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Chapter 1

Introduction

8. A fool does not see the same tree

a wise man sees.

Although the awareness of security issues has risen lately trust in computer software is
largely based on faith and the common misconception that computers are infallible. Taking a
look at the bug report list of an arbitrary software project can prove the contrary. Verification
exists, if at all, only for small applications. They in turn rely on the correctness of the un-
derlying operating system. Still, the most widespread operating systems work on the principle
of hope for the best—or rather the lack of the worst. The VFiasco project [HTS02] at TU
Dresden tries to fill that gap by verifying the Fiasco microkernel.

The verification of a monolithic operating systems is unrealistic because of their enormous
size. Modern verification techniques utilise theorem provers to partly automate the verification
process but they are still unusable for software beyond 50.000 lines of code. Linux is said to
have more than 2 million lines of code [GT00]. Microkernels offer a solution to this problem.
They aim at reducing the functionality of the operating system kernel by shifting as much
work as possible to user applications.

L4 [Lie96] is a family of microkernels of the second generation. Its kernels implement only
minimal functionality: address spaces (tasks), execution entities (threads) and inter-process
communication (IPC). Management of hardware resources like physical memory or devices
is left to user applications. The kernel solely provides the means to restrict access to these
resources. It initially gives the rights to use them to one user task, which is free to use and
distribute those rights.

Besides running normal applications it is even possible to execute a full monolithic operating
system on top of such a kernel as the port of Linux to L4 [Hoh96] has shown. If the kernel can
ensure that the applications are fully isolated security critical applications can run next to a
standard production system and still give guarantees about themselves.

For the L4 microkernel such security properties include that address spaces are independent,
i.e., that one task cannot spy out data from another, that a task cannot gain access to parts
of the hardware it does not have the rights to and that user-space tasks cannot do damage to
the kernel or other tasks.

The Fiasco [Hoh98] kernel is one of the members of the L4 family. It was developed at TU
Dresden as a kernel with full real-time capabilities. Originally designed for IA32 processors,
it has been successfully ported to other architectures. It is written almost entirely in C++
utilising assembler code when direct hardware access is needed. With currently about 30.000
lines of code for its core functionality1 it has a reasonable size for verification.

There is another obstacle for the verification of an operating system. It is impossible to
verify it without regarding the hardware it runs on. After all, its main task is to manage this

1Fiasco features a lot of useful extensions like a fully grown kernel debugger. As these extensions would
not be included in a working system they can safely be disregarded for verification.
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hardware. PCs undeniably constitute the most widespread hardware today. They are by no
means less complex than the operating systems that run on top of it. Until now, verification
projects tried to get around this problem by using either special hardware [K+03] or idealised
models that have no counterparts in real processors [Bev88]. Both solutions are not applicable
to VFiasco because its goal is to verify Fiasco in the context of a real existing execution
environment.

This thesis will show that it is possible to develop a model of general purpose hardware
that is simple enough to be usable in software verification but still constitutes a model of
existing processors. We will do so by abstracting the processor to its functional model and
then reducing it further to those parts that are required by an operating system.

1.1 Structural Outline

This thesis aims at the development of an x86 hardware model that is suitable for the verifi-
cation of the Fiasco microkernel. It is organised as follows: the next chapter introduces the
VFiasco project and the task of verifying a microkernel. Chapter 3 gives an overview over
the x86 architecture. It explores which parts are necessary for a verification model and which
can be omitted. We continue this examination in more detail in Chapter 4 where we assemble
the findings to the hardware model. Chapter 5 addresses a number of problems that arise
when integrating the model into the VFiasco project. Chapter 6 explains how the model can
be challenged to prove its correctness. The thesis concludes with a short summary and an
overview of future work.

1.2 Acknowledgements

I would like to thank Prof. Härtig and the people of the TU Dresden operating systems group
for the great opportunity to work there. In particular, I wish to thank Michael Hohmuth
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verification. A special kind of gratitude I owe to my brother Martin who always had the time
and patience to listen to my lengthly explanations until they became fully clear to me.

There are so many other people whose technical and moral support made this work possible,
among them Matthias Daum, Udo Steinberg, and Alexander Warg. Those I cannot name here
are not forgotten.

Finally, I wish to thank my parents who supported my studies and always endorsed my
ideas and plans, however unusual they seemed to get.



Chapter 2

VFiasco

33. What is now proved was once only imagin’d.

The verification of an operating system kernel, even if it is a microkernel, is not simply
done by taking the kernel and putting it appropriately into a verification system. The kernel
has to be translated into a specification language and the execution environment has to be
defined and modelled.

This chapter first introduces PVS, the verification system used in the VFiasco project.
Afterwards it describes shortly the steps taken to verify the Fiasco microkernel.

2.1 PVS

PVS is a verification system that contains a specification language and a semi-automated
theorem prover. The PVS language features a higher-order logic with predicate subtypes. In
this thesis we are going to utilise the PVS syntax at times to give definitions of types and
functions. Below follows a simplified overview of those language constructs of PVS that are
needed to understand these definitions. For a full introduction the reader is referred to the
PVS manuals [OSRSC01a, OSRSC01b].

The PVS language is strongly typed. Next to the base types like nat, int or bool it knows
the following complex types:

• Records collect a number of types. They are of the form

[# a_1 : t_1, a_2 : t_2, ... #]

• Functions employ the usual mathematical notation. They can be given either in form
of a definition or in form of a lambda calculus. For example, the min function over an
unspecified data type T can be written as one of

min(d1, d2 : T) : T = if d1 < d2 then d1 else d2 endif

min : [ T, T -> T ] =
Lambda(d1, d2 : T) : if d1 < d2 then d1 else d2 endif

Functions are evaluated by their signatures, so it is possible to overload function names.

3



4 CHAPTER 2. VFIASCO

• Abstract data types (ADTs) are a very powerful type. In this thesis we will only use
ADTs that are not recursive. They can be viewed as an extended form of an enumeration
that allows each element to have a number of parameters. A general definition looks like
the following:

example_adt : Datatype
Begin

cons1(ac11 : type11, ac12 : type12) : rec1?
cons2(ac21 : type21, ac22 : type22) : rec2?

End adt

PVS composes various functions and theorems for each ADT. A constructor function
creates an element of the ADT. It has the same name as the element and takes the given
parameters. One of the constructors of example adt above is

cons2(ac21 : type21, ac22 : type22) : example_adt

A recogniser functions checks if a value is of a given element.1

rec1?( the_adt : example_adt) : bool

yields true iff the adt has been assigned cons1. Finally accessor functions, which use
the parameter names of the definition, extract the value of a parameter.

A number of type definitions together with associated theorems and axioms form a theory. A
collection of potentially dependent theories forms a specification. Theories can be generalised
over constants and types. The generalisation parameters are then given in square brackets
after the theory name. Before such a theory can be used it has to be instantiated, either
when importing the theory or when using a function or type of that theory. Again, the actual
parameters have to be provided in square brackets.

2.2 Verifying Fiasco

The VFiasco project plans to prove security properties from the Fiasco source code. Figure
2.1 depicts the steps necessary. The verification on C++ level has been chosen to take advan-
tage of the structure of the source code. It allows to split the verification into smaller steps.
Properties can be established over single C++ functions first and later be combined to prove
the security properties of the whole kernel.

PVS does not understand the C++ syntax, hence, the source code has to be translated into
the PVS language first. This is done automatically by the semantics compiler . It compiles
the semantics of the source code into a PVS specification. The base of this semantics is the
C++ model. It provides a model of the C++ compiler used to compile Fiasco, or to be
more specific, a model of the interpretation the compiler applies to C++ code. For a normal
application this would complete the model for a source code verification if it can be proved
that the compiler produces correct code. However, the purpose of an operating system is
to control the underlying hardware. Therefore, the semantics of its source code cannot be
complete without a model of this hardware. Together, source code specification, C++ model,
and hardware model define the behaviour of the kernel. This has to be verified against the

1Note that the question mark is not mandatory at the end of the recogniser name. Using it there is just
a convention. The question mark constitutes a legal identifier character in PVS. Thus, rec1 an rec1? are
different identifiers.
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Figure 2.1: Verifying Fiasco

security properties we want to prove. In order to do so they have to be formulated in PVS
first.

We will have a closer look at the semantics compiler and the C++ model before defining
the function of the hardware model more precisely in this context.

2.2.1 Semantics Compiler

In its essence source code constitutes a sequence of operations that change the state of the
underlying system—hopefully in a meaningful way. The semantics compiler utilises this view
and translates the source code into a sequence of state transformers. They are functions that
alter the system state: State → State. The semantics compiler cannot know what the system
state comprises. Therefore, it uses it as an unspecified type and leaves its exact type definition
to the hardware model. In spite of that, the view of a state transforming system forms the
foundation of the verification process. State transformers will also form the basic function type
in the hardware model. That is why they are examined more closely in the following. A full
description of them and the semantics compiler can be found in [Dau03].

A simple state transformer as defined above is not particularly powerful. When a state
transformer represents a C++ expression it does not only yield the subsequent state but also
a result. To reflect that, the co-domain of the state-transformer type has to be extended:

State → (State,Data)

The type of Data depends on the concrete state transformer. Some state transformers, like
those of statements, do not return any data. They simply use the data type Unit, which just
contains one element unit. It signifies that the value is not of interest.

Furthermore, a state transformer can terminate abnormally. A reason might be a pro-
gramming error like trying to read from uninitialised memory. So the co-domain has to be
extended once more. Here, an abstract data type is suitable where each element models another
termination state:

Result[State, Data] : Datatype
Begin
OK(next_state : State, get_data : Data) : OK?
Fatal : Fatal?

End Result
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OK stands for a normal termination and includes the subsequent state and a return type.
Fatal denotes an unrecoverable error. It does not need a subsequent state because the ver-
ification fails at this point. There are other abnormal termination states. Those that are of
interest for the hardware model will be introduced in the appropriate sections.

Using the Result ADT we arrive at the definition of a standard VFiasco state-transformer
type:

State_transformer[State, Data] : Type = [ State -> Result[State, Data]]

Simple state transformers can be connected to become complex ones that form language
constructs like loops and functions. The most important connection functions are those that
join two state transformers sequentially: the infix operator ## and the function eval if ok.
## is defined as follows:

## : State transformer × State transformer → State transformer

(t1, t2) 7→ λ(s : State) :
{

t2(next state(t1(s))) if OK ?(t1 (s))
t1(s) otherwise

The definition of eval if ok reads similar. The difference is that it additionally allows to
evaluate the return data.

2.2.2 C++ Model

The C++ model has to express the exact semantics that the C++ compiler assigns to the
source code. We do not care so much for the object code representation the compiler produces
but more for the semantics this object code gets on execution. One could say the C++ model
constitutes the semantics of a virtual machine the C++ source code is directly executed on.
This semantics suffices to verify a simple application program if we assume that the compiler
works correctly. It is still inadequate for an operating system because system software regularly
bypasses the C++ semantics and directly accesses the underlying hardware. Naturally, the
semantics for such operations is undefined in C++ so they require a model of the hardware
itself. Another problem is that every compiler makes assumptions about the state of the
hardware. For example, the compiler expects that it can use a portion of memory exclusively.
Circumventing the C++ semantics might hurt these assumptions. To still be able to use the
C++ model we have to prove that its assumptions hold in spite of the hardware manipulation
by the operating system. We can only do this if the C++ model builds its semantics on top
of the hardware model as well.

The definition of the C++ model is currently a work in progress, its usage of the hardware
model for the most part undefined. At the time being only the concept of a memory free of
side-effects and a model for data types exist. Both are introduced shortly in the following two
sections. A more detailed discussion can be found in [HT03].

