed after the last
mandatory part) has highest priority (but lower than the

priority of any Xi) and so on. Thus, Y1 is only success-
fully completed if it neither exceeds its reservation time
r1 within the period (Fig. 3(a)) nor it exceeds the period-
end (Fig. 3(b)). So it follows

p1(r) = P(Y1 is completed) = P(Y1 ≤ r ∧ X + Y1 ≤ d). (8)

(a) (b)
Figure 3. Deriving the probability

P(Y1 is completed).

If i ≥ 2, we have to take into account that each job Yj,

j < i, with a higher priority than Yi has been started, in-
dependent of whether Yj could be completed (Fig. 4(a))
or not (Fig. 4(b)), but Yj was aborted when it reached its
reservation time rj. Thus,

p2(r) = P(Y2 ≤ r ∧ X + min(Y1, r1) + Y2 ≤ d). (9)

(a)

(b)

Figure 4. Deriving the probability
P(Y2 is completed).

In general, the probability pi(r) that an optional part

Oi is completely executed within a given reservation time
r is defined by:

pi(r) = P(Yi ≤ r ∧ X + ∑
−

=

1

1
),min(

i

j
jj rY + Yi ≤ d),

 i = 2,...,n. (10)

Now we can successively solve the system of equa-

tions (2) for all optional parts. To find a numerical solu-
tion to (10), we assume that all Xi, Yi are discrete random
variables; their values are natural numbers (as well as the
period lengths). This assumption specifically holds
whenever the random variables are given by an empirical
distribution law resulting from measurements. Otherwise
we substitute a continuous distribution function by a
sufficiently precise decomposition of the set of values
into disjoint classes. If we write the equations in a recur-
sive form, which is more suitable for the numerical
treatment, it results from (2) and (10) due to the laws of
the probability algebra:

Theorem 1. For a given task set T = {T1,...,Tn} with

di = d for all i the reservation times ri can be calculated
as

X Y1

r1 d 0

r

Y2

X Y1

r1
d 0

r

Y2

Y1 aborted

aborted part of Y1 time not used

∀i,j = 1,...,n. (5)

r

YX

d0

X Y

r

d0

r

4

 () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥=⋅−≤∈= ∑

=

r

k
iiii qkYkdAdrr

0
|],0[min PP ,

 i = 1,..., n (11)
where

A1 := ∑
=

=
n

i
iXX

1
,

 Ai := Ai-1 + min(Yi-1, ri-1), i = 2,..., n. (12)
 □

The computation of P(Ai ≤ d – k) requires the re-
peated convolution of distribution functions because of
(7) and (12). Since the probabilities pi(r) obviously in-
crease monotonically with time r, we can use binary
search to find the reservation times.

3.3. Harmonic Periods

Now we will remove the limitations of the original

QAS admission model. First, we consider task sets with
harmonic periods, i.e., any longer period must be an
integer multiple of all shorter periods:

 di < dj → di | dj ∀i,j = 1,...,n. (13)

3.3.1. Priority Assignment. For the reasons described in
Sect. 3.2.1, we choose the following heuristic priority
assignment denoted as Extended QMS (EQMS). The task
set T is decomposed into m disjoint subsets T1,...,Tm; a
subset consists of all tasks with the same period length di
(i = 1,...,m). The subsets are ordered according to period
length (T1 contains the shortest periods and so on, see
Fig. 5). Now priorities are assigned according to QMS to
both the mandatory and the optional parts of T1. After
that we treat T2 just the same way, but the highest as-
signed priority must be lower than any priority of T1, and
so on. A simple example below will show that this pri-
ority assignment is not optimal.

Figure 5. Task set structure.

