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Preface

The purpose of a microkernel is to cover the lowest level of the hardware and to provide a more general
platform to operating systems and applications than the hardware itself. This has made microkernel
development increasingly interesting. Different types of microkernels have been developed, ranging from
kernels which merely deal with the hardware infterface (Windows NT HAL), kernels especially for embed-
ded systems (RTEMS), to kernels for multimedia streams and real time support (Nemesis) and general
purpose kernels (L4, Mach).

The common opinion that microkernels lead to deterioration in system performance has been disproved by
recent research. L4 is an example of a fast and small, multi address space, message-based microkernel,
developed originally for Intel systems only. Based on the L4 interface, which should be as similar as
possible on different platforms, the L4 Alpha version has been developed.

This work describes design decisions, implementation and interfaces of the L4 version for 64-bit Alpha
processors.
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Chapter 1

Introduction

1.1 Motivation

Microkernel interfaces should provide a good abstraction of the hardware to various levels above them.
The L4 kernel [11] interface covers a wide range of this required functionality and flexibility. With only
a few system calls, the kernel provides a maximum of stability and integrity for applications.

The algorithms used, the structures and the position very close to the hardware of the kernel makes it
impossible to develop a generic kind of microkernel without loss of performance. However, the interface
should be as portable as possible and can be used on very different platforms.

At the moment, the Digital Alpha 21164 series belong to the fastest microprocessors which are available.
Combined with an acceptable price, machines based on this processor type are suitable for every kind of
application, especially for multi-media and real-time applications.

Despite various differences between Intel and Alpha based machines, this work shall show how a well
designed interface can be used without significant changes on different machines. Furthermore, it shall
prove that low-level programming in assembly language is necessary in order to achieve high performance.

1.2 Synopsis

Chapter 2 gives an overview about related work on microkernel operating systems. Chapter 3 introduces
the architecture of the Alpha processor and the design of L4. In addition, the Alpha based version of
L4 is described. Thereafter, the next few chapters present the design and implementation of the L4
kernel on the Alpha. The components implemented are Memory Management, Thread Management, and
IPC. Chapter 8 discusses the optimization of code and data structures for the Alpha processor. Chapter
9 contains some special implementation details and extracts of the code. Chapter 10 summarizes the
important conclusions of this paper, presents some performance results and discusses the scope for further
work.



CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

2.1 Nemesis

Nemesis, described in [9] is a single address space operating system, developed at the University of
Cambridge and is available for MIPS, ARM and Alpha 21064 based systems. Ports are underway for
Alpha 21164 and Intel x86 based systems.

Nemesis is structured to fulfill the requirements of a fine-grained resource control system. Domains,
which are scheduled by a very small kernel, are similar to processes in conventional operating systems.
During execution of Nemesis Trusted Supervisor Code (NTSC) a domain is not preemptable. Hence, the
kernel has only one stack and need not to be reentrant.

Activating a domain can either lead to a continuation after the interrupted instruction or the invocation
of an user level activation handler. This can be used for intra domain thread scheduling and allows
implementations of various scheduling strategies. Inter Domain Communication (IDC) is object-based
done via channels. Every domain contains a Domain Control Block (DCB), consisting of a user read-only
and a read-write part. Important information for scheduling are stored in here.

Nemesis, like Spring and other RPC-based systems uses strongly typed interfaces defined in an interface
definition language, called MIDDL.

The Nemesis Alpha versions use a modified OSF PALcode.

2.2 Linux on the Alpha

Linux is a classical UNIX compatible operating system. All device drivers, file systems and operating
system related parts are integrated into the kernel. This gives rise to robustness, provided the driver and
file system code is error free. Errors in any part of the kernel can influence its stability and more often
lead to a crash of the entire system. Despite the presence of loadable modules, changing the driver for
any hardware device requires the system to be rebooted.

Linux on the Alpha processor uses the PALcode, supplied by Digital, and runs exclusively in the kernel
mode.

2.3 The SPIN Kernel

The SPIN kernel [10] is being developed at the University of Washington. SPIN is written in Modula 3
and provides mainly virtual memory. Networking is incorporated in the kernel and enables fast commu-
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nication with other machines. The kernel does not define an address space model directly, but can be
used to implement one.

Furthermore, SPIN defines a structure on which thread implementations, in combination with the dy-
namic extension of the kernel, can be made. This allows the use of user specific scheduling strategies
and a small overhead in the kernel for dispatching of threads. The kernel itself contains threads, based
on a trusted thread package, exporting the Modula 3 thread interface.

SPIN supports dynamic incorporation of linked modules into the operating system kernel, which allows
fast interaction between user applications and hardware events.

The protection model used is based on capabilities and supports fine-grained access control of resources.
Events are used to indicate memory management faults to higher level memory managers, which can
define services such as demand paging, garbage collection or shared memory.

2.4 The Spring Kernel

The Spring kernel [8] has been designed and implemented at the Univerity of Massachusetts to support
and provide predictability, on-line dynamic guarantees, atomic guarantees, end-to-end scheduling and
resource reservations. In effect, it supports a ‘call/task admission’ paradigm.

It utilizes a micro-kernel design for multiprocessor architectures and provides an interface to remote
processes, support for distributed shared memory, and predictable low level communication. The kernel
exists as a component of Spring’s integrated environment that includes compilers, system description
languages, etc. This environment extracts significant semantic information from programms which are
used at runtime to provide flexibility and predictability.

Spring runs on an local area network, called SpringNet which consists of a set of multiprocessor nodes.
Each Spring node contains system processors (SP) and application processors (AP), an I/O subsystem,
and globally replicated memory. The SP insulates the application from the non-deterministic aspects of
the environment and performs scheduling (in a planning mode) while the APs execute tasks guaranteed
by the scheduler. The I/O subsystem handles non-critical I/0, slow I/O devices, and fast sensors. The
fiber optic network supports predictable real-time distributed communication.

For scheduling Spring uses a VLSI-based scheduling co-processor, which can be used on- or off-line, and
it constructs schedules based on deadlines, resources, precedence contraints, values, etc.

Unlike L4 and Nemesis, the Spring kernel requires special hardware. This avoids the influence of unpre-
dictable hardware behaviour, such as memory caching strategies, during time critical sections but it is
not suitable for general purpose computing platforms.



Chapter 3

Background

This chapter gives a short overview of the Alpha processor and the structure of the L4 u-kernel.

3.1 Alpha Architecture

All Alpha processors are typical RISC machines with register to register data manipulation only. Oper-
ation codes are 4 bytes long with five different types of instruction formats. Three different data types,
namely integer with 8, 16, 32, and 64 bits representations and IEEE and VAX floating point formats are
supported. The basic addressable unit is the 8-bit byte, and a 43-bit virtual address space is supported.
The processor has 32 integer and 32 floating point registers, each 64-bit wide. Register R31/F31 always
contains the value 0 and cannot be changed.

At the moment, there are two different Alpha processor types on the market. The older and slower
processors, 21064 and 21066, called EV4 with a frequency up to 275MHz have one unit for integer and
one unit for floating point instructions. The second generation, 21164 called EV5 has two integer and
two floating point units and runs a frequency up to 500MHz.

The following subsections list the most important features of the Alpha processor, which influence the
design of the machine dependent aspects of the L4 kernel.

3.1.1 Load Store Architecture

Like every typical RISC processor, arithmetic operations can only be performed on registers. Hence,
every modification of data leads to two memory accesses, a read and a write cycle. To accelerate the
execution, frequently used data should be held in registers whenever possible. A two-level cache system
and the use of write buffers increase the memory access performance of the processor.

3.1.2 Privileged Architecture Library (PAL)

Since complex instructions are not implemented in the RISC processor core itself, it must provide a
solution to implement them in software. This is achieved on the Alpha processor by use of PALcode.
PALcode has characteristics that make it appear to be a combination of microcode, ROM BIOS, and
system service routines. This provides much flexibility in implementing application or system specific
solutions.

In any operating system, some functionality must be implemented in PALcode, since only this environ-
ment allows unrestricted access to all parts of the underlying hardware or special functionality. PALcode
has privilege to use five special instructions to
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e access physical memory and

e to modify internal processor registers.
PALcode runs in a special environment, called PALmode, which is defined as follows:

1. Instruction stream (Istream) memory mapping is disabled,
2. Data stream (Dstream) mapping is enabled.
3. Privileged and unrestricted access to all hardware parts, and

4. Interrupts are disabled.

The first two points have the consequence that physical addresses are used for addressing instructions.
To get access to data, located in virtual memory, address translation from virtual addresses to physical
addresses is done in the same way as it is done in non-PALcode procedures.

In addition to the general purpose registers, the Alpha provides a second register file, which is available
in PALmode and in kernel mode. It can be used to store information temporarily and consequently aids
this in avoiding memory accesses.

The 21064 supports 32 independent PALtemp registers, whereas the 21164 only has 24 PALtemp registers.
However, it has 8 further registers, called PALshadow which overlap some of the user integer registers.
This permits the use of these registers without explicit saving and restoring into or from memory.

PALcode is invoked at specific entry points at well defined conditions. There are three different kinds of
invocations.

1. After system reset
2. Hardware raised, asynchronous events

3. Synchronous software events, raised by the callpal instruction.

To achieve consistency between cache, memory and Istream, in all these cases all pipelines are flushed
and the instruction pointer is set to a fixed address, which depends on the processor and on the cause of
the event.