Plain Memory

The C++ model defines memory by its state and exactly two functions: read and write.
Consequently, a memory interface is a record of two state transformers:

Memory_struct[State] : Type =
[#
memory_read : [Address -> [State -> Result[State, Byte]]],
memory_write : [Address, Byte -> [State -> Result[State, Unit]]]

#]

It depends on two more types: Byte, the smallest addressable unit in memory, and Address,
the scope of bytes the memory offers.
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Such a memory interface can specify an arbitrary memory. We already stated that the
C++ model needs to have a part of the memory for its own usage. These regions need to
form a memory free of side-effects, a plain memory. The C++ model expects the following
properties to hold for those regions:

• Reading and writing a byte must be successful for each address in the region.

• Writing a byte to an address in the region and reading afterwards from the same address
must retrieve exactly the same value.

• Writing a byte to one address must leave the rest of the memory in the given range
untouched.

Data Types

The memory interface allows to read and write single bytes only. Few of the C++ data types
are of that size. Nevertheless, they are used in the C++ model as base types. To load them
from and store them to memory the C++ model defines a serialisation interface for each data
type Data:2

Data_type_structure[Data : Type] : Type = [#
size : nat,
to_byte : [Data -> list[Byte]],
from_byte : [list[Byte] -> lift[Data]]

#]

A data type always uses a fixed number of bytes. The function to byte creates from the
given value a byte list that can be stored as a sequence in memory. Accordingly, from byte
does the reverse with a byte list that has been read from memory. To become a C++ data
type the interface has to fulfil the property that these two functions are bijective.

2.3 Hardware Model

Semantics compiler and C++ model have left the system state undefined. It is the main
task of the hardware model to define its type and give it a semantics. The semantics compiler
further expects a definition of those functions that are not part of the C++ specification. They
can be identified by carefully checking the Fiasco source code [Dau02]. The requirements of
the C++ model are currently confined to the plain memory interface. In any case, neither
the semantics compiler nor the C++ model change the system state directly. They only use
the state transformers the hardware model will provide. So they require only a functional
semantics of the hardware. That is what makes a first simplification of the hardware model
possible: VFiasco does not need a model that exactly reflects real processors down to the
level of gates. Instead, it suffices to model the virtual processor the hardware is supposed
to implement. The disadvantage of such an abstraction is that it would require to deliver a
formal proof that the model correctly implements the real hardware Fiasco is supposed to
run on. The purpose of this thesis is to define a functional model. It cannot give a proof of its
correctness in context of real hardware. Indeed such a proof would be a major project on its
own.

The virtual processor model of the x86 architecture is defined in the Intel IA-32 Architecture
Manual ([Int99], IA32 manual for short). On its basis we will develop a formal model of the
architecture. The IA32 manual is mostly informal, so we will be confronted with interpretation
problems that emerge when going from an informal to a formal specification.

2The lift type is used to define partial functions. It is declared as: lift [Data] = ⊥ ]Data.
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The hardware model needs to define the system state and the state transformers of the
functions that Fiasco and the C++ model use. This can happen in one of two ways: axiomatic
or definitional. An axiomatic specification only defines the state and function types, i.e., the
signature, and provides properties of them in the form of axioms. A definitional specification,
on the other hand, provides an exact definition of the system state and each function. The
advantage of an axiomatic model is that it only gives a semantics to known facts. A definitional
model runs the risk to define results that are not specified and thus make the entire verification
void. Still, we are going to realise a functional model out of three reasons: First of all,
errors in axiomatic definitions lead to inconsistencies that allow to conclude anything from
the specification. Second, the architecture is for the most part well defined. And finally, a
definitional model is much closer to the specification. It defines an exact state type that includes
those system structures the IA32 manual describes. The semantics of instructions is even given
in an informal version of VHDL and thus can easily be compared to the function definitions
of the model. This way, we can hopefully strengthen the confidence in the correctness of the
model even without a formal proof.

2.4 Notation

In the remainder of this thesis we will occasionally refer to specific parts of the IA32 manual. It
is published in three volumes, so when citing a particular section we state the volume number
in Roman numerals followed by the section3 in Arabic numerals. Thus, the section about
segment descriptors (III–3.4.3) can be found in the third volume of the IA32 manual in section
3.4.3.

2.5 Related Work

There are very view projects in software verification that try to include the hardware. The
usual approach is to assume the existence of a virtual machine. One such project is the LOOP
project [vdBJ01], which aims at the verification of JAVA code on base of a JAVA virtual
machine.

The idea of a functional hardware model has been used in a similar way in the Kit study
[Bev88]. However, the model was restricted to a very simple von-Neumann machine, which
had no counterpart in a real processor. Furthermore, the model comprised a state machine on
which object code was executed directly.

The project most closely related to VFiasco is the VeriOS project of the Saarland Uni-
versity [K+03]. Its goal is the verification of an L4 kernel running on their own verified
microprocessor VAMP [BJK+03]. The processor is modelled down to the gate level thus using
a different level of abstraction than this thesis aims at.

3Section numbering changes slightly between the various versions of the IA32 manual. The numbers in this
thesis refer to the version cited in the bibliography.



Chapter 3

Hardware Requirements of
Fiasco

46. You never know what is enough unless you know

what is more than enough.

Since its birth in 1978 the x86 architecture has grown considerably. The original processor
started out as a simple 16-bit CPU. Its successors then introduced numerous new features—
fundamental ones like protected mode and paging as well as advanced units like MMX. In spite
of all progress each new generation remained compatible with its predecessors, thus creating a
complex and tangled architecture.

This chapter is meant to give an overview of the x86 architecture. It is going to single
out the features that are required for the VFiasco hardware model. To be able to do so the
criteria for such a selection have to be defined first.

3.1 Towards a Model

In the last chapter we have already state that the high abstraction level of the functional
processor specification can considerably simplify the model. Still, the x86 architecture specifi-
cation is highly complex when modelled in its entirety. Fortunately, completeness is not needed
and even may not be wished for. Every feature in the model introduces additional proof obliga-
tions during the verification. Thus, excluding unused features can greatly reduce the amount
of required proofs. Of course, we have to examine carefully that we do not undermine the
correctness of the hardware model by omitting various parts.

To determine to what extend we have to model the architecture we first have to observe
which of its functions, i.e., machine code instructions, are used. From this we can conclude
which architectural parts must be modelled.

It is safe to leave out complete hardware functions that the kernel is not supposed to
utilise. If the kernel uses them nevertheless the verification already fails with the semantics
compiler because it is not able to translate an instruction that has no counterpart in the state
transformers of the hardware model. One such function is the UD2 instruction, which solely
causes an invalid opcode exception.

If the semantics of a function is provided it must be modelled completely. The same is
true for all parts of the architecture that are influenced by the function. This way we ensure
that the kernel does not use them in an illegal way. However, it is possible to neglect the
dynamic model of such a feature and make a static assumption about its usage—or non-usage.
Verification then has to be rendered fatal if the function is used in another way. For example,
many such static assumptions are made when writing to one of the control registers. Here,

9



10 CHAPTER 3. HARDWARE REQUIREMENTS OF FIASCO

additional processor features like the debugging extensions can be switched on and off. Most
of them are not needed. So, we just make the static assumption that they are switched off
in the processor and forbid to switch them on when writing to the control registers. We call
features unsupported if they are omitted either by not providing a functional interface or by
making a static assumption about them.

Just observing the influence of a feature on the functional interface is not enough. For
example, consider the translation look-aside buffer, which we will examine in detail in Section
4.2.3. Even if Fiasco would not use its interface we cannot simply omit it. It still has an
influence on the correctness of linear address translation. So, a feature must also be modelled
if it has an influence on another feature that is already included in the model. We trust that
such dependencies only exist if they are explicitly stated in the IA32 manual.

When modelling a feature we normally expect its usage to be mandatory. Any attempt to
circumvent it leads to a fatal result. However, some of the hardware functions Fiasco uses do
not influence the overall correctness of the verification, either because the C++ model hides
their semantics or because they only effect the internal state of the processor without being
visible at the functional interface. These features are just carried along. We only need to
provide the interface functions for them. Their internal functionality is not necessary and their
state is required only up to the point that the semantics of the interface is correct. The most
prominent examples of this kind of feature are memory caches. On a single processor system
they do not influence the result of a memory access but only the time necessary to execute
them. Still, the kernel should be allowed to set registers that influence the caching strategy
and read the correct value afterwards. So, we only have to add a variable to the state that
saves the current caching strategy.

Finally there are features that have been introduced in later processor generations. They
cannot become mandatory because then the model is not a model of earlier processors anymore.
Those processor parameters will become parameters over the model. By doing so one can
choose during verification between model instantiations where the feature is either mandatory
or unsupported.

The main objective for the selection of processor features are the demands of the Fiasco
hardware interface and the C++ model. The extent of the hardware usage of Fiasco mainly
depends on the properties that are to be verified. They fall roughly into three categories:

Correctness of kernel code. Those properties argue over the outcome of particular kernel
functions. One such property states that the page-fault handler always succeeds for
certain memory regions. The necessary hardware functions are relatively few. They are
well defined by the source code of Fiasco.

Security of user-mode applications. This category comprises properties that guarantee
that access restrictions are respected by user applications and that tasks are isolated
from each other. To verify them the model needs the ability to switch between privilege
levels. Further, it has to be extended by all those parts of the architecture that can be
influenced by user tasks.

Correct bootstrapping. Every operating system kernel makes some assumptions about the
normal operating mode of the processor. They do not necessarily match the state the
processor is in after reboot. Therefore, a final verification goal is to prove that the
bootstrapping procedure of the kernel sets up the processor correctly.

As already mentioned in 2.3, at the time being the C++ model requires only a memory
interface, that is functions to read and write virtual memory.

3.2 Architecture Survey

Now we can classify the x86 architecture according to the verification needs. This section
functions as a general overview of the architecture. During the development of the model
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specification in the next chapter we explore the parts to be modelled in more detail.
Much of the architecture of the two 16-bit processors 8086 and 80286 has become obsolete.

It is nowadays included only to assure backward compatibility. As a general rule, such parts
will be unsupported because Fiasco is a 32-bit kernel. To further emphasise that we are going
to refer to the architecture from now on as IA32 , short for Intel architecture 32 bit.

3.2.1 Modes of Operation

IA32 supports three operating modes: real-address mode, system management mode, and
protected mode. Real-address mode is an emulation mode for the old 8086 processor and as
such not of interest for newer software. There is one exception for operating systems: after
power up or a reset the processor always finds itself in this mode. Therefore, it must be
modelled when proving bootstrapping.

System management mode (SMM) provides means to handle power management and to
control system hardware. It works transparently to any software including the operating
system. The processor enters this mode when it receives a system management interrupt (SMI).
SMM operates in its own execution environment and is supposed to restore the complete state
of the processor on return to the mode it was called from. For this model we assume that
it works indeed transparently and can therefore be ignored. Fiasco does not support power
management. If it chooses to do so in a future version the SMM handler has to be proved in
another model.

The standard operating mode is protected mode. It has a submode called virtual-8086 mode,
which allows emulation of 8086 within protected mode. It is legacy as well. For kernel-code
verification only the normal protected mode is required.

3.2.2 Memory Management

Memory management provides the foundation for the memory abstraction of the C++ model.
Therefore, it is a mandatory part of the hardware model. It consists of physical memory and
two independent memory management facilities.

First an address is interpreted in terms of segmentation. It allows to partition the memory
into smaller regions. Most modern operating systems work around segmentation by providing
segments that span over the entire memory. In spite of that, it is impossible to disregard
segmentation because it provides the privilege system of the processor and is used during
interrupt handling.

In a second stage the linear address calculated by the segmentation unit is translated by
paging , which implements virtual memory with two levels of page tables.