3.3.2. Admission Criterion and Reservation Times.
We use the following notations (i = 1,...,m, j = 1,...,ni):

Ti = {Ti1,..., }, iniT ith task subset
di uniform period length of the tasks in Ti

qij quality parameter of task Tij

Xij, Yij mandatory resp. optional part of task Tij

∑
=

=
in

j
iji XX

1

wij WCET of Xij

rij reservation time of Yij

n*X n-times sum of the random variable X
 (n ∈ N).

To check Condition (A1) of the admission criterion,
we consider the worst case (see Fig. 6): all mandatory
parts consume their WCET, all optional parts completely
use their reservation time. Then, the task set T can be
admitted with respect to the mandatory parts if and only
if the following condition holds:

∑ ∑ ∑
−

= = =

≤+
+

⋅
1

1 1 1
1

i

k

n

l

j

k i

ik

k

klkl

k

i
k

d
w

d
rw

d
d

 ∀i = 1,...,m ∀j = 1,...,ni. (14)

Figure 6. Admission of mandatory parts.

To derive the reservation time of an optional part, we
have to take into consideration:
(a) mandatory parts of a task with longer periods are

lower prioritized than optional parts of a task with
shorter periods,

(b) optional parts are aborted by the end of the reserva-
tion time,

(c) optional parts are aborted by the end of the period,
(d) a period of the length di contains di/dk periods of the

shorter period of length dj.

Thus, we have

Theorem 2. For a given task set T with harmonic pe-
riods, the reservation times rij under EQMS priority
assignment can be calculated as follows:

))(|min(ijiijiiijij qdYBArYrr ≥≤++∧≤∈= PR

 ∀i = 1,...,m ∀j = 1,...,ni (15)

where

()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑∑

=

−

=

kn

l
klklkk

i

k k

i
i rYXd

d
dA

1

1

1
,min,min* (16)

 execution time of all subsets Tk with k < i (A1 := 0),

∑
−

=

+=
1

1
),min(

j

k
ikikii rYXB (17)

 □
execution time of all mandatory parts
of subset Ti

execution time of all parts of Ti
higher prioritized than Yij.

w11 r11

w12 r12

w21
w12 r12

w11 r11

r21

d1 2d1 = d2

X21 preempted

T11
T12
T21
T22
T23

d1 2d1 3d1 = d2
T1

T2

5

The term di/dk in Ai results from property (d) listed
above, the min-operations from properties (c) and (b),
respectively.

As mentioned earlier, EQMS is a heuristic priority
assignment. The following example shows that EQMS is
not optimal.

Let T = {T1, T2} where X1, X2, Y1 identically unifor-
mally distributed like Z :

and
 Y2 ≡ 0 d1 = 3.5 d2 = 7 q1 = 0.4;

then the reservation time for Y1 is r1 = 1;
admission test for X2:

 1
2

2

1

11 ≤+
+

d
w

d
rw fails since 1

7
8
> .

However, the task set is schedulable if the priority of
X2 is higher than the priority of Y1, because then Y1 can
be scheduled at least in every second period (see Fig. 7).

Figure 7. Worst-case scenario
for the example task set.

It should be mentioned that assigning all mandatory

parts higher priorities than all optional parts (the latter
according to EQMS) is also not optimal.

3.4. Arbitrary Periods

To derive a formal model for arbitrary periods and to

explain the increased complexity of such a model, we
consider an example first. The reason for this increase is
the existence of “overlapping periods” (see Fig. 8): such
a period ends in another period of the next lower priori-
tized task than it begins in.

Figure 8. Overlapping periods and task
phases for a task set with nonharmonic periods.

For clarity we assume d1 < d2 < … < dn throughout

this section. Hence, priorities pr are simply assigned ac-
cording to pr(X1) f pr(Y1) f pr(X2) f pr(Y2) f … .