In the best case, the 21164 is able to switch to PALcode within 4 cycles, and generally within 9 cycles.
On the 21064 up to 19 cycles have been measured in the worst case.

The position very close to the processor hardware of PALcode requires that attention is payed to rules of
code scheduling. Most of these rules are related to a delay for ‘n’ cycles between instructions producing
and consuming a result (Producer Consumer-latency). For instance, the result of reading a value from a
PALtemp register cannot be used within two cycles after the read instruction itself.

Violated rules lead to unpredictable behaviour of the processor, which may include processor shutdown.
Digital has developed a tool, called the PALcode Violation Checker (PVC) which tests compiled code
for these PALcode restrictions.

3.1.3 Translation Buffers (TB)

Generally speaking, RISC processors contain only the most important and simplest instructions. 32-
bit address space management can be handled quite simply using a two-level hierarchical page table.
Using the same technique on a 64-bit address space would require at least five page table levels and a
more complex hardware. Hence, the processor only caches recently used page translation references in
an internal table, called the Translation Buffer (TB). Each table entry stores the virtual address. The
translation itself must be done by the operating system.
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The Alpha contains two independent TBs, one for references to instruction pages (ITB) and one for data
(DTB) pages. In case of the processor does not find an entry for a virtual address in the Translation
buffer, an exception, called ‘TB miss’ is raised.

3.1.4 Internal Processor Registers

The Alpha contains a set of Internal Processor Registers (IPR). These IPRs are used to control the
different parts of the processor and can be accessed in PALmode or kernel mode. IPR used to manipulate
the translation buffer are accessible in PALmode only.

3.1.5 Interrupts

The Alpha supports three sources of interrupts:

e Hardware: Six level-sensitive on the 21064, or seven level-sensitive on the 21164, triggered by
external signals

e Software: Fifteen software interrupts, sourced by the Software Interrupt Request Register

e Asynchronous System Trap (AST), Four traps, sourced by the asynchronous system trap request
register (ASTRR)

All software interrupts are independently masked by on-chip enable registers to support a software
controlled mechanism for prioritization. If enabled, interrupts are performed by a branch to PALcode.
The interrupt latency is relatively low. For hardware interrupts, the 21064 supports a bit-mask to enable
or disable each interrupt, the 21164 supports a 32-level interrupt prioritization scheme.

3.2 Structure of L4

This section briefly describes the structure of L4 and its components. It then addresses issues of how
to port the components of L4 to the Alpha Processor. There are four principal parts of L4 which are
interrelated as shown in figure 3.1. They are:

e Thread Management: responsible for all active parts in an address space. Provides a basic, Round
Robin like, scheduling; activates and preempts threads.

e Memory Management: provides the passive part, similarly to a container, for threads, handles
mappings, and access rights to pages.

o Communication Management: Provides Inter Process Communication (IPC).

e Machine Management: manages caches, interrupts, exceptions and covers the lowest level of the
processor.

3.2.1 Thread Management

Threads are the active components in L4. Each thread is identified by its identifier, called its Thread ID.
This number is unique in time and space. This means that after starting the system, no two threads are
in ever given the same Thread ID. A thread is linked exactly to one address space and cannot migrate
to another.

At any time, all 256 (the maximum number) threads exist in each address space. These threads can
either be active or inactive. There is no service to create or destroy a thread as is commonly found in
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Communication

IRQ

Mapping/ TB

Hardware

Figure 3.1: L4 Kernel Parts

traditional OS. Simply changing the thread instruction pointer to a valid address leads to scheduling of
the apropriated thread at the next possible time.

Every thread has its own Thread Control Block (TCB), where information about the current thread
state, the consumed time, and data necessary for IPC are stored. Since threads are also preemptable
while running in kernel mode, a kernel stack per thread is required; the TCB is used therefore. This
allows to use the stack pointer register to find the Thread Control Block that belongs to a thread. All
TCBs are arranged as an array in virtual memory.

The scheduling strategy used is a simple Round Robin policy with static priorities. An interface for
external schedulers provides the possibility to change this scheduling policy. External schedulers are user
level threads, running in the same or a different address space as the thread, managed by it. The external
scheduler of a thread always receives an automatic, kernel-initiated message when this thread loses the
processor. Hereafter, the preempted thread is blocked until the external scheduler sends its reply. Figure
3.2 illustrates the control flow for an external scheduler.

Timer IRQ (Kernel Mode) | IPC - receive from any
send
4 IPC Calculate next schedule
receive
Y IPC - send (reactivate T1)
User level thread T1 User level thread T2

External Scheduler for T1

Figure 3.2: External Scheduler Control Flow

The concept of Clans and Chiefs is used to achieve a maximum of security. A clan is a set of tasks headed
by a chief task; clans can be nested. All messages to recipients within the same clan are transferred freely.
Messages crossing the border of a clan are always redirected to the chief of this clan. It can decide by use
of the receiver ID, the sender ID, or the message itself, what should be done with this message. Figure
3.3 illustrates this redirection. The concept of ‘Clans and Chiefs’ is explained shortly in [11].

3.2.2 Memory Management

The Memory Manager controls all parts of memory. This is necessary to guarantee the integrity and
autonomy of threads in different address spaces. Each one of the 1024 possible address spaces contains
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@ chietofacian (O Thread () clanborder

Figure 3.3: Clans and Chiefs

256 threads. Creating an address space includes the creation of all 256 threads. Except for thread 0
which is active, all other threads are initially inactive and do not occupy memory.

Besides this service, the Memory Manager maps and unmaps pages, transforms page faults into messages
and sends them to external pagers.

The L4 memory management is strongly based on the concept of external pagers. External pagers are
threads which are able to handle page faults of other threads. In the case of a thread causes a page
fault, the external pager of this thread receives a message and must reply to this message with a memory
object, called Flexpage. The first pager, or root pager of a system is called Sigma 0. During system
startup, Sigma 0 receives all memory, not internally used by the kernel. Hence, later on, Sigma 0 is
responsible for sharing the physically existing memory between address spaces.

3.2.3 Communication Management

The only way for a thread to communicate kernel-controlled with threads in different address spaces,
including those residing on different machines, is by Inter Process Communication (IPC). To avoid the
typical effect that IPC is the ‘bottleneck’ of the microkernel, this service has to be well optimized and
adapted to the underlying hardware. Due to the different numbers of integer execution units of the
21064 and the 21164!, it can be assumed that optimized IPC versions for the 21064 and the 21164 look
completely different.

Fast IPC can be used for services like:

e Communication between threads (residing in different address spaces as well as for threads of the
same address space)

¢ Announcing page faults to external pagers,

Thread activation by external schedulers,

Announcing Interrupts to threads.
L4 TPC has some important features;

e It is direct; neither a channel nor a port is used. The peer is specified by its thread ID.

e The IPC is strictly synchronous. Messages are only transferred if both sender and receiver are
ready to perform the act.

I The 21064 can execute only one integer instruction, the 21164 can execute two in parallel
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o It uses a description structure, which allows 4 types of data transfer in one message:

— Register words: depending on the machine used up to 8 registers are used to pass their content
to the communication partner. Using only register transfer is the fastest way to exchange data
and should be used whenever possible.

— Direct strings: data behind the descriptor called dope are copied word by word to the address
given at by receiver thread.

— Indirect strings: two words in the message body describe the address and the length of a
string.

— Flex pages: Allows transfer of entire pages from one address space to another. The page can
be mapped ? or granted 3.

e It uses one system call to implement five different behaviours:

— Send a message to a certain thread (Send).

— Receive a message from a certain thread (Receive).

— Receive a message from any thread (Wait).

— Send a message and wait for the dependent reply (Call)

— Reply a message and wait for any thread (ReplyAndWait)

The general structure of the dope principle is illustrated in 3.4.

Size, given in Structure Dope

Size, given in Transfer Dope

Data, to be transferred Not to be transferred

Transfer Dope
Structure Dope

(Register)

Message Body

Figure 3.4: Principle of Message Dopes

3.2.4 Machine Management

This part of the L4 kernel covers the low level hardware. It manages

e hardware interrupts and exceptions,
e fills the TB on demand,

e modifies processor internal registers.

This part is different for each version of the processor and for each complete system.

2appears in both address spaces
3vanishes in the sender’s address space and appears in receiver’s address space
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Alpha Processor Modes and L4

In the L4-Alpha port, all microkernel service procedures have a stub in PALcode [7]. Depending on their
complexity, either the complete function is executed in PALcode, or the stub is used only to invoke the
specific procedure, running in kernel mode. The exact interface is described in Appendix A.

4.1 Privileged Architecture Library

On the 21064, PALmode provides an additional register file with 32 private registers, called PALtemp
registers. This file can be used, only for storing information. L4 uses these registers for keeping informa-
tion which must be readily available, such as the Page Table Base. Integer registers are stored in here
temporarily during PALcode service procedures.

Since internal processor registers on the 21064 often have a different read and write format, PALcode
uses some of the PALtemp registers to couple them with an IPR. Both registers are updated while a
write operation, for reading the internal processor register, the PALtemp register is used. Hence, the
read format of the IPR is the same as the write format.

On the 21164 the method of using PALtemp registers as shadow registers is not required. All important
IPRs have the same read and write format. Hence, only 24 PALtemp registers are supported. The
remaining 8 registers, called PALshadow registers, overlay the integer registers R8-R14 and R25 in
PALmode. Thus, PALcode can consider these integer registers as local scratch and does not need to
store them explicitely.