To accelerate memory access there are various stages of caches for physical memory. They
normally work transparently to software. In a single processor environment they are guar-
anteed to always be consistent with physical memory (III–9.1). On multi-processor machines
consistency requires intervention by software. There is a number of functions to control the
caching strategies. They only influence performance, which is not of interest for this hardware
model. Even if Fiasco currently does not control caching it is highly possible that it will do
so in the future. For this reason caches need to be carried along.

3.2.3 Arithmetic Operations

Arithmetic operations are those functions that alter their operands: binary and decimal arith-
metic, logic, shift, rotate, bit and byte instructions. Direct manipulation of the hardware never
influences their results, so they can all be hidden in the C++ semantics.

Later processor generations introduced additional arithmetic units to enhance performance
for multi-media operations. In particular, there is the floating point unit (FPU) and the
SIMD units MMX, SSE, SSE2 and 3dnow. Fiasco needs none of these units but user-mode
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applications are free to use them. As with general-purpose registers, the kernel has to save
and restore their state correctly when switching between tasks. In Fiasco this is done lazily.
On a task-switch the kernel sets a flag to indicate that an exception should be raised as soon
as the FPU is used. The FPU state is saved only if such an exception occurs. Therefore, we
can safely leave it to user-mode verification to model the state of these units. For kernel mode
verification we just have to provide the ability to enable the FPU exception.

3.2.4 Execution of code

When the processor executes code it successively reads instructions from memory, decodes and
executes them. Additionally, control transfer instructions can be used to change which instruc-
tion is read next. We need to trust that the C++ model provides a correct mapping between
C++ source and machine code instructions. Otherwise, we would end up proving Fiasco on
object code level. We have to assume further that code execution works transparently to any
other functionality the model provides. This requires three conditions to hold: (1) Reading
of code from memory must not change the system state. (2) The sequence of instructions in
memory must match the state transformers to be executed. (3) All control transfers must
happen within the C++ model so that the order in which the instructions are executed is the
same as that of the state transformers. The first two assumptions can become proof obliga-
tions during the verification. The third one is more problematic. Next to the normal control
transfer instructions, jumps and loops, there are some that the C++ model does not know
about: call gates, far jumps, interrupts and exceptions. To be able to use them they need a
semantics that only the hardware model can define. However, such a semantics is confined to
what the processor does during the control transfer. To reestablish the third assumption we
need a model that integrates this hardware control transfer into the context of the C++ model.
Altogether, a model of code execution requires a closer connection between C++ model and
hardware level. This problem will be addressed on its own in Chapter 5.

Fiasco code verification needs a model for page fault handling because it pages kernel
data on demand. Other exceptions are not expected to be raised. Conditions that cause
such an exception can always be considered a programming error. To be interruptible Fiasco
further needs a model of timer interrupts. For user-mode verification all exceptions have to
be modelled because we have to prove that the kernel can handle an arbitrary misuse of the
processor by user-mode applications.

The IA32 architecture provides multitasking support in hardware. In order to use it the
kernel needs to allocate a task state structure (TSS) for each task1. The hardware then
automatically saves and restores the state of the processor when switching between tasks.
Apart from the current processor state the TSS holds some static information for the execution
of the task: the stack pointer to be used when changing privilege levels and the I/O bitmap,
which restricts access to I/O ports. Fiasco does not use hardware multitasking because it
turned out to be by far slower then manually saving and restoring the processor state. Thus,
task switching itself can remain unsupported. Access to the I/O bitmap and the system
stack pointers needs to be added for user-mode verification. Setting up the TSS is part of
bootstrapping.

The processor offers many features for debugging: break points, debugging registers, step-
wise execution, performance measurement, and others. All these are used for kernel develop-
ment and are not of interest for a kernel in production use. In the model they are unsupported.

1At this point the terminology of Intel and L4 collide with each other. Intel calls an execution entity a task.
L4 uses the same term for an address space. Intel‘s task concept maps to an L4 thread. This paper will follow
the Intel notation. When speaking of task and threads in the L4 sense we refer explicitly to them as L4 tasks
and L4 threads.
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3.2.5 General-Purpose and Control Registers

The general-purpose registers and the flag register are part of the task state. They are used
exclusively by the C++ model except for some flags in the flag register which we will explore
in Section 4.2.6. All registers need to be modelled nonetheless, because the kernel saves and
restores them on a task switch. The ESP register deserves special treatment. Although it
belongs to the general-purpose registers it has the dedicated use of stack pointer. In this
function it is interpreted and changed by the hardware.

The control registers CR0 and CR4 configure the operating mode of the processor in more
detail. Most of the flags they contain can be considered architectural features that do not
need to be changed at run time. Notable exceptions concern the page-global flag (for TLB,
see Section 4.2.2) in the CR4 register and the task switch flag (to enable FPU exceptions, see
Section 3.2.3) in CR0. Because of them the two registers have to be modelled as well.

3.2.6 Devices

I/O ports allow communication with devices. They can either be mapped into memory or be
accessed directly. The processor provides two kinds of access control: the general right to do
I/O communication can be changed by setting the I/O privilege level (IOPL) and access to
single ports can be restricted in the I/O bitmap. As mentioned before a microkernel does not
need to access devices. It suffices to model access control, namely IOPL and the I/O bitmap.
For user-mode verification the access functions have to be added.

Devices may also directly transfer data to and from memory by using direct memory ac-
cess (DMA). The usage of this mechanism is a general problem to secure operating systems
because it subverts the protection mechanisms of the CPU and can do arbitrary damage
[HLM+03]. Using it in a verified microkernel is currently out of the question.

Table 3.1 summarises the usage of the IA32 architecture for the verification of Fiasco.
For further reference you may consult the appendices A and B. They list and classify all
architectural features as well as the x86 instruction set in detail.

The functional components we identified in the course of this chapter can be stripped further
of unnecessary subparts. We will do so in the next chapter when developing the hardware model
itself.
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Verification of Kernel Code User-Mode Bootstrapping

mandatory protected mode privilege-level change real-address mode
physical memory task-state segment
paging with TLB
segmentation
stack
interrupt and

exception handling
carried along memory caches state of FPU, MMX,

general-purpose registers SSE, SSE2, 3dnow
EFLAGS
control registers

unsupported system management mode
virtual-8086 mode

hardware multitasking
debugging

hidden by arithmetic operations
C++ model code execution

Table 3.1: Usage of x86 architecture in the VFiasco hardware model



Chapter 4

Model Specification

56. To create a little flower is a labour of ages.

Based on the requirements definition of the last chapter we are now going to develop a
model of the IA32 hardware. The chapter starts with a short overview of the general design
of the model and then explores each part in detail.

4.1 General Design

This first realisation of the VFiasco hardware model will concentrate on the development of
a model that allows the verification of the code of a minimally configured Fiasco kernel. It
will be designed in a way that allows to add other aspects of the IA32 architecture gradually.

4.1.1 Layers

Figure 4.1 gives an overview of those parts of the architecture the model has to cover at least:
memory, the address translation mechanisms, interrupt and exception handling, registers that
belong to the task state, and the control registers. They can be divided into the following
functional units:

RAM includes state and interface of physical memory to be used by other units.

Linear memory adds the paging mechanism, reads and interprets page tables, and knows
about page faults.

Translation look-aside buffer (TLB) specifies the cache for linear address translation. Al-
though it is part of linear memory it is consider on its own because of its complexity.

Segmented memory implements segment address translation, the public memory interface,
and handles the global descriptor table (GDT).

Stack supplies the means to use the stack memory region.

Registers comprise those parts of the hardware that are touched directly by Fiasco but are
not used by the hardware model itself.

Interrupt and exception handling provides means to enter and leave an interrupt handler
and reads and interprets the interrupt descriptor table (IDT).

These units gradually depend on each other. To allow a minimal modularisation we use a
layering model where each of the unit is modelled separately but builds on top of each other.
When implemented every layer gets its own collection of theories. The main theory contains
the model specification. It consists of the definition of a state type and a collection of functions
to change the state.

15
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Figure 4.1: Overview over the model

4.1.2 Hardware State

The state of each layer is composed of the states of the system structures belonging to that
layer. They are best collected in a record. Each layer extends the state of the underlying layer.
PVS does not support the extension of record types, so we model this by defining its own state
types for each layer and then add the state of the underlying layer. This way the uppermost
layer determines the overall dynamic state of the hardware.

System structures that are stored in memory do not get their own state. Instead, they are
always read directly from memory. Higher layers can use the memory interfaces of lower layers.
The GDT, for example, is referenced by an linear address. Hence, the read function of linear
memory is used to retrieve data from it.

For processor parameters the modularisation is not necessary because there are only few.
Instead, they can easily be collected in a global record and passed to every theory as a theory
parameter.

In Section 3.1 we established the condition that features can only be unsupported if it
can be verified that they do not have side effects on modelled features. This model makes
an exception to this rule by introducing some unverifiable features. The system structures
stored in memory normally contain information the system software provides to the processor.
As such the hardware model only needs to read them. However, the processor also modifies
certain bits to provide feedback about the usage of these structures to the kernel. The current
implementation of VFiasco does not make use of this information, so the model will not reflect
these modifications. This way, the hardware model itself leaves physical memory untouched.
That simplifies proofs over the model considerably. You should keep in mind, though, that it
is impossible to formally prove within the hardware model that those bits are not used. They
are just a part of memory. Once they are retrieved they are interpreted by higher levels of the
verification model, outside of the control of the hardware model.

4.1.3 Functional Interface

In the processor the set of machine instructions defines the functional interface. Because IA32
is not a load-store architecture the execution of a single instruction normally includes several
steps: fetching its operands, executing the appropriate operation on them and storing the
result. In contrast to that, the C++ model strictly separates these three steps. It defines
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individual functions for reading a variable, for writing a result, and for the operation itself.
The hardware model will follow the view of the C++ model and define the read and write
operations separately. Those instructions that expect a very specific kind of operator prove
the exception. An example is the LGDT instruction. It expects a pointer into virtual memory
and reads its data directly from there.

Separating machine code instructions leads to problems when the processor uses instruction
boundaries to define its atomic operations. For example, it guarantees that interrupts never
occur during the execution of an instruction. We will meet this problem again in Chapter 5
when discussing interrupt and exception handlers.

4.1.4 Data Types

The functional interface of the IA32 defines three data types: a 32-bit word (Mword), a 16-
bit word (Word) and an 8-bit byte (Byte). They can be interpreted twofold: as a number,
for example, when referring to an address, or as a vector of bits as in the EFLAGS register.
The hardware has no difficulty in changing between these interpretations because internally
all values are represented as bits. In PVS this cannot be done that easily. Numbers and bit
vectors are fundamentally different data types. The former is a basic type while the latter is
represented as a function:1

bvec[number_of_bits] : Type = [below(number_of_bits) -> bit]

Conversions between those types are not trivial. Although PVS offers an impressive library
to reason over bit vectors, proofs over such converted values require a lot of user interaction.
For this reason we define a corresponding bit-vector type for each of the three data types:
Mword vec, Word vec and Byte vec. The internal state variables then use the representation
that requires the least conversion effort. The operands and results of the public interface are
always represented numerically to match the C++ data types.

4.2 Layer Analysis

The remainder of the chapter deals with the specification of the hardware model in detail. For
each layer we first examine the hardware it models, classify its subparts, and try to further
simplify it. Then we specify a state for the remaining parts and define its functionally. Where
appropriate the properties of the layer are shortly discussed.

4.2.1 Physical Memory

The foundation of the model is the state of physical memory. It is the base upon which linear
and virtual memory are constructed and it determines the state of those system structures
that are stored in physical memory instead of having their own dedicated registers.