Following the common terminology in real-time

scheduling theory, the hyperperiod of two tasks T1, T2

with periods d1 < d2 is the interval [0, H] where
H = lcm(d1, d2). The hyperperiod contains H/d2 phases of
periods of task T2. The time span available for task T2
within its first phase Φ1 is determined by the value of the
random variable

()()()

()(),,min,min

,min,min*

11121

1111
1

2
21

rYX

rYXd
d
d

Z

++

++⎥
⎦

⎥
⎢
⎣

⎢
=

δ

 (18)

 ⎥
⎦

⎥
⎢
⎣

⎢
⋅−=

1

2
1221 d

d
ddδ .

The min-operations reflect the actual scheduling be-

havior (see Fig.8):
min(Y1, r1): the optional part Y1 is aborted at the end of

its reservation time r1;
min(d1, …): the execution of task T1’s first job is abor-

ted at the end of its period d1;
min(δ12, …): the amount of time an overlapping job ex-

ceeds phase Φ1 does not restrict the time
span available for task T2’s first job.

Finally, ⎥
⎦

⎥
⎢
⎣

⎢

1

2

d
d is the number of complete (non-overlap-

ping) jobs of task T1 within phase Φ1.

Thus, the corresponding reservation time r21 (task T2
within its first phase Φ1) is

))(min(222122221 qdZYXrY|rr ≥≤++∧≤∈= PR .
 (19)

To derive the next reservation time r22 (task T2 within
its second phase Φ2) we have to take into account:

– all the jobs executed in non-overlapping periods dur-
ing phase Φ2; their number is

 ⎥
⎥

⎤
⎢
⎢

⎡
−⎥

⎦

⎥
⎢
⎣

⎢

1

2

1

22
d
d

d
d ;

– the potentially remaining portion of task T1’s over-
lapping job at the beginning of phase Φ2 which is

 max(0, min(d1, X1 + min(Y1,r1)) – δ21);

– the portion of task T1’s overlapping job at the end of
phase Φ2 during the time intervall of length

 ⎥
⎦

⎥
⎢
⎣

⎢
⋅−=

1

2
1222

22
d
dddδ .

In the last step (phase Φ3 in the example), we either
successfully get all reservation times or we can compute
the maximal achievable quality during each phase of task
T2. Since it may occur that the admission of Y2 fails
within one (or more) of the phases but within another
phase there is enough time to reach more than the re-
quested quality, an equalization process should be done.

Z 1 2
p 0.5 0.5

X1 X2 X1 X2′ Y1

0 7d1

X2′: rest of X2 after preemption at d1

phase 1 phase 2 phase 3
T1
T2

δ21

d1

d2 δ22
0 H

6

The final formula describing the general case uses
the following notations:

– H = lcm(d1,…,dn) hyperperiod length

–
i

i
i d

Hh = number of phases of task Ti

– ⎥
⎥

⎤
⎢
⎢

⎡ −
−

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=∆

1

2)()1(
d

dk
d
kd

j

ik
ij

–
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⋅−=

j

i
ji

k
ij d

kd
dkd)(δ

– Ai = Xi + min(Yi, ri)

– Bi = min(di, Ai) actual resource usage of task Ti
within a period

–),min(*)()()(
j

k
ijj

k
ij

k
ij ABZ δ+∆=

– pik(r) probability that task Ti’s job in phase Φk is
completely executed within its period and time r

– rik reservation time of task Ti’s job in phase Φk

–),0max(yxyx −=−& nonnegative subtraction

where

 i = 1,…,n current task index
 j = 1,…,i–1 lower prioritized task index
 k = 1,…,hi phase index.

Then we summarize:

Theorem 3. For a given task set T = {T1,...,Tn} with
d1 < d2 < … < dn and pr(X1) f pr(Y1) f pr(X2) f …
pr(Yn) the reservation times result from

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤++∧≤= ∑

−

=

1

1

)1(
1)(

i

j
iijiiii dZYXrYrp P ,

()()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤−+++∧≤= ∑

−

=

−
i

i

j

k
ijj

k
ijiiiik dBZYXrYrp

1

1

)1()()(δ&P

 i = 1,…,n, k = 2,…,hi. (20)
 □

Due to the priority assignment, we can compute the
reservation times for each task individually in descend-
ing priority order. Each step includes the admission test
for the mandatory parts, for which we use time-demand
analysis [13] (or another necessary and sufficient crite-
rion) with a slight modification: the reservation time
must be added to the WCET of all lower prioritized
tasks.