Some of the PALtemp registers are used to store 1.4 dependent information permanently. These are
shown in figure 4.1

PALtemp register Name Usage

pto ptIntMask Saves the current interrupt mask.

ptl ptCurrentTime Current Timer Tick value

pt3 ptPageBase Contains the root of the current page table tree.

pt4 ptKSP Kernel stack pointer of the current thread during user mode

Figure 4.1: PALtemp Registers and Usage

On the 21064, the registers pt12 to pt23 are used for temporary use during PALmode and Kernel mode
operation. Registers pt24 to pt31 are used while filling the Translation Buffer.

A 21164 implementation will use the PALshadow registers for this purpose. This avoids saving and
restoring the integer registers at the beginning and the end of the TB miss handler.

11
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The User-PALcode interface provides the interface for all user threads to call an 14 service. It builds
a stack frame, which is uniform to all L4 microkernel services, saves the user stack pointer, the mode
where the call came from, and the return address on top of the kernel stack. Hereafter the stack pointer
is set to this kernel stack. The layout is shown in figure 4.2

excAddr
user sp

leaving mode

Figure 4.2: Kernel Stack Layout

4.2 Kernel Mode

Since PALcode is very hardware specific and not interruptible, implementing all L4 functionality in
PALcode would result in a complex and unmodularized kernel, as well as in problems of predictability
and fastly delivering interrupts. Hence, less time critical procedures or procedures which have to be
interruptible like copying of long messages run in kernel mode.

The PALcode-kernel interface links the part, written in PALcode and this in kernel mode together.
This is necessary to have a fast method to switch from PALmode to kernel mode. The used memory
mapping of L4 enables the kernel to access the physical memory, where the PALcode is located in, as
virtual memory. To jump to kernel mode, PALcode simply sets the processor mode to kernel, calculates
the kernel entry address and branches to kernel mode via hw rei. Returning from kernel mode to
PALmode is done via the privileged operation call pal PAL RET. It continues at the address given in
the AT register, that was chosen, since it is only used for temporary calculations and therefore conflicts
with procedure variables are avoided. A round trip costs about 20 cycles.

4.3 Summary

Only the combination of PALcode and kernel mode provides the best and fastest possibility to implement
a microkernel on the Alpha. Only a few and highly specialized procedures take fully advantage of the
PALcode, the more general and interruptible parts of the L4 kernel use the privileged kernel mode.
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Memory Management

Memory management provides address spaces, which are the passive base, in which threads may run.
The following functionality is provided by the memory management mechanism in L4.

e Cache synchronization management,

Translation Buffer management,

Page tables management,

Handling of page faults,

Mapping and unmapping of pages, and

Creation and deletion of entire address spaces

5.1 Cache Synchronization

Since Alpha systems support an automatic synchronization between first and second Level caches, the
programmer must only ensure, that slow IO access is synchronized with Dcache or Icache. To assist this,
the Instruction Memory Barrier IMB and Memory Barrier MB instructions were introduced. While IMB
synchronizes the Icache with the host memory and has to be implemented as user callable PALcode (entry
0x86), MB is a processor instruction and synchronizes the Dcache. IMB is only required for self-modifying
code. MB should always be used before and after I0 manipulation.

5.2 Translation Buffer Management

The Alpha 21064 ITB has twelve entries. Eight entries are used for small 8KB pages; four entries are
used for large 4MB pages. The ITB entry to be replaced is chosen by the processor for each region
independently, using a Not Last Used (NLU) algorithm.

The DTB has 32-entries, which are used for all sizes of referenced data pages. Similar to the ITB, the
mechanism to fill the DTB uses an NLU replacement algorithm. In future processor implementations,
the strategy may be changed to a Robin Round (RR) algorithm.

All entries are untagged, but each contains an Address Space Match (ASM) bit to exclude it from a TB
flush operation. This avoids TB misses for pages which are shared between different address spaces after
a context switch.

The 21164 has two independent TBs, each of this is tagged by a 7-bit address space number (ASN).
This improves performance, since translations for an address space need not to be flushed during a

13
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context switch. The ITB is a 48-entry, fully associative translation buffer. Unlike the 21064, the 21164
combines all references, independent of the page size, in one translation buffer. The DTB is a 64-entry,
fully associative translation buffer. Both buffers also use an NLU replacement strategy and must be
maintained in PALcode.

5.3 Page Tables

As described in [6], Guarded Page Tables (GPT) are very efficient for sparsely filled address spaces. This
together with the simple and fast algorithm to translate a virtual address into a physical address were the
basic reasons for the choice of Guarded Page Tables. Other alternatives such as static n-level page tables
or inverted page tables are not suitable for 64-bit address spaces, since more resources, either translation
time or storage space, are required. Using software TLBs can reduce the costs for address translation.

5.3.1 Address Translation

Address translation to fill the Translation Buffers (TB) must be implemented in software. L4 uses
Guarded Tables (GPT), since they use memory and processor resources more efficiently than conventional
translation algorithms, whilst preserving all advantages of hierarchical page tables.

In sparsely filled address spaces, many tables of an n-level page table tree are filled with only one entry
and used to go on to the next level. Guarded Page Tables skip these intermediate levels using a guard.
Figure 5.1 illustrates this. This means, some of the bits of the virtual address are skipped, if they match
a specific pattern. This method minimizes the time to translate a virtual address and saves memory.
Furthermore, Guarded Page Tables support pages and page tables of different size®.

3230xxx 3230xxx

Figure 5.1: N-level page table tree vs. Guarded Page Table tree

5.3.2 Page Table Structure

Each Page Table Entry (PTE) is represented by two, 64-bit wide entries. The first contains the guard, the
required protection and the number of guard bits which must match the address for a valid translation.
The second entry points either to the next level in the page table tree and codes the size of this table,
or if the entry is a leaf entry in the tree, it contains the word that is written beside the virtual address
into the TB. Figure 5.2 shows the structure of these two 64-bit words, containing the Guard, Protection
bits, and the pointer to the Next Frame Address. L1 represents the the remaining bits, used for the next
level address translation, L0’ contains in coded form the size of the next page table.

Figure 5.3 represents one virtual address at level n and level n+1. Furthermore, it shows which size
information of the address are stored in the page table entry. « and u’ are the bits of the address used
for indexing the table. g and ¢’ are the guard bits which must match these bits stored in the page table

1Page tables with a size of size = 2" for n greater than 4 are supported
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63 13 10 6 0

Guard (51 bits) Protect L1 PTE (Low)

Next Frame Address LO PTE (High)

Figure 5.2: Guarded Page Table Entry

entry. A conventional n-level hierarchical page table can be simulated by using always the same size for
uw and a guard length g of 0.

LO

u g \ Addressvaat
level n

L1

Lo

u' g % Addressvaat
level n+1

Ly

Figure 5.3: Virtual Address Translation

5.3.2.1 The Guard Field
The guard is a mask, which must match partly the virtual address at each stage in the page translation.
Since the smallest page size supported by the Alpha is 8KB, the upper 51 bits are used for the guard.

Protection information is necessary to figure out whether a page access is valid or not. It must be included
in each PTE to benefit from the advantages of hierarchical page tables. This allows the changing of the
protection of a range of n continuous pages by changing only one bit.

To adapt to all variants of information supported by the Alpha hardware the following bits are required:

o User-Kernel: decides which mode is required to access this page.
e FEzecutable: this page contains instructions which can be executed.

o Writable: decides whether the page can be written or not.

The protection field is enhanced by one bit, called ‘InTree’ which decides between a leaf and a node of
the tree. Bits 6...9 are used to store this information.

The lowest 6 bits are used to indicate how many bits of this guard are valid. The number is coded in
the form of 64-guard_length. Strictly speaking, it represents the number of bits remaining for the next
page table tree level.

5.3.2.2 The Pointer Field

The pointer field contains two pieces of information: the size of the page table at the next level and the
starting address of this table.

To indicate the number of entries of the next page table tree level, six bits are required. The information
is stored in the form of 64-logs size.

It is possible to use the lowest six bits without restricting the functionality. It can be assumed that all
page table entries are aligned to their size (16 bytes), hence the lower 4 bits are always zero. If it is
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decided that page tables with less than 4 entries are useless and not required, then two further bits are
zero for each base address of a page table.

The upper 58 bits of this entry are the pointer to the next page table.

If this entry is a leaf of the tree, all 64 bits of the field contain the entry, which is written in the TB.

5.3.2.3 The Page Table Base Register

Translation must take place in PALcode. One of the PALtemp registers is dedicated to point to the root
of the page tree. It is structured in exactly the same way as the pointer to a PTE.

5.3.2.4 The Operation

The operation itself is very simple. Figure 5.4 shows the steps of the operation.

Virt. Address \ Virtual Address _
Virt. Address + XMask ‘ Virtual Address XMask

Guard ‘ Guard ‘ Must be Zero - Prot. ‘ Guard bits‘
XOR Result ‘ Guard ‘ Virtual Address' Prot'

Figure 5.4: Guarded Page Table Operation

1. The protection bits of the virtual address are merged with the constant XMask. This sets bits 4..9
of the virtual address to a defined state.

2. The result is combined with the guard field by an XOR instruction. All bits which are identical
in the guard and in the address will be cleared. If the guard’ field is equal to zero, the address
matches the guard.