In Hardware

IA32 distinguishes between physical memory and physical address space. Physical memory
refers to the physically available main memory (RAM). The physical address space is defined
as every byte that is addressable on the address bus (III–3.3). Normally the address bus has a
width of 32 bits, thus spanning an address space of 4 Gbyte. Later processors introduced four
additional address lines resulting in a bus size of 36 bits. Making use of the extended address
scope requires a special addressing mode, either PAE or PSE-36. Both are unused in Fiasco
and therefore are unsupported in the model.

The RAM is always located at the lower end of the physical address space. Higher regions
can be used to map other types of memory, for example, I/O ports or the memory for the

1The PVS type below is defined as a subtype of N: below(n) = {x ∈ N|x < n}.
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system management mode. Some regions may be mapped to no physical memory at all. The
IA32 manual does not define what happens if those physical addresses are accessed. For a
verification model such a usage has to be fatal.

The Model

First of all, we can now define the types Address and Byte for the IA32 architecture. They
are used for the memory interface of the C++ model as well as in the hardware model as a
base data type. The width of the address bus defines the address range:

Address : Type = below(2^32)

The smallest addressable unit, the byte, has a width of 8 bit:

Byte : Type = below(2^8)

This layer confines itself to modelling RAM. The available memory is a fixed quantity of
the processor and normally less than the full address space. We model its size as a processor
parameter: max pm. The state of physical memory then corresponds to the data that is currently
stored in RAM. Each address has assigned a byte value:

Physical_memory : Type = [ below(max_pm) -> Byte ]

For access a read and a write function have to be defined:2

physical read : Address → (State → Result [State,Byte])

a 7→ λ(s) :
{

OK (s, s(a)) if a < max pm
Fatal otherwise

physical write : Address × Byte → (State → Result [State,Byte])

(a, b) 7→ λ(s) :
{

OK (s with s(a) = b, unit) if a < max pm
Fatal otherwise

Plain Memory Properties

Physical memory constitutes the most simple form of plain memory. Reading and writing
always fulfils the plain memory properties as long as the address is within the boundaries of
existing physical memory.

4.2.2 Linear Memory

The layer of linear memory specifies the paging mechanism. It adds functions to read and
interpret page tables, translate linear addresses, and it raises page faults.

In Hardware

IA32 paging uses two levels of page tables. Each standard page has a size of 4 Kbyte. Beginning
with the Pentium processor it is possible to omit the second level of page tables and directly
address a super page of 4 Mbyte in the first-level. All page tables reside in physical memory.
The location of the current first-level page table, the page directory, is stored in the page
directory base register (PDBR). when forming the base address The processor uses only the

2s with (a := b) denotes a function update, formally: s with (a := b)
def
= λ(x) :

{
b if x = a
s(a) otherwise

.
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Figure 4.2: Address translation using paging

upper 12 bits of the 32-bit register and sets all others to zero. This way the page directory
is guaranteed to be within a single page itself. Bits 3 and 4 of the PDBR contain flags that
define the global memory caching strategy. In the page directory each entry references either
a super page or a second level of page tables (page tables). They, in turn, point to a standard
page in physical memory. The linear address is divided into three parts. They are used as
indices of page directory and page table and as the offset into the page. Figure 4.2 illustrates
the address translation.

Next to the address pointer the page-directory and page-tables entries contain various
additional information about the pages they reference. Picture 4.3 shows their usage in the
model.

• The present bit states whether there is any physical memory allocated to a page.

• The user/supervisor and read/write bits are used to restrict access. The privileges of the
page-directory and the page-table entry are combined to determine the rights of the page.
There is a peculiarity in the early 386 processors that allows supervisor to access any
page regardless of the state of the read/write bit. This behaviour has been corrected with
the introduction of the write-protect flag. When it is set, addresses in write-protected
pages cannot be written to in any privilege level.

• Accessed and dirty bits state whether the page has been used or changed. The processor
sets these bits as feedback for the operating system. Because VFiasco does not use this
information they are not updated in the model making their usage unverifiable.

• The global bit is part of the TLB cache and as such discussed in Section 4.2.3.

• The page table attribute index , write-through and cache-disabled bits control the caching
strategy for memory on page level. As mentioned in Section 3.2.4 those are only carried
along. The same is true for any bits that are available for the system programmer’s use.

• Unused bits in the page-directory and page-table entries are reserved and setting them
can cause a page fault in certain processor states. Therefore, it is considered fatal to set
them to anything else then zero, even if the processor does not perform this check.

Accessing linear memory can rise page faults. They have three kinds of causes: a non-
present page, an access violation, or reserved bits in the page-table entries. If the processor
comes upon one of the conditions it saves the faulting address in the CR2 register and sets up
a page fault exception. The cause of the page fault is then passed to the handler as an error
code.
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Figure 4.3: Layout of page table entries

As mentioned before paging is mandatory in the model. Super-page and write-protection
support have been introduced in later processor generations, so they need to become processor
parameters.

The Model

Linear memory adds the contents of the PDBR and the CR2 register to the system state. For
the PDBR only the valid bits are stored. The two bits for cache control are carried along.
Furthermore, it is essential to know the current privilege level when handling access control.
So we add it already at this level although it is part of segmentation. IA32 supports four
privilege levels. They are mapped to two levels for page-level protection. Level zero denotes
supervisor level, all other levels are considered user level. The state of linear memory sums up
to the following:

Linear_memory : Type = [#
memory : Physical_memory,
priv_level : below(4),
pdbr : bvec[20],
pdbr_cache : bvec[2],
cr2 : Address

#]

This layer provides read and write functions for the PDBR and CR2. When setting the
PDBR, unused bits must be zero or writing fails. Fiasco only reads the CR2, it never writes
it. Even so, the layer provides a write function because the function that sets up the page fault
handling needs to set the register to a valid value. From the point of view of the hardware
model the register is only carried along.

Furthermore, we have to define the linear memory interface. For it the read and write
functions of physical memory have to be extended. Before actually accessing physical memory
the linear address operand has to be translated into a physical one. This is done by the look-up
function linear l t p. It involves three steps: First it reads the page-directory entry and, if
necessary, the page-table entry as untyped 32-bit vectors from physical memory. If this is
successful it checks that the two values constitute legal page table entries and that the desired
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access can be granted. Finally, it calculates the physical address. The new access functions
linear read and linear write form the linear memory structure.

Looking up a linear address can yield a page fault if the requested page is not present or
access is not allowed. Page faults constitute an abnormal termination state. As such we model
them as another element of the Result type:

Result : Datatype =
Begin
...
Page_fault(pfa : Address,

page_fault_flags : Pagefault_flag) : Page_fault?
...

End

Both the cause of the page fault and the faulting address are returned. Note that the page
fault condition does not yield a subsequent state. It is not needed because the system state is
always reset to the state before the execution of the offending instruction when handling the
page fault. A semantics for dealing with page faults, i.e., reacting on a Result of Page fault,
is not part of the hardware model and will be discussed in Chapter 5.

Plain Memory Properties

The access functions linear read and linear write can fail for various reasons. The following
two properties guarantee that they terminate successfully:

• Consistency: Reading from physical memory while traversing the page directory never
fails. If a physical address can be resolved it lies within the existing physical memory.

• Existence: The page-table entries are in a legal format, there is a page mapped at the
requested address, and the desired access can be granted.

If they hold linear memory fulfils the first of the three condition that were stated in Section
2.2.2. They do not yet guarantee that the value behind an address does not change or that
other addresses are unaffected by write operations. To allow that the following properties have
to hold additionally:

• Directory entries: Addresses that should be written must not be part of a page-directory
or page-table entry that belongs to a page where any other address of the plain memory
region is located.

• Sharing: If two linear addresses point to the same physical address none of the two may
be writable.

4.2.3 TLB Memory

Translation look-aside buffers (TLBs) are responsible for caching address translations from
linear to physical memory. They store recently used page-directory and page-table entries
to accelerate the look-up. Unlike memory caches the TLB is not entirely transparent to the
operating system. Therefore, it cannot be dismissed.

In Hardware

Whenever the processor has to traverse page tables it caches the results in the TLB. There
it keeps them until they need to be replaced by other entries. Thus, whenever the operating
system changes the page directory it must explicitly remove affected entries from the TLB. To
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delete a single entry it can use the INVLPG instruction. If it wants to flush the entire TLB it
has to reload the page directory by writing into the PDBR register.

Pentium Pro further introduced the concept of global pages. Entries for such pages are
pinned to the TLB. Reloading the PDBR does not flush them. To remove them the global-
pages feature has to be switched off temporarily by clearing the page-global flag in the CR4
register (see Section 4.2.6). This technique shall be called a global flush. Accordingly, a local
flush denotes a TLB flush that is done by reloading the PDBR. If the global-paging mechanism
is disabled both have the same effect. The INVLPG instruction always causes a flush of the
affected entries regardless of their global state.

In real processors there are generally two independent TLBs for code and data. If the
processor supports super pages they normally have their own cache as well. The IA32 manual
leaves the contents and inner workings of the TLB entirely unspecified. It solely guarantees
that the contents of the TLB and the page directory in memory are consistent as long as the
following rules are obeyed:

1. Whenever a page-directory or page-table entry is changed or deleted, the operating sys-
tem must immediately invalidate the corresponding entry in the TLB so that it can be
updated the next time the entry is referenced. (III–3.11.)

2. When handling a page-fault exception the TLB must be flushed after the update, even
if the faulting page was not present before. (III–3.7.6.)

3. Starting with Pentium 4 speculative execution (snooping) demands that there must be
a flush between the change of the page directory and the access of the corresponding ad-
dress. Flushing before the change is not enough even if it is done immediately beforehand
and no address in the affected page is accessed in between. (III–9.7.)

Basically the operating system must flush the TLB after any changes of the address or the
rights in the page directory. It only may delay this flush until the time the affected addresses
are accessed again.

Currently Fiasco considers two cases where the TLB becomes inconsistent:

• Deleting an entry or changing the physical address at the lowest level leaves an inconsis-
tent entry in the TLB.

• Restricting rights might grant access to a page that has been forbidden in the meantime.

All other changes are assumed to be safe. Even though this conforms to general TLB usage
those changes are still perilous. It is possible to construct a TLB for each of the changes that
conforms to the specification but exhibits an inconsistency:

• Making a page-directory or page-table entry present might lead to an unexpected page-
fault if a TLB caches non-present pages.

• Expanding rights of an entry can raise an unexpected page fault if rights are checked
against the TLB only.

• Transforming a 4-Mbyte page into a set of 4-Kbyte pages (splitting) might lead to prob-
lems with correctly combining rights. Assume the 4-Mbyte page was read-only, which
is reflected in the new page set by giving read-only rights to the page-table entries and
full rights in the page directory. On a write access a TLB implementation might now
find the stale 4-Mbyte page entry with read access in its cache and decide to confirm the
access violation in the page directory. There it finds that the page-directory entry now
grants write access.
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• Transforming a set of 4-Kbyte pages into a 4-Mbyte page (merging) might lead to an
access to a page table that does not exist any longer. Consider a TLB that caches page-
directory and page-table entries as they come from memory. Before merging a set of
pages the page-directory entries has already been cached due to some access in one of the
4-Kbyte pages. After merging the pages an address in a different former 4-Kbyte page
is accessed. The TLB page-directory entry would still be missing the super-page bit.
Therefore, the TLB is checked for the Kbyte page-table entry. It is not found and read
from memory instead, from a page table that is no longer valid and might have already
been overwritten.

• Redirecting a page-directory entry to another page table leads to a faulty look-up under
the same conditions as merging.

Note that the example TLB implementations given for merging and splitting rely on infor-
mation from different states of the physical memory to translate an address. An implementa-
tion like that is highly unlikely. Still, it would be a valid one according to the IA32 manual.
Therefore, it is valid in a model that implements the IA32 specification instead of a specific
processor.