As above (Sect. 3.2.2.), we apply a binary search al-
gorithm to calculate the reservation times. It may occur
that rik does not exist due to the restriction by the period

length since a low prioritized task requesting a high
quality is released late within its period. Then the algo-
rithm yields the largest achievable quality iq~ and the
corresponding reservation time ikr~ so that

iiikik qqrp <= ~)~(. Now we have three alternatives: we
can
– abort the admission procedure because the given task

set T is not schedulable;
– accept the lower quality and continue the algorithm;
– try to compensate the loss of quality in later (or ear-

lier) phases of task Ti.
The latter makes sense because each task is assigned

a tuple of reservation times corresponding to its phases.
However, this tuple is not uniquely determined since the
requested qualities can be modified (for instance, (70%,
70%) and (60%, 80%) results in the same overall qual-
ity). The consequence is a fnite but expensive iterative
equalization process.

If some of the tasks have the same period length we
use EQMS again. The only modification of the reserva-
tion time algorithm is to adapt the execution time of the
mandatory parts reflecting their higher priority than that
of optional parts inside a task subset Ti: Xi is substituted

by ∑
−

=

1

1

j

l
ilX to compute rij.

The equalization process mentioned above is one of
the reasons why we did not implement the model
described in this section. A more important reason are
the enormously increased costs to compute the
reservation times because the hyperperiod may become
very large even for small task sets with close-by period
lengths (like 503 and 510) and all phases must be
considered. So in future work we will look for a different
approach to overcome this difficulty.

4. QAS for Task Sets Using Nonpreemptible
Resources

First, we summarize the QAS approach for nonpre-

emptible resources described in [9] in the case of uni-
form periods. Thereafter, we will extend it on harmonic
and arbitrary periods.

4.1. Uniform Periods

To make the basic ideas of QAS with respect to disk
requests applicable, the optional parts of each task Ti are
divided into a fixed number mi of subjobs (otherwise all
parts of a task achieve a quality of either 100% or 0%).
Yi now describes the execution time of such a subjob.
Priorities are assigned according to QMS; the task set
has to be ordered according to these priorities. The res-
ervation time ri is determined for the optional parts as a
whole of task Ti. During this time, a varying number of

7

subjobs can be started within each period. Si (random
variable) denotes this number. Due to the nonpreempti-
bility, each subjob that is started is successfully com-
pleted. qi denotes the requested percentage of such sub-
jobs (not optional parts!). Thus the admission criterion is

 ∃r1,…,rn ∈ R ∀i = 1,…,n:

 ri = min(r ∈ R | ESi ≥ qimi) (21)

where

Si = Si(r,r1,...,ri-1) number of completed subjobs of
task Ti within a period

ESi = ∑
=

=⋅
im

k
i kSk

1
)(P

 expected value of the random variable Si.

To derive the reservation time formula, random vari-
ables Uik are defined describing the time to execute ex-
actly k subjobs of an optional part of task Ti (k = 1,...,mi)
respecting the fact that a started subjob cannot be
aborted and so it may exceed its reservation time (see
Fig. 9). Then the total execution time Ui is the sum of Uik
weighted by the corresponding probabilities:

 ik

m

k
ki UkSPU

i

⋅== ∑
=

)(
1

. (22)

Figure 9. Reservation time ri and execution time
Uik of an optional part of task Ti.