3. By setting the XMask in the original virtual address, the resulting protection field prot’is not zero,
if either the translation is finished (only the InTree bit is set) or the access is not permitted.

5.3.3 Address Translation Faults

There are three possible causes of address translation faults:

1. Table Protection Violation: The pair (virtual address, TLB entry) exists in the GPT, but is not
valid for the current mode (e.g. write to a read-only page). In this case, the PALcode is left and
execution is continued in kernel-mode at *tb_protection_fault?

2. Guard Fault: There is no usable entry for this virtual address. The execution is continued in
kernel-mode at *tb_guard_fault.

3. Access Violation: belongs to the type ‘Table Protection Violation’. This fault occurs not during
parsing the GPT, but if the processor detects a mismatch between the access permitted by the TB
entry and the required type of access. Execution is continued in kernel-mode at *tb_access_fault.

2%tb_... entries represent the entry, callable as itb_... while ITB misses or as dtb_... while DTB-misses
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In all three cases, the PALcode creates a stack frame, restores the used registers from the PALtemp
register file and saves the registers, containing the return address, the faulting address and the error
reason on the stack.

Since the translation procedure does not use virtual addresses, no nested DTB misses can occur. After
entering kernel-mode, the code is reentrant and further TB misses are no problem.

After all work in kernel mode is done, the kernel has to return to one of the following points in PALmode:

e ret_*tb_fill: the given argument pair is written to the translation buffer and the faulting instruction
is executed once again. This entry is used, if a valid translation should only enabled until the next
address space switch.

o ret_*tb_schedule: the scheduler is called. There are no changes in the TB. This function is used, if
the state of the faulting thread has been changed.

o ret_*tb_rerun: the faulting instruction is executed once again without any changes regarding the
TB. This entry point must be called, if PTEs have been changed. Depending on the arguments,
the entire depending TB may be flushed.

5.3.4 Page Table Management

Page tables are accessed only via physical memory; there are no virtual memory mappings to page tables.
PALcode and kernel can access physical memory by using load physical (Idl_p and 1dq_p) or store physical
(stlp and stq-p) instructions. Inserting new entries into GPTs sometimes requires the tree to be split.
This means that the guard of the existing entry is shortened to the common base of the old and the new
entry, and a new level is inserted into the tree. This ‘split’ operation runs in kernel mode and takes up
to 400 cycles. If a new page has to be allocated, the kernel talks to Sigma 0 via IPC and requests a page.
This page has to be granted to the kernel, since for security reasons the kernel needs exclusive access to
pages used for page tables.

Freeing of page table entries can join two levels of page tables. This happens if affected page tables
contain only one remaining entry. This ‘join’ operation can either be done during the free operation or,
in case of less free memory in a kind of a garbage collection. This second method should be preferred,
since garbage collection can be done in parallel, when the system is idle or all threads of an address space
are not runnable.

Freeing page table entries requires synchronization with the TB, which is achieved by simply flushing
the translation entry for the affected virtual address.

To get the page table root of an address space quickly, all pointers to page tables are stored in an 8KB
array, located in the kernel data. The task number that is equal to the address space number, is used as an
index into this table. Since all page table references including the page table root are pointing to physical
addresses, only the lower 32 bits are used. The higher 32 bits point to the first MemMapTree-node (see
5.5.4) which links all mappings of this address space.

5.4 Page Fault Handling

Section 5.3.3 explains, that PALcode branches to kernel mode in the case of faults during address trans-
lation. A third type of exception is raised if the TB already contains an entry that does not allow the
requested access.

The kernel decides by use of the faulting address the action to be executed. In case of a common page-
not-present fault it initiates a Flexpage IPC call with the external pager of the faulting thread. Otherwise
it prepares mappings for cases which are:

e Access of Thread Control Block (TCB) space without a special TCB pager (Sigma 1)
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e Access of the Temporary Mapping Area (TMA) (see section 7.3.1).

5.4.1 Page Fault in User Space

This kind of page fault occurs always, accessing a page which is not present in physical memory. If the
causing thread has an ezternal pager, it receives a page fault message and has to reply with a Flexpage
message. If such a pager does not exist, the thread is cancelled by the kernel.

5.4.2 Page Faults in the TMA

Every long message transfer touches the TMA and causes at least one TB miss during execution. The
page fault handler for the TMA looks up the frame of the virtual address in the receiver’s address space,
to where the data should be copied and puts this value into the TLB only. Since a temporary mapping is
only valid during the time taken to transfer message, it would be much too expensive to enter PTEs into
the page table and delete them after performing the transfer. Furthermore, if an average bus transfer
rate of 60MB/s is assumed, 750 pages could be copied within one schedule.

MB MB P
60" %1000 g7 ~750 2998
s timeslice timeslice timeslice

Hence, the need to look up an entry twice will occur very rarely and only for very long message.

All these TMA translation buffer entries have a cleared ASM bit. This enables the PALcode after the
transfer to clear the TB simply by flushing the translation buffer. This is less expensive than an entry-by-
entry clearing of TMA mappings in the TB. Furthermore, usually a following task switch to the receiver
would automatically flush the translation buffer.

5.4.3 DPage Faults in TCB Space

Since TCB space does not belong to the user accessible memory and contains the kernel stack, where
wrong values influence the stability and integrity of the kernel, Sigma 0 is not trustworthy enough to
manage this area. In fact, Sigma 1 is responsible for any faults accessing the TCB space. During system
startup where no Sigma 1 is available, the kernel simply maps an empty frame at this address.

5.5 Address Spaces

In general, the 14 semantic defines an address space as a region of virtual memory, containing as set of
pages. Such a page can refer to no frame, or to exactly one frame, a frame can be mapped to several
pages. If a page refers to no frame, this page is neither readable nor writable. Accessing such a page
causes a page faults.

Entire address spaces can be created and deleted. At the page level there are services for mapping and
flushing of single pages.

Pages of address spaces can be inherited recursively. This means, every thread can map every page of
its own address space into other address spaces using IPC.

Alpha L4 supports up to 1024 address spaces; address space 0 is reserved for the kernel and not used for
user threads. Every address space is completely protected against access from other address spaces. The
region of the kernel is not accessible for user theads.
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5.5.1 Address Space Switches

Since context switches lead to flushing of TB entries, the kernel does not switch the context, if the next
thread is using the same page table tree for address translation. The code for a context switch loads the
new page table root from the page table root array and stores this value in the ptPageBase register and
flushes the DTB and ITB.

Due to the high cost of context switches, they should be avoided, whenever possible. For this reason,
the system scheduler thread is shared between all address spaces and can execute in every context.

5.5.2 Address Space Structure

The lower region of each address space is accessible for user mode threads. Above these addresses, a
region of 4GB virtual memory is reserved for kernel access only. This, so-called kernel memory, starting
at address Oxffff£££f.00000000 contains the kernel code and some structures, bound to fixed addresses.
This start address was chosen, since

e it is easy to calculate by

subq zero, 1, addr ; create Oxffffffff.ffffffff
zap addr, 0x0f, addr ; delete lower 32 bits

e All current Alpha processors support only 43-bit address space. All bits from 43 to 63 must be
equal to bit 42. The chosen address meets this requirement. If a future Alpha processor supports
64-bit address spaces, no changes will have to be made.

e It provides a huge user address space of up to 8188GB (8TB) virtual memory.

- L4 Kernel
User Address Space

l:l IPC Temporary Mapping Space
- TCB Space
I - [ ] Fee

Figure 5.5: Address Space Structure

3

The parts of the kernel memory and their addresses® are shown in figure 5.6:

Address from Address to ~ Usage

0x00000000 0x001fffff Kernel Code and statically linked data
0x10000000  O0x8fffffff Temporary Mapping Area (TMA) for 256 threads
0xe0000000 oxffffffff TCB Area for 1024*256 threads

Figure 5.6: Kernel Address Space Parts

5.5.3 Address Space Modification

An address space is created automatically when the first thread of a task is started. At this time, the
address space includes the all shared kernel pages. All addresses below this address are not mapped to

30nly the lower 32 bits are given, the upper 4 bytes are Oxffffffff
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any frame. Accessing one of these pages causes a page fault and a messages is sent to the responsible
external pager.

Deleting an address space is done by deleting the task. All mappings in this address space are released
hereafter. All address spaces created by threads of this address space will be deleted as well.

Creation and deleting of address spaces are provided by the task_new system call.

After creation of an address space Inter Process Communication (IPC) is used to send pages from one
address space to another. A page can be granted or mapped. The inverse operation, unmap* which allows
to remove all mappings in other address spaces initiated by the flush-calling thread, requires bookkeeping
about the initiated mappings of a thread.

The map operation is performed by sending a message to a thread of the affected address space, which has
to accept a Flexpage message. Afterwards, the page can be accessed in both address space. Sometimes
it is useful to pass mappings, through controlling systems. This can be done by granting a page, where
the page disappears in senders address space.

A thread can flush or unmap any page of its address space at any time; no other thread can deny this
action. The page concerned is removed from all address spaces which had received this page from the
caller directly or indirectly. While the flush service includes mappings to the frame in caller’s address
space, unmap does not.