The Model

TLBs are the only part of the architecture whose functionality is not exactly defined. Therefore,
the following model can only be a generalised abstract TLB model that incorporates the
properties stated above.

When the processor needs to translate a linear address it first checks if it can find the
corresponding page-directory and page-table entries in the TLB. If it cannot find them it loads
them from the page directory, which is always consistent with itself. If the entries are cached
in the TLB they must have been added at some time since the last flush of that address.
Which state (or states, for that matter) constitutes the TLB entry depends on many factors:
(1) whether the address has been access before, (2) how many other addresses have been
accessed in between, (3) the size of the TLB, (4) its replacement strategy, (5) how long the
address resolution was done before the execution of the instruction and many others. While
it is possible to exactly model the first three factors, the latter two are well-kept secrets of
processor design. Therefore, not much can be said about the actual content of the TLB. The
only guarantee that can be given is the following:

An address translation is ensured to be consistent if since the last flush the ac-
companying page-table entries has never been in a state that could have caused an
inconsistent entry to be loaded into the TLB.

Note that this guarantee requires to examine every single state since the last flush. This
eliminates a very simple model: The TLB model stores the state of the page directory after
the last flush and compares before each address translation if the current and the stored page
directory yield the same address. It might happen that one of the page-table entries was
changed in between and then restored to its old value. Even if none of the affected addresses
are accessed in between the inconsistent state might have entered the TLB due to snooping.

We could now express the consistency guarantee as an axiomatic property of the TLB. This
requires an expression in temporal logic. A more simple approach is to formulate a predicate
over all linear addresses that states whether an address is consistent. This predicate can be
added to the system model as TLB state:

TLB : Address → bool

True indicates that all system states since the last flush have had a consistent page directory
for that address. Now we observe every change of the state of physical memory and, from that,
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recompute the state of the TLB:

TLB = λ(a : Address) : TLB(a) ∧ ¬tlb address changed(old state,new state)(a)

We define tlb address changed as a function that returns true for all addresses that exhibit
inconsistencies between the two states. It is the heart of the TLB implementation. How exactly
this functions is defined determines how restrictive the TLB model is. A very restrictive model
would simply compare for each address the associated page-directory and page-table entries
and mark the address changed if they are not identical. On the other hand, a very weak
realisation could implement the current TLB usage of Fiasco. The implementation in this
model strictly follows the IA32 manual because any other implementation requires a careful
study of real processors to ensure that it is correct. Such a study is beyond the scope of this
thesis.

The consistency predicate suffices to ensure that a memory access is consistent with the
current page directory. If the model should allow to distinguish between global and local TLB
flushes we further need to take into account the global state of an address.

A global flush simply leaves the entire address space consistent:

tlb flush global : TLB = λ(a : Address) : true

A local flush, on the other hand, does not remove entries from the TLB that are inconsistent
and marked global. So we need another predicate TLB global that states whether since the
last flush there has been an inconsistency, that was caused by a global page-table entry. Using
this predicate a local flush can be defined as:

tlb flush local : TLB = λ(a : Address) : TLB(a) ∨ ¬TLB global(a)

Like the consistency predicate the global predicate needs an update function of its state.
When trying to define such a function we soon realise that a simple boolean predicate is not
enough for the global state. Consider the following two examples:

• The global bit of a page-table entry is changed from local to global and back to its local
state again. Afterwards the physical address resolution is changed.

• The address resolution of a local page-table entry is changed. Afterwards the global bit
is first set and then unset again.

In both cases the entries are in an inconsistent local state after the changes. Still, in the
first case a global flush is required while in the second a local flush suffices. The difference
lies in the global entry that could be lingering in the TLB. In the second example it is still
consistent, in the first case it is not. The problem is that not a single change in the physical
memory causes the dangerous state with a global inconsistent entry but a particular sequence
of state changes. Therefore we have to distinguish three cases of the global state: (1) all old
entries are local, (2) an old entry is global but consistent with the current page directory and
(3) there is a global stale entry in the TLB. A local flush then only fails in the third case.
Figure 4.4 illustrates how the new global state of the TLB is determined when the state of the
underlying memory changes3.

The consistence and global state functions constitute the state of the TLB memory. To
be able to decide whether to do a local or a global flush it further needs to know about the
global-pages feature.

3There still exists a special case of manipulating the global bits that is not usable in this model but should
work in reality: If a global entry is changed to some different local one and changed back afterwards to the
global entry it had before, a local flush suffices in reality but not in our model. We consider a software that
relies on that kind of behaviour as poorly designed.
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Figure 4.4: Determining the global state of an address: Changes to the page-table entries that
change the global state of associated linear addresses.

Tlb_memory : Type =
[# memory : Linear_memory,

tlb_consistent : [Address -> bool],
tlb_global : [Address -> {local, global, global_stale}],
global_enable : bool

#]

The two memory access functions linear read and linear write have to be wrapped with
the consistency check and TLB update functions. Before an address can be accessed we check
that it is still consistent. After the access the TLB is updated.

The TLB update function can also be used if the physical memory is changed in other
ways then through the memory interface of the hardware model. For example, it is possible
to integrate DMA from devices in the model without loosing TLB integrity. The associated
functions only have to be wrapped with the tlb update function that compares the states
before and after the change and updates the TLB accordingly.

The write function of the PDBR register has to be extended to flush the TLB, either locally
or globally. Changing the value of the global enable bit causes a flush of the TLB as well.
Setting the bit is done by writing into the CR4 register. This function will be implemented in
the register layer in Section 4.2.6.

The INVLPG instruction takes an address as an operand and guarantees to flush all entries
relevant for this address. Beyond that the exact semantics of the instruction are explicitly
defined as implementation dependent (II–3.2). The TLB is guaranteed to store address trans-
lation for whole pages. Because the smallest page granularity is 4 Kbyte this is the minimal
scope that is flushed. In the model we restrict the tlb invlpg function to flush all addresses
that belong to the same 4-Kbyte page as the indicated address. To support flushing of indi-
vidual 4-Mbyte pages we would have to assure that the processor indeed caches super pages
in their entirety and then model two individual TLBs for 4-Kbyte and 4-Mbyte pages. Since
Fiasco does not yet use the INVLPG instruction we omit this step for the sake of simplicity.

Plain Memory Properties

The TLB introduces the inconsistency of its cache as a source of an unsuccessful memory access.
These inconsistencies can arise only when a page-directory or page-table entry is changed. The
page-directory property of linear memory already forbids writing to them. Therefore, the same
properties apply for linear memory and TLB memory.
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Figure 4.5: Segment descriptors for memory segments

4.2.4 Segmentation

Basically, segments provide the ability to divide memory into regions of different usage and
protect them from each other. These regions constitute the IA32 virtual memory. In addition
to that, the processor uses segments and their descriptors to store various system information.

In Hardware

Segment types can be divided into memory and system segments. System segments comprise
interrupt, trap and call gates, the local descriptor table (LDT) and the task-state segment
(TSS). Gates are explained in detail in Section 4.2.7, the LDT will be discussed later in this
section. The TSS we already dismissed in Section 3.2.4.

Memory segments describe a region in linear memory. They can have one of two different
types: code or data. Code segments are always executable and may optionally be readable.
Additionally, the conformance property influences from which privilege levels the segment may
be loaded. Data segments are at least readable and can also be made writable. In addition,
it is possible to choose whether the addresses above (expand-down) or below (expand-up) the
given limits constitute the segment. Neither conforming code segments nor expand-down data
segments are used by Fiasco. They are unsupported in the model.

Segments are defined by segment descriptors. They contain the segment type, their position
in linear memory, a limit, and a privilege level (DPL). The latter states which privilege level
is at least required to access them. Like page tables, segments have an accessed bit, which
is unverifiable, and an available bit for usage by software, which is carried along. Figure 4.5
depicts the usage of the descriptor information.

Segment descriptors are stored in segment descriptor tables of which there are three: the
global descriptor table (GDT), the local descriptor table (LDT) and the interrupt descriptor
table (IDT). The IDT only contains references to interrupt handler functions, which we will
discuss in Section 4.2.7. GDT and LDT can both be used to store memory segment descriptors.
The position and size of GDT and IDT are stored in a register, GDTR and IDTR respectively.
The LDT in turn is indirectly referenced by an LDT segment descriptor within the GDT.
Because the LDT is not used we keep the model simple and leave LDTs unsupported.

Software can never access linear memory directly, it always has to use a segment. In order
to avoid recurring reading of segment descriptors from memory they are cached in segment
registers. There is one register for code segments (CS), one for stack access (SS) and four for
data access (DS, ES, FS, GS)4. Each register has a visible and a shadow part. The visible
part contains the index into GDT or LDT and the requested privilege level (RPL). The RPL

4There are two more segment registers that are not modelled: one for the current task-state segment, and
one for the LDT.
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for data segments restricts access to that segment. The RPL of CS functions as the current
privilege level (CPL) the CPU is running in. The shadow part caches information from the
segment descriptor.

The processor checks the type and the privilege level of the segment already when loading
the segment registers. What remains to be done before accessing memory is to ensure that the
address lies within the boundaries of the segment and that the desired access is allowed.

The IA32 architecture additionally offers several functions (LAR, LSL, VERR, VERW) to
check accessibility of memory through a segment descriptor. For this model we assume that
the kernel knows about the contents of the GDT and leave these functions unsupported.

The Model

The state of the segmented memory layer consists of the GDTR register and the segment
registers:

Segmented_memory : Type =
[# memory : Tlb_memory,

gdtr : [# base : Address,
limit : Word #],

segment_register : [{CS, DS, ES, FS, GS, SS} ->
[# register : Word_vec,

base : Address,
limit : Mword,
dpl : below(4),
stype : {System, Code, Code_Readable,

Data, Data_Writable}
#]

]
#]

For the GDTR the linear base address and the size of the global descriptor table are stored.
The segment registers contain the currently loaded segment value and in the shadow part base
address, size, access type, and DPL of the segment. The first one is used to calculate the
linear address and the others are required to perform access checks. We cannot simply read
this information from the GDT in memory. Once the segment register is loaded the processor
no longer keeps it consistent with the GDT entries in memory.

All registers need functions to read and write them. The content of the GDTR is always
laoded from and stored to memory directly. The respective functions take a virtual address
as an operand. The write function is more restrictive than IA32 manual states. It fails if the
given GDT would be outside linear memory.

When loading segment registers the corresponding segment descriptor is read from the GDT
in linear memory and checked for the correct type and privilege level. The CS register cannot
be loaded directly but only implicitly when performing far jumps (see Section 4.2.7).

Memory read and write functions have to be prepended by the address translation of
segmentation. The address is checked to be within segment boundaries and, when writing the
segment, the segment is checked to be writable. Then the address is translated into its linear
form by adding the segment base address. Addresses in segmented memory always consist of
a segment-register/address pair. This cannot be expressed by the general memory interface
anymore. Therefore, we define for each segment its own memory interface by parameterising
the interface over the segment selector.
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Properties for Flat Segments

Like most modern operating systems Fiasco tries to avoid usage of segmentation as far as
possible5. Segmentation cannot be switched off completely so Fiasco uses flat segments, which
span over the entire linear memory and grant as much access as possible. One might argue that
it would greatly simplify the model to support only these kind of segments. Unfortunately this
is not the case. The most expensive part of segmentation is hidden in the loading process of
segment registers. It cannot be omitted because it is impossible to make any static assumptions
about it. The segment descriptors have to be read from the GDT, which resides in linear
memory. Thus, it might be changed any time as a side effect of another function. Reloading
the segment registers is done regularly when using interrupt gates. Fiasco reads the contents
of segment register as well, so that the their state needs to be stored, too. For this reason we
have modelled the complete segmentation mechanism with the exceptions already pointed out
in the last section.