The approach presented in [9] ignores “pending”

subjobs. Such jobs reduce the next period P of task Ti for
two reasons: a subjob of Ti exceeds the end of its own
period or a lower prioritized subjob overlaps P. We can
handle this situation using an accurate but complex
model or easily avoiding such subjobs. For the latter, we
introduce a subjob WCET wO,i now. We diminish the
period of Ti by wO,i and the longest WCET of all lower
prioritized optional parts for the admission control:

)(max' ,, jO
ij

iOii wwdd
>

−−= . (23)

This results in a slightly lower resource utilization
but avoids the pending subjobs.

4.2. Harmonic and Arbitrary Periods

For harmonic periods, again we assign priorities ac-
cording to EQMS. Within a task subset Ti, the admission
control is done as described for uniform periods, but
considering the time which is consumed by the task
subsets with shorter periods. This time is calculated
based on Ui (Eqn. (22)) and the ratio of the period

lengths. Similar to the pending subjobs at the end of a
period described above, the execution of a task with a
shorter period can be delayed due to the execution of a
subjob of a task with a longer period. This is already
solved by the inclusion of the subjob WCET wO,i. We
apply the same procedure for arbitrary periods.

5. Evaluation

We use both simulations and measurements to evalu-

ate the accuracy of our admission models. The simula-
tions generate a sequence of jobs with execution times
based on the distributions used to calculate the reserva-
tion times. At the end of this section we will investigate
complexity and on-line overhead of the QAS approach.

5.1. Preemptible Resources

To demonstrate the almost full compliance of the re-

quested quality q and the achieved quality qach, we show
two simulation experiments. The first experiment uses
modified normal distributions (truncated at 0 and at the
WCET). Table 1(a) shows the parameter and results of
the task set T = {T11, T12, T2}. The second experiment
uses empirical distributions. The values of X11, X12, and
X2 vary between 1 and 20, those of Y11, Y12, and Y2 be-
tween 1 and 15. The period lengths are d1 = 65, d2 = 195.
Table 1(b) shows the requested and the achieved quali-
ties as well as the reservation times.

Table 1. Experimental results based on

(a) normal distributions

(b) empirical distributions

5.2. Nonpreemptible Resources

We chose disk drives to evaluate the admission

model for nonpreemptible resources, because disk re-
quests cannot be aborted once they are sent to the disk
drive. A disk request can be mapped to a subjob of a task
part, so the mandatory and optional parts of a task de-
scribe data streams read from or written to the disk. As-
suming a fixed request size, the number mi of subjobs of
a part determines the bandwidth of the data stream. The
execution time variance of a disk request is caused by
the disk drive. Fig. 10 shows the distribution for the disk
we used in our experiments.

Task X: µ σ w Y: µ σ q d r qach

T11 4 1 5 3 1 0.70 20 3.52 0.7001
T12 3 2 6 2 1 0.50 20 2.00 0.5016
T2 6 3 10 9 6 0.91 60 19.04 0.9101

Task q r qach
T11 0.75 13 0.7500
T12 0.57 5 0.5699
T2 0.84 9 0.8399

X Yi Yi Yi

(k – 1)-times

ri

Uik

... ...

8

 0

 0.005

 0.01

 0.015

 0.02

 0 5 10 15 20

Fr
eq

ue
nc

y

Request Service Time (ms)

Figure 10. Request service time distribution
(Seagate Cheetah 36ES disk drive;

WCET = 40ms; 32 KByte read requests;
random, uniformly distributed workload).

To evaluate the admission model, we implemented a

SCSI resource scheduler in the Dresden Real-Time
Operating System DROPS based on the scheme of
cooperating resources managers [11]. The disk scheduler
of our system periodically executes the disk requests of
its clients and measures the execution time of each disk

request. Requests were executed as long as the client did
not exceed its time budget for the period.. The budget is
set to the reservation time at the beginning of each new
period.