5.5.4 Bookkeeping of Mappings

Since flushing and unmapping requires information, about which thread has sent pages to other address
spaces, and where these frames are mapped, the kernel must keep track of all of this information. The
kernel stores this data in a tree, called the MemMapTree (MMT), sorted by the physical address of the
frame, which contains the page frame number. Each node contains beside the page frame number the
linked virtual address, and the initiator of this mapping. Furthermore, links exist for mappings within
the same address space and to the same frame. All MMT nodes which describe mappings in the same
address space are linked together in a list. The higher 32 bits of the page root pointer in the page table
root array points to the head of this list.

Each node contains the following data:

e Page Frame Number: This is the upper part of the TLB entry and is used to sort the mapping in
the tree.

e Same Physical Address: link to a node, which describes a mapping to the same frame. This is used,
if a frame has to be flushed.

e Same Address Space: Links to the next mapping node, which describes a mapping into the same
address space.

e Initiator: TCB address of the thread, which has initiated this mapping.
o Left and Right: points to nodes with a frame number less or greater than the number of this node.

e Virtual Address: contains the virtual address and the task number of this mapping.

All pointers in this list refer to physical addresses and can cover 2GBytes of physical memory.

4unmap may include the calling address space
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5.6 Summary

Microkernel memory management is responsible for handling address spaces, address translation and low
level hardware requirements like filling the TLB.

The Alpha L4 uses Guarded Page Tables and fills the TLB on demand. This code runs completely in
PALmode and takes 18+26+13*level cycles.

Inserting and removal of an entry into the GPT is done in kernel mode and can cause splitting GPT
entries into subtrees or joining them. This operation can cost up to 400 cycles plus costs for IPC to
Sigma, 0.

Entries, concerning the Temporary Mapping Areas are not inserted into the page tables since this oper-
ation is more expensive than eventually looking up an entry twice.

A binary tree is used to save information, which thread has initiated a mapping into which address space
and at which address. Each node contains links to mappings of the same address space and references
to same frames.

Creating an active task implies creating the address space.
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Chapter 6

Thread Management and Scheduling

Threads are the active parts of an address space. While an address space provides sharing of the
memory, thread management virtualizes the CPU resource. Every thread has a complete CPU register
file including one instruction pointer and a set of state information which provides for the illusion of
uninterrupted execution.

Based on the protection scheme of address spaces, all threads running in the same address space can
influence each other, threads running in different address spaces cannot do so.

L4 supports a fixed number of threads per address space; the Alpha version provides 256. If more than
256 threads are required, an external pager can create a second address space which is entirely mapped
to the first address space.

6.1 Thread Identification

Each thread can be identified by an unique number, its Thread Identifier (TID). This value is unique in
time and space. In a running system, once a TID is used, it will never used again as long as the system
runs. Several pieces of information are assembled and stored in the L4 TID. These are:

e Thread Version: The number of the thread, using this Control Block.

e Thread Number: Index the thread in this address space.

o Task Number: This is a synonym for the address space number. Threads with the same task
number share the same address space.

e Site: With a view to supporting a multi node system, it makes sense to store the number of the
node on which this thread is running. All threads with the same Site number run on the same
node.

e Chief Number: Creating a task from within a task creates a hierarchy. This field contains the
creator’s task number. Thread 0 of this task is called the Chief of this thread.

e Depth: The level of chief nestings.

The complete Alpha 1.4 Thread ID is shown in Figure 6.1.

The 14_id_nearest system call returns either the TID of the caller or the TID of a thread which is chief of
the TID argument to the call.

23
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31 29 19 11 0
g ver task number thread number thread version

‘ depth chief number site number

63 60 50 33 32

Figure 6.1: Alpha L4 Thread ID

6.2 Thread Control Block

As described above, during processor preemption all important informations must be saved. To this end,
every thread has its own structure, called the Thread Control Block (TCB) where this data is stored.

Since a preemption is possible while the thread is running in kernel mode, a kernel stack per thread is
necessary. The TCB is a good place for this stack. Furthermore, it allows a fast (2 cycles) calculation of
the current thread’s TCB start address while in kernel mode.

All TCBs are arranged in an array in virtual memory. The task and thread number of the TID are both
used to index this table. All TCBs of existing threads are linked in a doubl linked list.

To decide on an optimal TCB size, the following consideration was made: Beside the complete integer
registers file, which uses 32*8 bytes and is stored on the kernel stack during preemption, 32 floating
point registers, each of 8 bytes must be stored. In 32 fields, information about the thread and linked lists
are kept. This results in a TCB of 768 bytes. Return addresses of procedures and temporary registers
used are also saved on the stack. For this reason, a stack of size 1024 bytes seams to be insufficent and
consequently the TCB used of size 2048 bytes.

The structure of the entire Thread Control Block is explained in Appendix B.

6.3 Thread Operations

L4 provides only one, but very powerful system service, for thread manipulation, called
14 _thread_ex_regs. This service can be used for

Starting threads:
By default, creating an address space creates all 256 possible threads, virtually. Except for thread
0 in an active task, these threads initially are passive but may be activated using 14_thread_ex_regs.
Hence, instead of starting a thread it is more accurate to say that a thread is activated. This is
done by setting a valid instruction pointer which points to a 4 byte aligned address in user mode.

Signalling threads:
Since IPC is strictly synchronous and requires always a peer, it cannot be used for signalling.
Within an address space, the following technique can be used for signalling.

1. call 14_thread_ex_regs and set the thread to a procedure which does not modifies any registers.
This keeps the current thread state and the previous instruction pointer and stack pointer are
returned.

2. save these values on top of an exception stack.

3. call 14_thread_ex_regs to set this thread to the exception procedure.

Ending threads:
L4 threads cannot be destroyed as in common systems. Since ending a thread only means that
the thread is withdrawn from the processor, this result can be achieved by invoking an IPC with
itself and a timeout ‘never’. Due to the strictly synchrounous IPC, receiving a message from itself
is not possible, but the thread is blocked and does not get a timeslice; this results in exactly the
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same behaviour as a not existing thread. To start the thread again, set a new instruction pointer
with the 14_thread_ex_regs system call.

6.4 Scheduling

Scheduling is responsible for a fair sharing of the processor between threads. Since many different
algorithms for various tasks exist, schedulers built into the kernel could only cover a small subset of
possible algorithms. For this reason, L4 contains only a very simple, priority based Round Robin (RR)
scheduler in the kernel.

An Ezternal Scheduler Interface (ESI) provides the opportunity to use many different scheduling policies.
At the end of every time slice, the kernel initiates an IPC-based Remote Procedure Call (RPC) to the
External Scheduler (ES). This stops the thread to be preempted, until the ES replies to this message.

Internally, all inactive threads are stopped in PALcode. After entering PALcode, the stack frame is built
up, eventually the registers are pushed and the new schedule-in address is always saved on top of the
stack. This allows PAL procedures to continue at the next time slice at another instruction than the next
one. The switch itself is done by loading the kernel stack pointer from the target thread and continue at
its appropriated address.

Floating point registers are not stored during preemption; instead the kernel only makes the FPU un-
available for the next thread. Later on, if the thread tries to use the FPU at the first access, an exception
is raised and the kernel handler can save and restore the FPU context.

Scheduler Interface
The scheduler interface permits the reading and modification of thread data which are important
for scheduling such as:

e Time Slice, Priority, the overall consumed time,
e the External Preemptor, and

e the current IPC peer, if the thread is performing an IPC.

Preemption
A thread is preempted, if it has completed its time slice. In this case all registers are saved in
the Thread Control Block and the next ‘ready’ marked thread is scheduled. This operation costs
about 100 cycles. About 70 of them are used to save and load the integer registers.

Yield
This occurs when a thread gives up its time slice voluntarily and the processor executes another
thread of the same or of a different address space. If the calling thread dedicates its timeslice to
no appropriated thread, the scheduler picks the next ready thread, which gets an entire time slice.
Otherwise, the specified thread get the remaining time slice of the current thread in addition to
an ordinary time slice.

Since yield must be initiated by the threads themselves, no registers, except stack and instruction
pointer are saved. The calling thread can do this more efficiently by saving only a few important
registers than the kernel, which would have to save all registers.

6.5 Summary

Threads are the active part in an address space. L4 supports up to 256 threads per task. The kernel
uses an identifier, which is unique in time and space for an identification of threads. This ID consists,
beside other information, of the logical thread number in this task and the address space number. Both
values are used as an index into the Thread Control Block array.
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The lower part of the TCB is used for thread state information, the higher part contains the kernel stack.
Creating and signalling of threads is done by the l/_thread_ex_regs system call.

The kernel provides an interface for external schedulers. Internally, a Round Robin algorithm is used to
select the next thread to run.
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IPC

The L4 IPC provides structured message transfer. This means that the kernel understands different
types of messages and is able to handle them. This avoids unnecessary copying or multiple IPC calls
to transfer complex messages. Five different behaviours of one system call provide sending, receiving,
waiting, call or reply_and_wait semantics for IPC. The operation is chosen by means of the send and
receive vector.

7.1 Interface

The IPC interface is designed for optimal use by compilers. All mandatory arguments are given in the
argument registers a0...a5 (rl6...r21).

quad ipc (TID target : a0,
DOPE snd-msg_dope : al, void *snd_vect : a2,
DOPE rec_msg_dope : a3, void *rec_vect : a4,
quad time_outs : ab,
[quad flexpage : fpl,
[quad w0, wl, w2, w3, w4, whb, w6, wrl);

Both timeout values are packed into one 64-bit value. The precision on Alpha L4 is much higher than
that of the Intel version, in which both timeouts are packed into one 32-bit word. Each timeout value
consists of an IPC timeout and a page fault time out. This is used to prevent blocking an IPC by a non
trust-worthy external pager, if it does not reply to a page fault message.