To simplify the reasoning over the model for software with a flat segmentation we provide
the appropriate theorems. A flat segment is either a readable code segment when loaded into
CS or a writable data segment when used with one of the other segment registers. It has to
have a base address of 0, a limit of 232−1. If a segment descriptor that meets these conditions
is loaded it can easily be proved that all subsequent reads and writes through this segment
have the same result as if linear memory was accessed directly.

4.2.5 Stack

Stack is a region in virtual memory with the dedicated use as a LIFO memory. As such it is the
responsibility of the C++ model to make sure it is set up correctly and used type-safely within
the application. The problem is that the hardware uses the same stack as the C++ model. The
processor needs stack in control transfer instructions to save system state information. This
layer adds the hardware support for stack on top of which we are going to define interrupt and
exception handling in Section 4.2.7. The C++ model might later utilise it to define its own
memory allocation.

In Hardware

IA32 dedicates a special segment to stack. It has its own stack segment register (SS) and a
stack pointer register (ESP) that points to the top of the stack. It is used with the POP and
PUSH instructions. Apart from that, the stack can be used like any other memory region and
the ESP like any other general-purpose register (see Section 4.2.6).

Stack grows downwards towards address 0. The ESP always points to the topmost 32-bit
word on the stack. Thus, push functions first decrement the stack pointer and then write
the value to the new address. Accordingly, pop functions first read the value from stack and
increment the stack pointer afterwards.

The Model

The stack segment register has already been added to the state in the segmentation layer in
Section 4.2.4. This layer only adds the stack pointer to the system state:

Stack_memory : Type = [# memory : Segmented_memory,
esp : Address

#]

As usually there have to be functions to read and write the stack pointer itself. Push and
pop functions save and restore data on stack and set the stack pointer accordingly. In this

5There is one extension to Fiasco that proves the exception to this rule: Small address spaces [Hof02]
multiplex multiple tasks into one address space by putting them into different non-overlapping segments.
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Figure 4.6: EFLAGS

layer we add the very general stack push and stack pop functions that handle 32-bit words.
Other functions that save special CPU registers like EFLAGS on the stack will follow in the
appropriate layers.

4.2.6 Registers

At this point we add those registers of the hardware state that are not used by the hardware
model itself but need to be saved for direct access by the kernel: the general-purpose registers,
the flag register and the control registers CR0 and CR4.

In Hardware

IA32 has seven 32-bit general-purpose registers6: EAX, EBX, ECX, EDX, EDI, ESI, EBP.
They are at the free disposal of the C++ model; the hardware model does not manipulate
them. Fiasco accesses them directly only when saving their state. All registers can be used
either as 32-bit or as 16-bit words. In the latter case only the lower half of the register is used.
EAX through EDX can also be accessed as 8-bit bytes.

The EFLAGS register is a 32-bit register containing status, control and system flags. Like
the general-purpose registers it is part of the task state. The status flags indicate results of
arithmetic operations, which are hidden by the C++ model. We will leave their value undefined
although that renders their usage unverifiable because they are normally set by hardware. The
only control flag DF controls the direction of string operations,7 which are part of the C++
model as well, so the DF flag is just carried along. Of the system flags solely the interrupt
enable flag (IF) and the IOPL are of interest. Picture 4.6 summarises how all flags are handled.

The control registers CR0 and CR4 are 32-bit flag registers that are used to control global
processor settings. Pictures 4.7 and 4.8 show the flags in detail.

The Model

Of the EFLAGS, CR0 and CR4 registers we have to save the state of those flags that are
carried along, so they can be correctly retrieved. The value of PGE, the only flag modelled, is
stored in the TLB layer.

All three register require access functions that read and write a 32-bit value. To realise
them we define conversion functions from and to a 32-bit word. When converting from 32-
bit words they have to meet the conditions stated in pictures 4.6, 4.7 and 4.8. CR0 and
CR4 are used with standard read and write functions that directly change the content of the

6We do not follow the view of the IA32 manual here, which counts the ESP register (see Section 4.2.5) as a
general-purpose register because of its special usage.

7String operations are those that handle large data structures in memory with one single instruction.
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registers. EFLAGS can only be read and written by transferring the register content from and
to the stack using the POPF and PUSHF instructions. Most of the flags of the EFLAGS register
additionally have dedicated assembler instructions to read and write them. Fiasco only uses
the CLI and STI instructions to manipulate the interrupt flag. All other functions are hidden
by the C++ model.

Modelling the general-purpose registers is slightly more complicated. From the point of
view of the C++ model there is not much difference between general-purpose registers and
memory. Both are used to store variables. Therefore, it is a good idea to provide a memory
interface for general-purpose register as well. We cannot use the standard address type as we
have defined it in Section 4.2.1 because it covers only the physical address space. Instead, we
define a new type Register address. The C++ model can later combine both address types
to define an address space that includes both memory types.

Following the example of physical memory the registers can now be modelled as a simple
chunk of memory:

gp memory : Register address → Byte

This bears one problem: registers have a size of 32 bits. That sums up to four bytes, not
one. So we carefully have to choose the correct function domain. If there are register num
registers in the CPU, each of them having a width of register byte size bytes, the type
Register address is defined as follows:

Register_address : nat = below(register_num * register_byte_size)

Now each general-purpose register can be assigned register byte size successive, mutu-
ally exclusive bytes. This results in a correct register model. However, as soon as we define the
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read and write functions reg gp read and reg gp write over this memory in the same way
as we did for physical memory it becomes clear that the problem of the over-sized registers
is not yet solved. Let us assume that EAX occupies bytes 0 to 3 of gp memory. In this case
reg gp read(2) reads the third byte of the EAX register, which cannot be read by itself in a
real processor. If we simply restricted the domain of the read and write functions to reflect the
restrictions of the hardware they could not be used as a general memory interface anymore.
Remember how complex data types are accessed by the C++ model: each byte is read by
itself and afterwards they are connected. This is also true when a 32-bit value is read from
a register. So we leave the functions as they are and assume that the C++ model defines a
correct use for them.8

The overall state of this layer sums up to:

Register_memory : Type = [#
memory : Stack_memory,
cr0 : [# cr0_cd, cr0_nw, cr0_ne,

cr0_ts, cr0_em, cr0_mp : bool
#],

cr4 : [# cr4_pce, cr4_de, cr4_tsd : bool
#],

eflags : [# iopl : Cpu_privilege,
of_flag, df_flag, if_flag, sf_flag,
zf_flag, af_flag, pf_flag, cf_flag : bool

#],
gp_memory : [Register_address -> Byte]

#]

The read and write functions for general-purpose registers can only be used by the memory
interface. When a specific register needs to be accessed, i.e., when Fiasco needs to save the
state of some of the registers, we need special access functions. They have to address the
registers by their names and use 32-bit words as operands:

reg_gp_read(r : Registers)(s) : Result[Register_memory, Mword] =
let ra = registers2registeraddress(r) in
OK(s, s‘gp_memory(ra) +

max_byte * (s‘gp_memory(ra + 1) +
max_byte * (s‘gp_memory(ra + 2) +
max_byte * (s‘gp_memory(ra + 3)))))

The function reads the four assigned bytes and concatenates them to become a 32-bit word.
It resembles the from byte function (see Section 2.2.2) for the 32-bit word data type. The
function registers2registeraddress yields the lowest byte in gp memory for the given reg-
ister. The write function reg gp write is then defined similarly to to byte. Fiasco directly
touches general-purpose registers only by transferring them to and from the stack. For con-
venience, functions to transfer single registers as well as the complete set (including the ESP
register) to and from the stack are provided as well.

4.2.7 Interrupt and Exception Handling

This layer contains the hardware infrastructure for interrupt and exception handling. It pro-
vides access to the interrupt table and functions to set up and return from an interrupt.

8As long as the C++ model generalises over the use of registers that does not even provide a problem:
Assume a variable is saved at an arbitrary address x ∈ Register memory and then a program can be verified
for all values of x. This additionally proves some cases that are not possible in reality (e.g., saving the variable
in the third byte of an register) but also all possible cases.
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In Hardware

Interrupts and exceptions mainly differ in where they arise. Exceptions emerge from faulty
instructions and cannot be suppressed. Some exceptions provide an error code to describe their
cause more closely. Interrupts normally originate in hardware outside the processor. They can
occur at any given time although the processor guarantees to always call the interrupt handler
on instruction boundaries. It is possible to forbid most interrupts by clearing the interrupt
flag (IF) in the EFLAGS register. Nonmaskable interrupts are received nonetheless.

IA32 handles interrupts and exceptions in the same way. Therefore, when talking about
interrupts below we refer to exceptions as well.

Interrupts are identified by an interrupt vector. Each vector can be assigned its own
interrupt handler. Those handlers are found in system segment descriptors of the interrupt
descriptor table (IDT). This table is similar to the GDT (see Section 4.2.4). It can only contain
three types of descriptors: interrupt, trap and task gate descriptors. Task gates are used to
handle an interrupt by switching to another hardware task. As hardware tasks are unsupported
task gates are unsupported as well. Interrupt and trap gate descriptors define the interrupt
handler by the code segment and address of the handler routine. Interrupt handlers can run
at a higher privilege level than the code they interrupt. We leave this change of privilege to
user-mode verification because kernel code runs at the highest privilege level already. Interrupt
handlers run at the same level.

When an interrupt is raised the processor reads the corresponding entry from the IDT,
saves the current EFLAGS, code segment (CS), and instruction pointer (EIP) to the stack,
and loads the new CS and EIP from the gate descriptor. If an exception has assigned an error
code it is pushed on the stack as well. Some exceptions, like page faults, are restartable: after
the exception was handled the faulting instruction is executed again. Thus, the EIP that is
pushed on the stack does not point to the next instruction but instead to the offending one.
The sole difference between an interrupt and a trap gate is that in the former interrupts are
disabled.

IRET is the companion instruction that leaves an interrupt handler. It pops all values from
the stack and restores the old CS, EIP and EFLAGS.

The Model

Real processors use the EIP as a pointer to the next instruction to be loaded and executed.
In Section 3.2.4 we already decided that the C++ model hides code execution. Therefore, the
model does not need the current EIP. Indeed, it cannot even keep it current because it does not
know where in memory the physical representation of a state transformer resides. Still, we need
to model the EIP because, as we just saw, it is saved and restored during interrupt handling.
Other than that it is simply carried along. In particular, the interrupt entry and exec iret
functions just write an uninterpreted address to the EIP register. It is the responsibility of the
C++ model to give a meaning to this value.
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Apart from the EIP this layer adds the IDT base register IDTR:

Executable_memory : Type = [#
memory : Register_memory,
eip : Address,
idtr : [# base : Address,

limit : Word #]
#]

Reading and writing the IDTR register works exactly in the same way as for the GDTR
(see Section 4.2.4).

In the processor the EIP can only be changed by using control transfer instructions like
jumps or loops. In spite of that, we add both a read and a write function for the EIP to
the model. This way it can be manipulated by higher layers when they choose to provide an
interpretation for it.

For interrupt handling we model functions to enter an interrupt gate and the exec iret
function to return from it. The INT instruction allows the software to call an interrupt as
well. Of course, such an invocation is not asynchronous anymore. It rather resembles a simple
function call. When invoked by software the interrupt handler additionally tests the DPL of
the gate so that a caller can only access it if it has sufficient privileges. Furthermore, the INT
instruction never pushes an error code on the stack, even if an exception handler is called.