Table 2 shows the task set we used in the evaluation.
It is a “maximum” task set, meaning that it fully utilizes
the disk drive according to the admission control. The
last row shows the bandwidth achieved by a best-effort
stream executed in parallel to the real-time streams. The
bandwidths represent typical values for compressed
video and audio streams. The results of the measurement
as well as the simulation demonstrate that we achieve the
requested qualities except for the last stream, which
achieves a higher quality. This difference is caused by
our approximation of the overlapping of requests at the
period-end as discussed in Sect. 4.1. The results also
show that we in fact fully utilize the disk drive, denoted
by the low bandwidth (0.7%) that is left over for a best
effort stream executed in parallel to the real-time
streams, as shown in the last row of Table 2.

All the examples convince of the accuracy and feasi-

bility of both models.

5.3. Computational Complexity and Admission
Overhead

The computational complexity of the admission

models for preemptible resources is dominated by the
number of convolutions of distributions required to
compute Ai, Bi, or Zij

(k) in Eqn. (12), (16/17), or (20),
respectively. Those terms must be calculated for each
task of a task set. With discrete random variables X, the
complexity of one convolution is v2, where v is the num-
ber of values of X. The reservation time computation is
solved using nested intervals which results in a com-
plexity of nv⋅log v. Hence, the overall complexity for
uniform, harmonic, and arbitrary periods is O(n⋅v2),
O(n2⋅v2), resp. O((n–1)!⋅v2) (the latter due to the consid-
eration of the hyperperiod).

The complexity of the admission control for
nonpreemptible resources is influenced by the costs to
compute Ui in Eqn. (22). Their complexity is O(s⋅v3)

where s is the sum of all optional subjobs of the task set
T.

Table 3 shows the actual costs of the admission con-
trol for the first example task set used in Sect. 5.1 for
various class sizes of the used distributions.

Table 3. Admission costs for task set used in
example 1, see Table 1(a) (Pentium M 1.6 GHz)

The admission for the task set used in Sect. 5.2 takes

about 3s for a class width of 0.5ms. Finally, the run-time
overhead caused by the scheduler (manipulations of the
ready queue) is negligible independent of the type of
resources and the type of periods.

Class size 0.10 0.05 0.01
Admission time (ms) 2.1 8.2 198.0

Data
stream

Period
length (s)

No.
subjobs

Quality
requ.

Reservation
time (ms)

Quality
measured

Quality
simulated

Bandwith
meas. (KByte/s)

1 1 24 1.00 - 1.000 1.000 768.0
2 1 24 0.95 206.40 0.953 0.951 731.9
3 1 20 0.95 171.60 0.954 0.951 610.8
4 1 24 0.85 184.40 0.863 0.857 662.7
5 1 20 0.85 151.80 0.856 0.851 547.7
6 8 12 0.95 101.60 0.946 0.950 45.4
7 8 8 0.95 66.80 0.952 0.952 30.5
8 8 12 0.90 95.20 0.903 0.902 43.4
9 8 8 0.87 73.20 0.957 0.938 30.6
- - - - - - - 23.6

Table 2. Measurement and simulation results

9

6. Related Work

The existing literature offers a large amount of work

on
– supporting a predictable system behavior in transient

or permanent overload situations,
– providing statistical guarantees for firm real-time

applications (which tolerate occasional misses of
hard deadlines),

– considering of varying execution times to improve
resource utilization,

– enforcing of time restrictions by a reservation based
scheduler.

To the best of our knowledge, QAS is the only ap-
proach which achieves all these goals together. More-
over, QAS is not restricted for specific resources or ap-
plications in contrast to other methods.

The approach closest to QAS is Statistical Rate
Monotonic Scheduling (SRMS) [3]. The idea is to assign
an “allowance” (similar to reservation time) to a task
during its “superperiod” (i.e., the period of the next
lower prioritized task according to RMS). A local admis-
sion – executed at the release time of any job – assures
each task a percentage of successful jobs. However,
SRMS has some disadvantages and limitations: jobs
cannot be divided in parts or subjobs, it cannot handle
nonpreemptible resources, and above all the actual exe-
cution time must be known at the release time of each
job.