7.2 Short Messages

Transfer of short messages occurs most frequently. Typically at least one message from or to the server
is a short acknowledgement, which is typically not longer than 2 quadwords. Up to 8 quadwords in
registers can be passed directly. The decision to restrict to 8 quadwords results from the requirement
that all registers to be passed to the receiver have to be saved if the receiver is not waiting for a message.

All Interrupts, both software and hardware, are announced by Inter Process Communication. Calling
TPC with an interrupt number as receiver allocates the interrupt. Hereafter, the kernel initiates an IPC
to the thread every time this interrupt occurs. Each thread can only handle one interrupt.

27
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7.3 Long Messages

Long messages are described by two words which are called the ‘structure dope’ and the ‘message dope’.
These messages include direct strings' or indirect strings’® and are memory based. The structure dope
describes the static appearance of the message, the message dope the data to be transferred. This allows
to send only parts of an entire structure. Both dopes have the same format, which is shown in figure 7.1.
The structure dope is expected at the beginning of the message in memory; further implementation can
combine both dopes in the argument register, if they are still 32-bit.

31 14 8 0

Message Words Strings (Error Code)

Figure 7.1: Message Descriptor - Dope

7.3.1 IPC and Temporary Mapping

Old-fashioned kernels transfer data from one address space to another by copying the data first into a
kernel buffer and later on, from this buffer to the destination address space. L4 uses temporary mapping
for the transfer; parts of the receiver’s address space are mapped at an appropriate position into the
temporary mapping area in the address space of the sender while transferring the message. Figure 7.2
illustrates this. Copying the data to this region implies a cross-address space copy of the data to the
receiver. Every thread of an address space has its own, 8MB big slot.

Temporary mapped \
Destination Area
g Temporary
Mapping
3
‘D
>
S
Source Area
X »| Destination Area
Logica Copy
Address Space 1 Address Space 2

Figure 7.2: Message transfer and Temporary Mapping

Every thread of a task has its own send area. Since mappings there have to be changed very often,
exactly each time a new transfer is performed, page tables do not contain entries for this region (see
section 5.4.2). Instead, the kernel generates the data which have to be filled in the Translation Buffer on
demand by means of the receivers page table. This avoids complex modifications of page tables.

Hence, short ‘Long Messages’ which are transferred within one timeslice are faster. Really long messages
take a little more time due to the overhead of calling the kernel and possible multiple lookups of addresses.
An obvious optimisation could be implemented in a future version, in which the PALcode would handle
IPC region TB misses directly and not call the kernel mode page fault handler.

7.3.2 Direct Strings or Message Words

Direct Strings or Message Words are 64-bit wide and located at the beginning of the message. They are
transferred directly to the address pointed to by the message vector of the receiver. If the Flexpage bit

lquadwords located directly behind the dope
?the message consist of a set of pairs of a pointer and the string length
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in the send vector is set, all these Message Words are copied and treated in addition as Flexpages. This
continues as long the Flexpage descriptor is valid; hereafter the words are treated as sequence of integers
and are only copied.

7.3.3 Indirect Strings

The message itself contains only references to indirect strings. Since a message buffer is used for sending
and receiving of messages, pointers to strings to be sent and pointers to regions for receiving strings
alternate with each other.

7.3.4 Flexible Pages

Flexible Pages, or Flexpages for short, are memory objects which can be passed via IPC from one
address space to another. This data type is base for all external pagers to reply to requests on page
faults. Flexpages can cover a set of 2"continuous pages. The smallest page size is 8KB, which is equal
to the hardware supported page size.

The Intel L4 version uses the given send address to decide between sending an ordinary memory page or
I/0O space. The Alpha version, however, allows 3 types of Flexpages.

If the flexpage bit in the send vector is set, all Message Words are treated as Flexpages until such
a message word is a not valid Flexpage descriptor. Figure 7.3 illustrates the descriptor used in the
message, table 7.4 lists a descrtiption of the descriptor fields.

63 13 10 4 3 2 0

Base Address MBZ Flexpage Size R G Type

Figure 7.3: Flexpage Descriptor

Sigma 0 benefits most from this extension. While the Intel version has to build up page tables for all
frames which should be accessible, the Alpha version does not. Sigma 0 can do this as follows;

1. Create a receiver thread, called SigmaR. 0, which accepts Flexpages from Sigma 0 only.

2. If a mapping is required for a frame, send a Physical Memory Flexpage to SigmaR 0. This estab-
lishes a mapping in SigmaR 0’s address space, which is equal to Sigma 0’s.

3. Now, Sigma 0 is able to handle this page as appropriate, i.e. write to it or send it to a device
driver.

Only Sigma 0 should be allowed to use Physical or I/O Memory Message and only for frames which are
not used by the kernel.

7.4 Summary

L4 TPC appears in five variations and allows threads to send structured messages. Every message is
described by a message dope. All mandatory arguments are passed in registers.

Indirect strings provide an easy way to send memory based data from various locations within the address
space without copying them together.

Flexpages are the base for external pagers and make it possible to transfer memory to other address
spaces without touching the data inside the pages. Three types of Flexpages can be sent, which are
virtual memory, physical memory, and I/O memory.
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Field

Name

CHAPTER 7. IPC

Description

type 00

type 01

type 10

type 11

Size

Base

Invalid

Virtual Memory

Physical Memory

I/0 Memory

Granting

Read-Only

Flexpage Size

Base Address

Used for compatibility

Describes an ordinary page of virtual memory, mapped in the sender’s
address space by its virtual address.

The address points to a frame instead of a page. This permitts the es-
tablishment of mappings, eg. for graphic adapters, which do not have
pre-established kernel mappings. This capability should be restricted
to Sigma 0.

This type is especially for systems with separate I/O space like the
Intel, or systems which require hints about caching strategies for TB
entries, like the MIPS. Since the Alpha uses memory mapped I/0O
to access I/O ports and is able to handle caching to these regions
without software hints, this type is completely equivalent to Physical
Memory.

If this bit is set, all pages will be granted, otherwise mapped.

If set, all pages will be mapped read-only, otherwise read-write. An
‘executable’ bit may be added at a later time.

The size describes the region to be transferred in 2" bytes. (IL.e. 13
means 8KB and is the smallest valid size). A value of zero covers the

entire address space.

Address of the first Flexpage.

Figure 7.4: Flexpage Types



Chapter 8
Optimization

Optimization assumes good understanding of the hardware structures. Despite very good optimizing
compilers, the best code is always created by hand. To begin with the algorithm used should be as good
as possible, before the code is optimized.

8.1 Istream Considerations

I-stream considerations regard packing and alignment of code, instruction issues, or branch prediction.
Procedure entries should be octa-word aligned, frequently used branch targets at least quadword aligned.

Some Alpha implementations are able to execute instructions in parallel. This depends on the availability
of execution units for the required instruction. Two instructions can be executed in parallel only if they
are independent of each other.

An unexpected change of the I-stream address results, in many Alpha implementations, in about 10
additional cycles. Unexpected means, in general, missing predicted branches. Even a correctly predicted
branch is slower than straightforward code.

Loops should be unrolled. In the more often used case a jump should have a target which has an address
less than the jump instruction. Infrequently used code should be put completely out of the frequently
executed instruction stream. and behind the straightforward code stream.

Since Alpha code tends to be very large; effort spent in increasing the compactness of code (and hence
the density of I-stream) may be well spent.

Instruction scheduling influences the performance. Some instructions on the Alpha have a latency of two
cycles, which means the result can be used without delay only two cycles later.

8.2 Data alignment

Data alignment is one of the most important facts for improving performance. The basic rule is to align
data to their natural size.

Data which are often used together should be arranged near each other. Avoiding cache conflicts is
achieved by adjusting data with different offsets within the cache lines.

The code should use ascending memory addresses for consecutive reads and writes. Intercept consecutive
reads and writes after 8 cycles to avoid memory bandwidth overrun.
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Chapter 9

Implementation

The following sections describe some of the interesting implementation details of various parts of the
L4 kernel. The kernel consists of two virtual parts. The first is written in PALcode and contains the
interface and some highly optimized procedures for address translation, interrupt handling, and short
messages. The second part runs in kernel mode and contains the code which has to be interruptible.

9.1 Address Translation

Address translation is done completely in PALcode. An average translation, which includes entering and
leaving the PALmode, traversing a three level page table tree and filling the Translation Buffer is done
in 86 cycles.

If a translation is performed successfully, the pair (virtual address, TB entry) is written to the Translation
Buffer. All page tables are accessed via physical memory only. The root of a page table tree is stored in
the Internal Processor Register ‘ptPageBase’. All 1024 page table roots are stored in an array.

Non resolvable translation faults lead to a jump to three different entry points in kernel mode, depending
on the cause. This code either sends messages to external pager threads, or handles access faults to
special parts of the kernel address space. Three different return points for these handlers allow them to
write a value into the TB, rerun the causing instruction or start the scheduler.