4.3 Model Assembly

The interrupt and exception handling component forms the uppermost layer of the model.
Hence, its state represents the overall system state:

IA32_state : Type = Executable_memory

This concludes the analysis of the x86 architecture. The model now covers the most im-
portant parts of the processor state and all functions that are used in the run-time code of
Fiasco. Table 4.1 summarises state and functions once more. One last issue that is left from
chapter 3 is the execution of code. We are going to discuss that in the next chapter.
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Layer State Functions
physical memory physical memory reading and writing physical addresses
linear memory PDBR reading and writing PDBR

CR2 reading and writing CR2
current privilege level linear address translation

TLB consistency consistency check of linear addresses
global state update of TLB state

TLB flush
segmented GDTR reading and writing GDTR

memory segment registers reading and writing segment registers
(CS, DS, ES, FS, GS, SS) virtual address translation

stack ESP reading and writing ESP
push and pop of 32-bit values

registers general-purpose registers reading and writing
general-purpose registers

EFLAGS push and pop of general-purpose registers
CR0, CR4 push and pop of EFLAGS

reading and writing CR0, CR4
interrupt enabling and disabling

interrupts and IDTR reading and writing IDTR
exceptions EIP reading and writing EIP

interrupt entry
interrupt return

Table 4.1: State and functions of the hardware model summarised



Chapter 5

Execution of Source Code

63. The crow wish’d every thing was black,

the owl that every thing was white.

A processor and C++ source code employ very different levels of abstraction. Therefore,
the object code of a program functions as a mediator between them. The C++ compiler is
able to translate source code into object code and the processor knows how to interpret it. In
the verification model the different abstraction levels still exist between the hardware model
and the C++ model. To connect them we need a model of the object code. This could be
a very concrete one that separates the verification process into two steps: First it is proved
that the source code is always compiled into one concrete object code representation and then
the security properties are verified on a hardware model that interprets this object code. In
Section 2.2 we already stated that VFiasco aims to model this connection on a more abstract
level. It wants to formulate a number of conditions that allow a direct execution of C++
state transformers on the hardware model. We stated some of these conditions already in
Section 3.2.4. This chapter provides solutions for the two most prominent problems: handling
of exceptions and interrupts and the connection between state transformers and their physical
representation.

5.1 Interrupt and Exception Handling

When the hardware intervenes in the program flow it is no longer guaranteed that the order of
the state transformers matches the order of the object code created by the C++ compiler. Such
an intervention takes place in the current model when an interrupt or exception is triggered.
We will first explore the problem by the example of the page faults exception and afterwards
return to general exception and interrupt handling.

5.1.1 Handling Page Faults

The ability to handle page faults is essential for kernel-code verification. Fiasco uses it to
lazily allocate memory for thread control blocks and to propagate kernel pages into the page
directories of the various L4 tasks.

Page faults occur at well defined points in time: when linear memory is accessed. As such
they are restricted to the hardware model. The C++ model does not even need to know about
them. Instead, a memory access should return OK if there was no page fault or one that has been
handled and Fatal otherwise. To achieve this we need to wrap any functions st that access
linear memory. They have to appropriately call a page fault handler ia32 handle page fault:
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catch_page_fault (st : [ IA32_state -> Result[IA32_state, Data]])(s) :
Result[IA32_state, Data] =

cases st(s) of
OK(state, value) : OK(state, value),
Page_fault(pfa, page_fault_flags) :

(ia32_handle_pagefault(pfa, page_fault_flags)(s) ,
Fatal : Fatal

endcases

Before the processor calls a page fault handler it returns to the state before it started to
execute the faulting instruction. Therefore, it is not necessary to know the subsequent state
of an instruction that faulted. Instead, we can apply the same state to the page fault handler
as we applied to the instruction state transformer. Still, this is not yet correct. After the page
fault handler has returned the processor reruns the last instruction. If the page fault was not
handled correctly the instruction might cause a page fault again. The semantics resembles that
of a C++ while loop that terminates under the condition, that the page fault was handled
successfully. Therefore, we can reuse the while semantics of the C++ model [Tew02]. That
requires to change the catch page fault function to call itself recursively:

ia32_iterate_exception(index : nat,
st : [ IA32_state -> Result[IA32_state, Data]])(s) :

RECURSIVE Result[IA32_state, Data] =
if index = 0 then
st(s)

else
cases st(s) of

OK(state, value) : OK(state, value),
Page_fault(pfa, page_fault_flags) :

(ia32_handle_pagefault(pfa, page_fault_flags) ##
ia32_iterate_exception(index-1, st))(s) ,

Fatal : Fatal,
endcases

endif
Measure index

PVS demands to prove that the recursion is finite. It expects a measurement expression,
which has to be a well-founded order relation. In above function the measurement is index,
which constitutes the number of times the page fault handler has to be called before the page
fault is resolved. We are only interested in the minimum of iterations, that is, the first occasion
where the page fault has been handled. Its result determines the state of the system after the
execution of the wrapped state transformer. The complete exception wrapper then reads:

ia32_wrap_exception(st : [ IA32_state -> Result[IA32_state, Data]])
(s) : Result[IA32_state, Data] =

if ( EXISTS(n : nat) : OK?(ia32_iterate_exception(n, st)(s)) ) then
let i = min(Lambda (n : nat) :

OK?(ia32_iterate_exception(n, st)(s))) in
ia32_iterate_exception(i, st)(s)

else
Fatal

endif

When verifying this function, it must first be proved that the page fault is ever handled at
all. We normally expect that it can be resolved on the first attempt. This is indeed one of the
kernel-code properties to be proved.
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One problem still persists. In section 4.1.4 we decided to separate reading and writing of
operands from the execution of machine instructions. Hence, the exception wrapper handles
the page fault only for part of a machine code instruction, for reading of the operands, for
writing of the results, or for the executional part of the instruction. Consider the following
assembler instruction:

ADD 0xE0000000, $4

It loads the contents of the memory at address 0xE0000000, adds the constant value 4, and
stores the result back in memory at the same address. The corresponding PVS specification
looks like the following:

... ##
eval_if_ok(ia32_read(DS)(0xE0000000),

Lambda ( b : Byte ) : ia32_write(DS)(0xE0000000, b + 4) ##
...

The functions ia32 read and ia32 write shall be the wrapped read and write functions
for segmented memory, DS is the standard segment to be used. Consider further that the page
behind the address 0xE0000000 is mapped read-only. While reading from the address still
succeeds, writing causes a page fault. After this page fault has been handled only the write
function is repeated. However, the IA32 manual requires that the read function is repeated as
well. Worse, the verification is void if the page fault handler is faulty enough to change the
value of the address that the ia32 read function has read from.

There are two ways to solve the problem. Either we ensure that the page fault handler
does not change the content of the memory or we use the page fault wrapper only on state
transformers that express the full semantics of a machine instruction. Both solutions require
knowledge of the C++ semantics that goes beyond the scope of this thesis.

Finally we have to define the ia32 handle page fault function. The C++ model sees
the page fault handler as a regular C++ function, which can be called like any other function.
Nonetheless, it is not correct to simply apply this function when handling the page fault because
the handler is set up by the hardware model. It does not know about C++ functions.

Let us recall what the hardware does on an exception: The execution is interrupted, the
processor puts (among other things) the current instruction pointer on the stack, looks up the
associated handler function and resumes execution at the instruction the handler points to. It
executes the code until it meets an IRET instruction. At this point, it pops several values from
the top of the stack, interprets one of them as an instruction pointer and jumps to the address
it points to.

The entry and the IRET function are modelled in the hardware model. To handle the page
fault correctly the interrupt entry function of the hardware has to be called first and then the
C++ model page fault handler. To obtain a correct model three conditions have to be met:

1. The EIP that is loaded by the interrupt entry function belongs to the C++ model page
fault handler.

2. The last instruction the page fault handler executes is an IRET.

3. The instruction pointer the IRET function restores is the same as the one that was pushed
on the stack by the interrupt entry function.

The first problem can be solved by using a reverse function of the C++ function pointer. A
C++ compiler can always assign an unambiguous address to a function. The other way around
we can construct a partial function that delivers for an address the related state transformer.
It is partial because not every address constitutes an entry point of a function.
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addr2st : [ Address -> lift[State_transformer]]

returns the bottom element for all addresses that do not have a state transformer assigned.
To make sure that the last instruction of the state transformer is indeed an IRET instruction

we introduce Iret as another abnormal termination state:

Result : Datatype =
Begin
...
Iret(next_state : State) : Iret?
...

End

Now the page fault handler can be tested for this result element. In order to ensure that
IRET was not called somewhere in the middle of the handler the Iret state must not be passed
along when two state transformers are connected. Instead the execution of another state
transformer after it is fatal.

The third problem can be solved by adding the proof obligation that the EIP before and
after the execution is the same.

5.1.2 Handling Other Exceptions

There is no fundamental difference between page fault handling and the handling of other
exceptions. Each exception needs to get its own dedicated return state. In Fiasco we do not
expect any other exceptions to be raised, so no other exceptions are currently implemented.

5.1.3 Handling Interrupts

In contrast to exceptions interrupts can be raised at almost any time. The processor guarantees
only that they are raised at instruction boundaries. Again this requires knowledge about the
mapping between C++ source code and machine code instructions. Otherwise it is impossible
to know where in the source code specification an interrupt can occur.

In this model we simply assume that in the kernel code interrupts are disabled. Another
solution to this problem would be to formulate invariants about how interrupt handlers change
the hardware state. Then it has to be proved that the code is still correct if only these invariants
hold.

5.2 Physical Representation of State Transformers

In Section 3.2.4 we have established two proof obligations to ensure the correct mapping
between state transformers and their physical representation in machine code: The machine
code in memory must match the state transformer executed, and reading an instruction must
not change the overall system state.

The most straightforward solution to this is to expect the whole kernel code to be always
in memory and stay untouched. The following property must hold for all subsequent states of
an initial state is where the code was mapped correctly in the code region code:

∀s ∈ State, a ∈ code : OK ?(seg read(CS )(a)(s)) (5.1)
∧ get data(seg read(CS )(a)(is)) = get data(seg read(a)(s))

This only ensures that the correct instruction is read. We also have to add the condition
that reading does not change the state:

∀s ∈ State, a ∈ code : next state(seg read(a)(s)) = s (5.2)
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This solution restricts the kernel in two ways: it forbids self-modifying code and demand
paging of code. Self-modifying code is very dangerous and difficult to handle anyway. It cannot
be verified on C++ level because the modifications have to be done on the machine-code level.

Demand paging of code, on the other hand, can be very useful: In Fiasco every address
space has its own set of page tables. Kernel data and code is mapped at the upper end of each
of them. Using demand paging these mappings could be added lazily when they are needed.
The problem is that property 5.1 does not hold anymore when reading the instruction causes
a page fault. Wrapping the read instruction with a page fault handler is not possible either.
Handling a page fault is always accompanied by a change of the system state, thus it hurts
condition 5.2.

Having said that it should be added that Fiasco currently does not use demand paging for
code. All page-table entries that are needed for kernel code are copied into the page directories
immediately after they have been created. Thus, above solution is applicable for Fiasco.
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Chapter 6

Implementation

68. Where man is not, nature is barren.

The model as it has been described in the last two chapters found its realisation in a PVS
specification. For each layer state and functions are implemented as described in chapter 4. A
number of corollaries and theorems about the functional interface complete a layer specification.
The first part of this chapter examines some implementation details of the realisation while
the second part deals with challenging the model.

6.1 Realisation of the Specification

The means to modularise a specification in PVS are very few. Essentially, they are restricted
to the usage of potentially parametrised theories. Therefore, the PVS realisation relies chiefly
on coding conventions to minimise dependencies between layers. The extension of the system
state proves one exception to this rule.

6.1.1 Casting Between Layers

In Section 4.1 we defined that the system state of the underlying layer is extended by defining
a separate record type for each layer and adding the state of the lower layer in a separate
field. Components of the state are only changed by functions of the layer they are defined in.
Therefore, higher layers have to use the functions of the lower layers regularly. This leads to
complications because those functions are state transformers over the lower-level state. So to
be able to use them we first have to extract the state of the lower layer, apply the function,
and afterwards reintegrate the resulting state.