The idea to divide jobs into mandatory and optional
parts is taken from the Imprecise Computation Model
(ICM) [5]. It attempts to minimize the total error in the
results of jobs which need not be completed (N-jobs) or
must be completed in one period among several con-
secutive periods (C-jobs). A class of preemptive, pri-
ority-driven scheduling algorithms is proposed but based
on WCET, and not applicable for nonpreemptible re-
sources. The same holds for other models of firm real-
time systems. One of them is the (m,k)-firm tasks model
[10] in which a task must meet at least m deadlines
within a “window” of k consecutive invocations. In [2]
the ICM approach is employed for managing of quality
of service of real-time databases even for transient
overload.

In a similar way TIA [17] et al. proposed a “transform
task method” to provide probabilistic schedulability
guarantees to semi-periodic real-time tasks where the
ratio of maximum computation time to period is larger
than 1. The authors transform each task into a periodic
task followed by a sporadic task, comparably mandatory
and optional parts. They compute the probability that
each task will meet its deadline, and develop a prob-
abilistic time demand analysis which substitutes the
sums of fixed execution times with convolutions of
probability density functions. The method demands that
the exact computation time of each request (job) of a
task becomes known when the task is released.

DIAZ et al. [7] describe a stochastic analysis method
for a wide class of periodic real-time systems. The pro-
posed method computes the response time distribution of

each task based on a Markovian modeling, thus making
it possible to determine the deadline miss probability of
individual tasks. The computation of the complete prob-
ability function of the response time is similar to our
approach (the “shrinking” operation corresponds to the
min-operation). Several other papers propose analysis
methods for real-time tasks with variable execution
times and offer algorithms to compute deadline miss
probabilities [1, 4, 8, 14, 15]. However, the presented
approaches do not allow the governing of systems to
achieve a requested system behavior.

In [12] the problem of temporal consistency mainte-
nance of real-time data objects is studied where a certain
degree of temporal inconsistency is tolerable. A transac-
tion T periodically updates such an object. The job ad-
mission of T guaranteeing a requested percentage of
updates (quality) is based on the quantile of the compu-
tation time distribution of T. However, that is a local
admission without CPU reservation. The admission
demands to know the job computation time a priori
(similar to SRMS). Finally, the goal is to maximize the
overall quality but not to produce feasible schedules.

Several approaches use statistical methods to im-
prove the utilization of disk drives in multimedia servers.
All of these methods aim to calculate the probability of
deadline misses for a given workload, based on either a
probabilistic model of the disk drive [16, 19] or the
measured execution time distribution of disk requests
[18]. In contrast to these approaches, QAS provides
alogorithms to calculate the amount of resources that is
required to achieve a requested quality. This allows the
use of more flexible scheduling algorithms, for example
the use of slack-stealing scheduling to include tasks not
accounted by the admission control, such as sporadic and
best-effort tasks.

7. Summary

This paper overcomes the limitations of the “Quality-

Assuring Scheduling” approach presented in [9]. We
give in detail the admission criteria and the formulae to
compute the reservation times for preemptible and non-
preemptible resources in the case of harmonic and arbi-
trary periods. Both simulation experiments and system
measurements affirm the efficiency of the approach.
Future work should reduce the high admission costs for
task sets with nonharmonic periods.

References

[1] L. Abbeni and G. Buttazzo, “Stochastic Analysis of a

Reservation Based System”. In Proc. of the 9th Interna-
tional Workshop on Parallel and Distributed Real-Time
Systems, April 2001.

[2] M. Amirijoo and J. Hansson, “Robust Quality Manage-
ment for Differentiated Imprecise Data Services”. In
Proc. of the 25th Real-Time Systems Symposium
(RTSS’04), pp. 265-275,, December 2004.