The algorithm, explained in subsection 5.3.2.4 is implemented as follows

HDW_VECTOR (PAL_ITB_MISS_ENTRY)
pal_itb_.miss_entry:
mtpr a0, pt7 // pt7 is PAL_TEMP reg 7
mtpr t0, ptO
mtpr tl, ptl
mtpr t5, ptb
mtpr t6, pt6

mfpr a0, excAddr // Get fault address

mtpr t3, pt3

ldiq t6, 0x3cO // Protection area in address

ldiq t5, 0x1cO // Bits to be inverted by XOR

bis a0, a0, t3

mfpr t0, ptPageBase // t0 = PageBase

bic a0, t6, a0 // 0x3c0 - clear prot. area in address
mtpr t2, pt2

bis a0, tb, a0 // XOR inverts only X, W, P bits

mtpr t4, pt4d
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bic t0, 0x3f, t2
srl a0, t0, t1
1ldiq t6, PP_EXECUTABLE | PP_INTREE

s4addq t1, 0, t1
s4addq t1, t2, t2
/*stallx/

ldgp t1, 0(t2)
ldgp t0, 8(t2)

/*stallx/

Xor a0, t1, a0

bic t0, 0x3f, t2

srl a0, tl, t4

and a0, t6, ti

bis a0, tb, al

bne tl, itb_protectionmiss
srl a0, t0, t1

beq t4, 1b

br zero, itb_guard fault

itb_protectionmiss:

// Depending on tl bits error handling
bic t1, PP_INTREE, t1
bne t1l, itb_protection fault

itb_translation_valid:

bne t4, itb_guard fault
mtpr t3, tbTag
mtpr t0, tbCtl
mfpr tl, ptl
mtpr t0, itbPte
mfpr t2, pt2
mfpr t3, pt3
mfpr t4, pt4
mfpr t5, ptbd
mfpr t6, pt6
mfpr a0, pt7
mfpr t0, ptO
hwrei
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// t2 = old.frame start base
// t1 = table_bits (a0)

// required protection

// t1 =t1 *x 4

// tl =t1 *x 4 + t2

// load lower part of gpte
// t0 = higher part of guard

// guard bits and flip prot.

// t2 = old.frame start base

// shifted guard

// P - check

// XOR inverts only X, W, P bits
// P - check

// t1l = table_bits (a0)

// PP_INTREE is always set

// Virt. Address

// Required cycle
// Page Table Entry

// Restore Scratch Register

This code was examined using the DEC PALcode Violation Checker (PVC) tool and cycles were measured
with the Alpha internal processor Cycle Counter (CC). The loop contains 12 instructions and takes 11
cycles + 2 stall. Two instructions can be issued in parallel. The complete code for an ITB miss, including
parsing a three level page table, TB fill, entering and leaving PALcode takes 26 cycles for saving and
restoring used registers, 8*18 cycles for the parsing loop and 18 for entering and leaving PALcode. On
an 133 MHz 21064 Alpha, each TLB fill takes 0.6us. The resulting calculated and measured 83 cycles
compares favorably with the 400 cycles for other software implementations, like Mach. All instructions
in the code are ordered very carefully, to minimize required stalls. This led to a 25% faster version than
the first implementation. The measured case does not consider cache misses during load of page table

entries.
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9.2 Thread and Context Switches

Thread switches perform only the reload of the kernel stack pointer and the continuation of the control
flow at an appropriated address in the new thread. They do not perform any context switches, which
are not necessary if the new thread is running in the same address space.

switch_thread (tcb, label)
pal_addr (AT, label) ; address in PALcode for label

subq sp, 8, sp get space on stack

stq.a AT, 0(sp) ; store the schedule in address

ldiq AT, TCB_MASK

bic sp, AT, AT ; get my tcb address

stq.a  sp, TCBKSP (AT) ; store my kernel stack pointer (ksp)
/* SWITCH ! =*/

ldg.a sp, TCBKSP (tcb) ; load ksp from target thread

ldg-a AT, 0(sp) ; load the schedule in point

addq sp, 8, sp

ret zero, (AT) ; jump there

Context switches are performed if the next thread belongs to a different address space. On the 21064
with an untagged TB, this leads to a flush of all entries in the TB, except those with a set Address Space
Match (ASM) bit. Hence, all kernel pages which are shared between all address spaces have this ASM
bit set. The code for the context switch takes 14 cycles. Additional costs are expected due to the later
occurring TB misses.

switch_context(tcb, tx) ; tx is a temporary register
task.nr (tcb, tx) ; get the new task number
pal_addr (AT, pal_ptroots) ; pal address of ptroots

s8addq tx, AT, AT
mfpr tx, ptPageBase

build offset into table
get current PageBase

1dlp AT, 0(AT) ; load new PageBase

Xor tx, AT, tx ; are they equal

beq tx, 9f ; no, than continue

mtpr AT, ptPageBase ; set new PageBase

mtpr zero, xtbAsm ; flush the ITB and DTB
STALL ; ... requires wait cycles
STALL ;

STALL ;

STALL ;

now in new address space.

9.3 Identification and Context Block

Each thread is identified by an unique number, called Thread Ident (TID). This value is unique in time
and space. The most important parts of the TID are the thread and the task number. L4 supports a
fixed amount of tasks and possible, parallel existing threads within them, these values are used to index
a table, where all Thread Control Blocks (TCB) are stored.

Since preemption is possible in kernel mode, every thread contains its own kernel stack, which is located
in the upper half of the TCB. The start address of the TCB can be determined by clearing the lower 11
bits of the stack pointer.

tcb (tcb)
1ldiq AT, TID_M_VERO ; Create the mask 0x7ff
bic sp, AT, tcb ; Clear this bits in stack pointer
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To calculate the TCB from a given TID, the following code is used. It sets the upper part of the address
to Oxffffffff. exxxxxxx and clears the lower eleven bits.

tcb_of_tid(tid, tcb)
1dah tcb, 0xe000(zero);

1lda AT, TID_M_VERO (zero);
or tcb, id, tcb;
bic tcb, AT, tcb;

9.4 Short Messages

Short messages are the fastest version and allow passing up to 8 registers from the sender to the receiver.
The contents of the registers t0...t7 are passed to the receiver. This code runs completely in PALmode
and takes 400 cycles for a RPC round trip. This apears to be greater than the 240 cycles required for
IPC on Intel L4, but results in 1.45us on a standard 275MHz 21064 or about 0.92us on an 433MHz
21164, which compares favorably to the 2.4us on a 90MHz Pentium system.

The following extract shows the code for transferring short messages.

R ——————————————————————————————————————————

*% Continuation of IPC

*o%

*k a0 - receiver id

*k

*% al - snd_msg_dope

%k a2 - snd_msg_vect

*%

*% a3 - recmsg_dope

*k a4 - recmsg._vect

*%

*x ab - msg timeout = (receive = 63..32 | send = 31..00)

*ok

*k s6/fp - receive flexpage register

*ok

*x t0..t7 - msg0 .. msg7

*ok

*% SIDE EFFECTS

*x thread + task switches occures, so TLB misses cannot be avoided

*/
ALIGN_BRANCH_TARGET

14_ipc_cont:
open_frame // Faults during touching TCBs
// 3 * send msg vect != NIL -> run through, if data to be send
addq a2, 1, t8 // test for send msg vect > VSPACE
beq t8, ipc_receive_only // yes, jump to ipc_receive_only

// 6 * inner clan transfer

tcb (t8) // test for different clans

ldg-a t10, TCBMYSELF (t8)

xor t10, a0, ti11

srl t11, TID_S_SITE, ti1 // Bits above 33 have to be identical

bne t11, ipc_send _chief // no, jump to ipc_send chief
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// 8 * valid target ID

tcbptr (a0, t9) // t9 = TCB of target TID.

ldq.a t10, TCBMYSELF (t9) // t8 = ID, stored in TCB

cmpeq t10, t9, ti1 // target id == id of (target) 7

bne tll, ipc_send_dest not_exist // no, jump to ipc_send dest _not_exist
ipc_send:

// * partner in open or closed wait
1d1l_a t10, TCB_FINE_STATE (t9)

bic t10, TFS_CLOSED_WAIT, t10

beq t10, 1f // It is a closed wait

bic t10, TFS_OPEN_WAIT, t10

beq t10, ipc_send_exec // Open wait 7 wonderful, so do the transfer
br zero, ipc_send_enqueue

ALIGN_BRANCH_TARGET

// * partner in closed wait, does it wait for me 7

ldg-a t10, TCB_WAIT_FOR (t9) // Wait for entry of partner

ldg.a t11, TCBMYSELF (t8)

cmpeq t11, t10, t10

beq t10, ipc_send_enqueue // No, then take first from send_queue

ipc_send_exec:
// * Only a short message is handled here
bne al, ipc_send_long // send_dope must be zero for short msg

ipc_send_exec_from_long:
// 1 * set partner to running
bis zero, TFS_RUNNING, t10 // ok, partner can now be started again
stl_a t10, TCB_FINE_STATE (t9)
mark_busy (t9, t8, t10, ti11)

// * Only a send operation

addq a4, 1, t10 // is rec_vect empty, then it’s a send only
beq t10, ipc_send_only

stq.a fp, TCB_FLEXPAGE(t8) // store my flexpage register

stq.a a3, TCB_COMM_RDOPE(t8) // store my receive dope in my own TCB
stq-a a4, TCB_COMM_ADDRESS(t8) // store my comm address

blbc a4, ipc_call open // is it an open cal

ipc_call_close:
bis zero, TFS_CLOSED_WAIT, t10 // No, we wait for partner’s reply
stl.a t10, TCB_FINE_STATE (t8) // We are in CLOSED_WAIT for a0
stq.a a0, TCB_WAIT FOR (t8)

switch_context (t9, t10)
switch_thread (t9, ipc_send_ok) // Switch to partner, if we come back, jump to ipc_se
// ==> to ipc_send._ok

ALIGN_BRANCH_TARGET

ipc_call_open:
ldg-a  t10, TCB_SEND_ROOT (t8) // Is a thread waiting in queue 7
bne t10, ipc_is_sender
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bis zero, TFS_OPEN_WAIT, t10 // No, set state to open wait
stl.a t10, TCB_FINE_STATE (t8)

switch_context (t9, t10)

switch thread (t9, ipc_send ok) // Switch thread to receiver
// =-=> to ipc_send._ok

ALIGN_BRANCH_TARGET
ipc_send_only:

bis zero, TFS_RUNNING, t10 // Set partner running
stl.a t10, TCB_FINE_STATE (t9)

mark busy (t9, t8, t10, ti1) // Mark t9 in busy queue

switch_context (t9, t10)

switch thread (t9, ipc_send ok) // Switch to t9
/* NEVER REACHED */

// * return with success
ALIGN_BRANCH_TARGET
ipc_send_ok:
bis zero, IPC_SUCCESS, v0 // IPC, ok
close_frame
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Summary

This chapter summarizes the most important achievments of this work and gives an overview of the scope
for further work.