To be able to hide this casting we first have to define an interface Cast struct that com-
prises two functions: down casts the state of the upper layer to that of the lower one and up
reintegrates the underlying state. The interface that casts between linear and physical memory
is defined as follows:

linear2phy : Cast_struct[Linear_memory, Physical_memory] = (#
down := Lambda (s) : s‘memory,
up := Lambda (s)(p : Physical_memory) : s with [memory := p]

#)

The interface can be used to define a function cast state that wraps a function g of a
lower layer to become a function of the higher layer:
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cast_state(cs : Cast_struct[State_1, State_2])
(g : [State_2 -> Result[State_2, Data]])

(s : State_1) : Result[State_1, Data] =
cases g(cs‘down(s)) of
OK(next,value) : OK(cs‘up(s)(next),value),
Fatal : Fatal,
...

Endcases

Two casting interfaces can easily be concatenated:

cast_cast_struct( cs1 : Cast_struct[State_1, State_2],
cs2 : Cast_struct[State_2, State_3] ) :

Cast_struct[State_1, State_3] =
(# down := Lambda (s : State_1) : cs2‘down(cs1‘down(s)),

up := Lambda (s : State_1)(s2 : State_3) :
cs1‘up(s)(cs2‘up(cs1‘down(s))(s2))

#)

Every layer includes a casting interface for each underlying layer. It defines the one to the
layer that it directly inherits from and then casts the casting interfaces of that layer to its own
state. This way, when another layer is added in between later only the casting interfaces of
the layer directly above have to be adapted. The same principle is used for memory interfaces,
which have to be cast in a similar way.

To hide the complexity of casting the theory IA32 Model, which defines the global state
IA32 state, exports all interface functions as state transformers of this state.

6.1.2 Infrastructure

The implementation of the hardware model could rely on a basis of specifications and theories
that have been formulated in earlier stages of the VFiasco project. The most important ones
are the various theories about state transformers, the Result and Data type type and the
memory interface. Where the need arose they have been extended.

6.2 Challenging the Model

The theorems and lemmas provided with the specification have two functions: they challenge
the correctness of the model and they are the base for reasoning on the model.

The theorems are formulated in a way that they are mostly independent from other layers.
For system structures the proofs are formulated on the memory abstraction level they are stored
in, i.e., on the physical, linear, or virtual memory interface. The correctness of these interface is
then proved in the appropriate layers. One of the few prerequisites that was necessary to hold
in all layers is that reading from memory never changes the state. This significantly simplifies
proofs over functions that access system structures in memory. If reading from memory can
arbitrarily change the state the influence that these functions have on the system state is
arbitrary as well.

For each function that was defined in the model we provide two common lemmas for the
case of their normal termination (theory * Corollaries):

• function name ok next state proves that the given function realises the change of state
it is supposed to implement. First of all, it provides the proof that the function does not
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have any unexpected side-effects on the system state. Furthermore, it functions as an
automatic rewrite lemma for PVS1.

• function name ok get data provides a similar lemma for the return data. It is not
necessary when the return type is Unit.

Properties we formulated in the last chapter can be found in the * Properties theories.
They generally have lemmas associated that prove the correctness of them. For system struc-
tures in memory there are additionally properties about the memory they use. They are
mostly used for the model challenges but might be useful later to prove that those structures
stay unchanged.

The chief part of the model challenges is located in the * Challenge theories. There
are for each function a number of theorems to prove its conformance with the IA32 manual.
They include proofs about the prerequisites for a normal termination of the state, proofs that
unsupported features indeed do not influence the model, and proofs that illegal operators are
handled correctly.

Proving the theorems helped to find a number of bugs in the model. Still, due to the limited
time resources available for this work the collection of challenges is not yet complete. Most
urgently needed are challenges over the model in its entirety. The VHDL function specifications
from the IA32 manual Section II–3.2 should be reformulated in PVS and proved against the
model.

1PVS can use automatic rewrite lemmas to simplify proves by itself. They need to have a special form of
implication.
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Chapter 7

Summary and Future Work

69. Truth can never be told so as to be understood,

and not be believ‘d.

In the course of this thesis we developed and realised a model of the x86 architecture that
is to be used in the verification of the Fiasco microkernel.

Base of the model was the Intel architecture manual, which describes the functional speci-
fication of the processor. An analysis of the requirements of Fiasco showed that the part of
the hardware that it actively uses is relatively small. We were able to limit the model to the
following components: memory and memory management, interrupt and exception handling,
and the general purpose and control registers. We decided in favour of a definitional model be-
cause it resembles most closely to the processor specification. For each selected component we
defined a state and the functions to manipulate it. While most components were well defined,
two parts of architecture provided significant problems: the TLB and code execution.

The functionality of the TLB has not been specified precisely enough to allow a definitional
specification. Therefore, we developed a model that incorporates its most important property:
its consistency with the page directory in physical memory.

Code execution can only be modelled on the level of machine code. The VFiasco project
tries to avoid this level of abstraction. So, instead of including a model of code execution itself
we established conditions and properties that allow to disregard it without undermining the
correctness of the model. On base of these properties we were able to implement interrupt and
exception handling.

The theoretical model was realised in a practical specification in the verification system
PVS. The realisation presented a significant part of the work. The model covers about one
fifth of Intel the architecture specification. It takes up almost 3000 lines of code in 44 theories.
To prove the soundness of the model we provided 204 theorems. Proving them required about
2000 prove steps. In addition to that the model relies on a framework of 32 theories with another
1000 lines of code. About one third of it was developed during the model implementation.

The model is already useful for the verification of code of the Fiasco kernel. Still, there is a
lot of work to be done to allow the verification of the security properties that we introduced in
the beginning. First of all, those parts we left unverifiable have to be modelled fully, namely the
accessed and dirty bits in page directory (see Section 4.2.2) and segment descriptors (see Section
4.2.4). Next the model has to be extended to allow user-mode and bootstrap verification. Most
importantly, the privilege level system needs to be completed.

Another unsolved problem is the verification of the correctness of the model. The challenges
we provided for single functions of the model have to be further developed to challenges of the
model in its entirety. Thinkable is also a way of automated challenging as chosen by the
semantic compiler: The identical behaviour of the model and a real processor can be proved
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with the help of small test programmes. The final goal is, of course, a formal prove of correctness
of the model for each existent processor.

A last issue that has to be solved is the embedding of the hardware model in the C++
model. The propositions made in Chapter 5 have to prove their usefulness in the face of a
practical realisation and a number of other problems are sure to arise that have to solved with
the help of the hardware model.



Appendix A

Functional overview

The following table provides a detailed overview of the state of the model as it has been
implemented in the course of this thesis. Its structure follows roughtly the order of the third
volume of the IA32 manual.

Feature State Ref
general - system registers
global descriptor table modelled 4.2.4
local descriptor table unsupported 4.2.4
interrupt descriptor table modelled 4.2.7
task-state segment modelled 3.2.4
control registers modelled 3.2.5
debugging registers unsupported 3.2.4
model-specific registers unsupported
EFLAGS modelled 4.2.6
stack pointer modelled 4.2.5
general purpose registers modelled 4.2.6
general - modes of operation
real-mode unsupported
protected mode modelled
virtual-8086 mode unsupported

3.2.1

system management mode unsupported
memory management - segmentation
segment-descriptors: 4.2.4
granularity modelled
non-present segments unsupported
16-bit segments or descriptors unsupported
available bits carried along
accessed bits unusuable
code/data segments, except... modelled 4.2.4
... expand-down data segments unsupported
... conforming code segments unsupported
system segment descriptors:
32-bit trap or interrupt gates modelled (in IDT only) 4.2.7
32-bit TSS unsupported 3.2.4
call gates, task gates unsupported 3.2.4
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Feature State Ref
memory management - paging
36-bit addressing (PAE, PSE-36) unsupported
paging modelled
no paging unsupported
page size extensions (large pages) static
write-protect supervisor access static

4.2.2

accessed and dirty bits on page level unsupported
fatal reserved bits modelled
global pages dynamic (availibility: static)
TLBs modelled (restricted) 4.2.3
memory management - caching
caching options carried along 3.2.2
memory type ranges unsupported
protection
access control on segment level modelled 4.2.4
access control on page level modelled 4.2.2
privilege level (CPL, RPL, DPL) modelled 4.2.4
privilege level change through call gates unsupported 3.1
SYSENTER/SYSEXIT unsupported
Alignment checks unsupported 3.2.4
interrupt and exception handling
interrupt handler... 5.1
... without privilege level change modelled 4.2.7
... with privilege level change unsupported
distinction interrupt/trap modelled
task gates unsupported
exceptions ...
... page faults modelled 5.1.1
... all other carried along1 5.1.2

distinction fault/trap unsupported1

enabling/disabling interrupts carried along 4.2.6
others
task switching unsupported 3.2.4
FPU. MMX, SSE, 3dnow unsupported 3.2.3
debugging and perfomance monitoring carried along 3.2.4
machine check architecture unsupported 3.2.4

modelled fully available, use mandatory (occasionally even more restrictive than expected from the
IA32 manual)

static fully available, use optional but a model parameter

dynamic fully available, use optional and part of the dynamic state (i.e. can be switched on and off)

carried along not part of the model but can be used by the program to be verified (i.e. it does not
influence correctness and is therefore not fatal)

unsupported not part of the model and its use is fatal (i.e. because incorrect or simply considered
outdated)

unusable not part of the model and its use is not fatal but leads to a wrong verification instead
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IA32 Instruction Set

Instruction Layer Function
data transfer (conditional and unconditional)
to/from memory segmentation seg (read/write)
to/from registers register reg gp (read/write)
PUSH stack stack push
POP stack stack pop
PUSHA/PUAHAD register reg pusha
POPA/POPAD register reg popa
IN unsupported
OUT unsupported
CWD/CDQ/CBW/CWEQ C++ model
binary arithmetic C++ model
decimal arithmetic C++ model
logic instructions C++ model
shift and rotate C++ model
bit and byte instrunctions C++ model
jump (conditional and unconditional) C++ model
loop C++ model
CALL unsupported
RET unsupported
IRET w/o priv-level change execution exec iret
IRET with priv-level change unsupported
INT/INTO w/o priv-level change execution exec int
INT/INTO with priv-level change unsupported
BOUND C++ model
ENTER/LEAVE C++ model
string routines C++ model
PUSHF register reg pushf
POPF register reg popf
CLI register reg cli
STI register reg sti
other flag control instructions unsupported
LDS/LES/LFS/LGS/LSS unsupported
LEA C++ model
NOP C++ model
UD2 unsupported
XLAT/XLATB C++ model
CPUID unsupported
MMX, SSE, SSE2, FPU instructions unsupported
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Instruction Layer Function
LGDT segmentation seg lgdt
SGDT segmentation seg sgdt
LLDT unsupported
SLDT unsupported
LTR unsupported
STR unsupported
LIDT execution exec lidt
SIDT execution exec sidt
MOV segment registers segmentation seg {read/write} segment register
MOV CR0 register reg {read/write} cr0
MOV CR2 tlb vmem read cr2
MOV CR3 tlb vmem {read/write} pdbr
MOV CR4 register reg {read/write} cr4
LMSW unsupported
SMSW unsupported
CLTS unsupported
ARPL unsupported
LAR unsupported
LSL unsupported
VERR unsupported
VERW unsupported
MOV debug registers unsupported
INVD unsupported
WBINVD unsupported
INVLPG tlb tlb invlpg
LOCK unsupported
HLT unsupported
RSM unsupported
RDMSR unsupported
WRMSR unsupported
RDPMC unsupported
RDTSC unsupported
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