10

[3] A. Atlas and A. Bestavros, “Statistical Rate Monotonic
Scheduling”. In Proc. of the 9th International Workshop
on Parallel and Distributed Real-Time Systems, April
2001.

[4] G. Bernat, A. Colin, and S. Petters, “WCET Analysis of
Probabilistic Hard Real-Time Systems”. In Proc. of the
23th IEEE Real-Time Systems Symposium (RTSS’02),
Dec. 2002.

[5] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling
Periodic Jobs That Allow Imprecise Results”. In IEEE
Trans. on Computers, vol. 39, no. 9, Sept. 1990.

[6] P. Crescenzi and V Kann, “A compendium of NP optimi-
zation problems”.

 http://www.nada.kth.se/~viggo/problemlist/compen-
dium.html

[7] J. L. Diaz, D. F. Garcia, K. Kim, C.-G.Lee, L. L. Bello, J.
M. López, S. L. Min, and O. Mirabella, “Stochastic
Analysis of Periodic Real-Time Systems”. In Proc. of the
23th IEEE Real-Time Systems Symposium (RTSS’02),
Dec. 2002.

[8] M. K. Gardner and J. W. Liu, “Analyzing Stochastic
Fixed-Priority Real-Time Systems”. In Proc. of the 5th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 44–58, March
1999.

[9] Cl.-J. Hamann, J. Löser, L. Reuther, S.Schönberg, J.
Wolter, and H. Härtig, “Quality-Assuring Scheduling–
Using Stochastic Behavior to Improve Resource Utiliza-
tion”. In Proc. of the 22th Real-Time Systems Symposium
(RTSS’01), pp. 119-128, December 2001.

[10] M. Hamdaoui and P. Ramanathan, “A Dynamic Priority
Assignment Technique for Streams with (m,k)-Firm
Deadleins”. In IEEE Trans. on Computers, vol. 44, no.
12, pp. 1443-1451, December 1995.

[11] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul,
“Cooperating resource managers”. In Fifth IEEE Real-
Time Technology and Applications Symposium (RTAS),
Vancouver, Canada, June 1999.

[12] K.-Y. Lam, M. Xiong, B. Liang, and Y. Guo “Statistical
Quality of Service Guarantee for Temporal Consistency
of Real-Time Data Objects”. In Proc. of the 25th Real-
Time Systems Symposium (RTSS’04), pp. 276-285,
December 2004.

[13] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate-monotonic
scheduling algorithm: Exact characterization and average
case behavior”. In Proc. of Real-Time Systems Sympo-
sium, pp. 166-171, December 1989.

[14] S. Manolache, P. Eles, and Z. Peng, “Schedulability
Analysis of Applications with Stochastic Task Execution
Times”. ACM Journal, Vol. 3, No. 4, Nov. 2004.

[15] A. K. Mok and D. Chen, “A Multiframe Model for Real-
Time Tasks”. IEEE Transactions on Software Engineer-
ing vol.23, no. 10), pp. 635–645, Oct. 1997.

[16] G. Nerjes, P. Muth, and Gerhard Weikum, “Stochastic
Service Guarantees for Continuous Data on Multi-Zone
Disks”. In Proc. of the 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS '97), pp. 150-160, May 1997.

[17] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J.-S. Liu, “Probabilistic Performance Guarantee
for Real-Time Tasks with Varying Computation Times”.
In Proc. of the Real-TimeTechnology and Applications
Symposium, pages 164–173, May 1995.

[18] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal, “A Sta-
tistical Admission Control Algorithm for Multimedia
Servers”. In Proc. of the 2nd ACM International Confer-
ence on Multimedia (ACM Multimedia '94), pp. 33-40,
October 1994.

[19] R. Zimmermann and K. Fu, “Comprehensive statistical
admission control for streaming media servers”. In Proc.
of the 11th ACM International Multimedia Conference
(ACM Multimedia 2003), pp. 75-85, Nov. 2003.