10.1 Performance

The first implementation of the Alpha 1.4 kernel was made on an Alpha 21064, EV4 workstation system
called Sandpiper. All performance measurements are related to this 133MHz clocked machine, using the
Processor Cycle Counter.

10.1.1 Page Table Translation

Page Table Translation is done in PALmode, using Guarded Page Tables. It takes about 18+26+13*level
cycles and compares favourably to other software implementations. Since Intel processors use a hardware
built-in page translation, comparison of performance is not useful.

10.1.2 IPC

Table 10.1 shows IPC performance for transferring short IPC (first line) and long IPC messages'. The
instruction cycles and timing results are very similar to the results on a 133MHz Intel Pentium, but the
much higher system clock of new Alpha processors results in higher IPC throughput.

Message length Cycles Xfer time (us) b (MB/s)

0+ 64 368 2.7 -

8 + 64 2550 19.2 0.42

32 + 64 2618 19.7 1.62
256 + 64 3038 22.8 11.2
2048 + 64 6144 46.2 44.32
8188 + 64 17020 128.0 64.0
8192 + 64 18680 140.5 58.3
16376 + 64 44980 338.2 48.42
16384 + 64 46050 346.2 47.32

Figure 10.1: IPC Roundtrip Transfer Times

1164 means 8 registers are passed to the receiver at any time
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The left figure of 10.2 shows the cycles used for the different message sizes, the right figure presents the

transfer bandwidth achieved.
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Figure 10.2: IPC Roundtrip and Bandwidth

Sending Flexpages is used for handling page faults by external pagers. The achieved results are accept-
able; times for sending the first and the second page are quite high. This relies on that page tables must
be created on the fly and existing entries in the page tables have to be splitted. Table 10.3 illustrates
this values. Regarding the times to transfer 8 pages and 16 pages, it can be assumed that one page is

transferred in appiroximately 580 cycles or 4.3us.

Pages Cycles Xfer time (us) time per page (us)
1 19283 144.9 144.9

2 33152 249.3 124.7

3 33611 252.7 84.2

4 34025 255.8 63.9

8 35700 268.4 33.35

16 40344 303.7 18.98

Figure 10.3: IPC Flexpage Transfer Times

10.2 Further Work

In further work, the remaining parts of L4 should be implemented completely. Some protection checks
have to be added and the hardware related parts should be ported to the newer 21164A processor.

An implementation of the Guarded Page Tables could be done in hardware, for instance a VLSI chip.

Optimization of all parts for a more better performance should be done.

In addition to these, the Linux/L4-Intel would provide be a base for a Linux/L4-Alpha port.



Appendix A

Interface

This part gives an overview of the Alpha L4 kernel Interface. Arguments are given in the argument
registers a0 .. a5, from left to right.

A.1 ipc

Transfers, depending on the arguments the registers t0 .. t7 to the target thread. The fp register is
used to receive flexpages. Timeouts contains the packed values for the send and receive operation.

Arguments:

thread_id target : a0
quad send-dope : al
quad send_vect : a2
quad rec_dope : a3
quad rec_vect : a4
quad timeouts : ab
quad flexpage : fp
quad values : tO .. t7

Results:

quad result : vO0
quad partner : pv

Calling Sequence:

call pal 0x0080

A.2 fp_unmap

Releases mappings, initiated directly or indirectly by the caller. Flush includes the caller’s address space,
unmap does not.

Arguments:

quad address : a0
quad attribute : ail

Results:
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quad result : vO0

Calling Sequence:

call pal 0x0081

A.3 id_myself

Returns callers thread id, if next_thread is nil or the chief of the given thread.
Arguments:

thread_id next : a0l

Results:
thread_id myself_or_chief : vO0

Calling Sequence:

call pal 0x0082

A.4 switch

Switches either to the given thread or if not possible to the next schedulable.
Arguments:

thread_id next : a0

Results:

none

Calling Sequence:

call pal 0x0083

A.5 scheduler

Sets or reads the values for scheduling.
Arguments:

thread_id thread : a0
thread_id preempter : al
quad parameter : a2

Results:

thread_id partner_id : tO
thread_id old_preempter : ti
quad old_paramenter : t2
quad time_slice : t3



A.6. THREAD_EX_REGS

Calling Sequence:

call pal 0x0084

A.6 thread ex regs

Changes the IP register for a thread, defines the pager and starts this thread.
Arguments:

thread_id threadmno : a0
thread_id preempter : al
quad parameter : a2

Results:
thread thread_id : vO

Calling Sequence:
call_pal 0x0085

A.7 task_new

Creates or deletes an address space.
Arguments:

thread_id thread no : a0

thread_id chief : al

thread_id pager : a2

quad initial ip : a3
Results:

thread_id task_id : vO

Calling Sequence:

call pal 0x0087
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Appendix B

Thread Control Block

The Thread Control Block is a structure that contains all data which are necessary to reactivate or
maintain threads. The most important fields are briefly described here.

TCB_MYSELF contains the Thread ID for this thread. It is necessary to keep this in the TCB, since the
kernel uses only the address of the TCB to access them or to verify a user given TID!.

The fields TCB_PRESENT_QUEUE, TCB_SEND_QUEUE, TCB_BUSY_QUEUE are used to maintain this thread.
All existing threads are linked together in the ‘Present Queue’, runnable threads are linked in the
‘Busy Queue’. Threads waiting for a Send-IPC to this thread are linked in the ‘Send Queue’. The
TCB_LIST_STATE reports in which queue the thread is linked in.

TCB_COMM_PARTNER, TCB_COMM_ADDRESS, TCB_COMM_RDOPE, and TCB_FLEXPAGE are used for Inter Process
Communication. TCB_PREEMPTER and TCB_SCHEDULE contain information for the external scheduler in-
terface.

TCB_COARSE_STATE keeps the state of the Thread Control Block. Possible states are used, free, or blocked.

TCB_FINE_STATE stores the state of the thread in a bitmask which are running, locked_waiting,
locked_running, polling, open_wait, closed_wait, and aborted.

The complete structure is defined in 14pal.h.

LA TID can point to a valid TCB, but may not match the version number in the TCB
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Appendix C

Glossary

ASN
Address Space Number, on the 21164 a seven bit wide field in the translation buffer to avoid
flushing of the TB. A TB entry is only valid, if the ASN field in the TB and the ASN-IPR are
equal.

ASM
Address Space Match, single bit in the translation buffer entries to allow restricted flushing of the
translation buffer.

AXP
Trademarked name for the Alpha processor series.

DTB
Data Translation Buffer, TB for data page references.

ES
External Scheduler, thread which receives a message from threads if they are preempted. It can
be used for implementing different scheduling strategies.

EP
External Pager, thread which receives a message from threads if they are causing a page fault.
The EP replies a memory object to this message using standard IPC.

GPT
Guarded Page Table, structure by which a virtual address is translated into a physical address.

IPC
Inter Process Communication, allows data transfer between different address spaces.

IPR
Internal Processor Register, control register of the Alpha

ITB
Instruction Translation Buffer, TB for code page references.

MMT
Memory Mapping Tree, structure which saves information about mappings of pages in all address
spaces.

PAL
Privileged Architecture Library, Code, which consists of standard instruction to perform hardware
dependent functionalities.
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ptReg
PAL_TEMP register, additional register, accessible in PAL and kernel mode, which can only be
used for storing information.

PVC
PALcode Violation Checker, tool to check binaries for violation rules.

RPC
Remote Procedure Call, combined send and receive IPC operation, to send parameters and a
command to a server and wait for the result.

Sigma 0
First External pager of the system. Maintains physically existing main memory and shares this
between address spaces.

Sigma 1
Special external pager, responsible for page faults in the Thread Control Block Area.
TB
Translation Buffer, caches recently used address translations
TCB
Thread Control Block, 2048 byte big memory part, which contains thread state informations and
a kernel mode stack.
TID
Thread Ident, 64-bit structure, used to identify a thread uniquely during the system up-time.
TMA

Temporary Mapping Area, 2GB part of the virtual address space where mappings of the receiver
address spaces are established in the sender address space while copying memory based messages.
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