RTLinux with Address Spaces

Frank Mehnert Michael Hohmuth

Sebastian Schonberg

Hermann Hartig

Dresden University of Technology
Department of Computer Science,
D-01062 Dresden, Germany
drops@inf.tu-dresden.de

Abstract

The combination of a real-time executive and an off-the-shelf time-sharing operating system has the
potential of providing both predictability and the comfort of a large application base. To isolate the
real-time section from a significant class of faults in the (ever-growing) time-sharing operating system,
address spaces can be used to encapsulate the time-sharing subsystem. However, in practice designers
seldomly use address spaces for this purpose, fearing that extra cost induced thereby limits the system’s

predictability.

To analyze this cost, we compared in detail two systems with almost identical interfaces—both are a
combination of the Linux operating system and a small real-time executive. Our analysis revealed that
for interrupt-response times, the delay and jitter caused by address spaces are similar to or even smaller
than those caused by caches and blocked interrupts. As a side effect of our analysis, we observed that
published figures on predictability must be carefully checked whether or not such hardware features are

included in the analysis.

1 Introduction

In this paper, we determine the cost of introducing
address-space protection to RTLinux [8].

RTLinux is a real-time extension for Linux. It in-
troduces a small real-time executive layer into the
time-sharing Linux kernel. On top of that layer, the
time-sharing kernel and the real-time applications all
run in kernel mode. User mode is reserved for time-
sharing applications. Real-time applications are pro-
tected from errors in time-sharing applications.

For our evaluation, we used L4RTL, a reimplemen-
tation of the RTLinux API based on a real-time mi-
crokernel and a user-level Linux server. That design
has the property that the real-time subsystem is pro-
tected from a large class of errors: Crashes in the
time-sharing subsystem (either in the operating sys-
tem or in user code) will not bring down the real-time
subsystem, except if a device driven by the time-
sharing subsystem locks up the machine or corrupts
main memory.

This increased level of fault tolerance is desirable for
many real-time applications. In many ways, it is
more important to protect the real-time subsystem

from the time-sharing subsystem (both kernel and
applications) than the other way round: For exam-
ple, a real-time application may be safety-critical,
but time-sharing operating systems have become so
big and bloated that it is difficult to trust in their
stability. However, the undoubtable benefits of sep-
arate address spaces do not come for free.

We observed RTLinux’ worst-case response time to
be much higher than “about 15 us on a generic x86
PC” claimed by the system’s authors [7]. In our
experiments, RTLinux’ worst-case interrupt latency
was 68 us. The worst case for L4ARTL was 85 us.!
We found that the cost induced by address-space
switches to real-time applications does not signifi-
cantly distort the predictability of the system. In
general, most of the worst-case overhead we observed
must be attributed to implementation artifacts of the
microkernel we used, not to the use of address spaces.

2 L4RTL

For an accurate comparison of the cost of address
spaces in real-time systems, we have reimplemented

IWe carried out our measurements on a 800-MHz Pentium-IIT PC—more details in Section 3. We believe that this system
qualifies as a “generic x86 PC” as presumed by the RTLinux statement.

the RTLinux API in the context of the DROPS sys-
tem. The resulting system, called L4RTL, can run
unmodified RTLinux programs (source-level compat-
ibility).

2.1 The DROPS system

DRroPS is an operating system that supports appli-
cations with real-time and quality-of-service require-
ments as well as non-real-time (time-sharing) appli-
cations [2]. It uses the Fiasco microkernel as its base.
The Fiasco microkernel is a fully preemptible real-
time kernel supporting hard priorities. It uses non-
blocking synchronization for its kernel objects. This
ensures that runnable high-priority threads never
block waiting for lower-priority threads or the ker-
nel [5].

For time-sharing applications, DROPS comes with
[*Linux, a Linux server that runs as an applica-
tion program on top of the Fiasco microkernel [3].
I*Linux supports standard, unmodified Linux pro-
grams (binary compatibility). The Linux server
never disables interrupts for synchronization pur-
poses. Instead, we modified the implementations of
cli() and sti() to work without disabling inter-
rupts while still ensuring their semantics (to protect
a critical section) [4].

2.2 L4RTL implementation

We implemented L4RTL as a library for RTLinux
application programs and a dynamic load module
for [*Linux. Figure 1 gives an overview of L4RTL’s
structure.

Linux Linux
app app

I LARTL task

|]

] L4RTL library

I LARTL task

|]

] L4RTL library

L4RTL dynamic I
load module

L4Linux server

| Fiasco microkernel |

FIGURE 1: LJRTL structure

The L4RTL library implements the RTLinux API
for real-time RTLinux applications. RTLinux appli-
cations run as user-mode threads in address spaces

separate from L!Linux’s address space. We call
these threads and address spaces L4 RTL threads and
L4RTL tasks, respectively. Each L4RTL task can
contain several L4RTL threads, and these threads
can cooperate using the RTLinux API.

There can be more than one L4RTL task. All of
these tasks can use the same single I!Linux server.
However, L4RTL currently does not allow real-time
threads in different tasks to communicate with each
other using the RTLinux API.

The L4RTL dynamic load module? for I*Linux im-
plements the API for use by Linux programs to com-
municate with L4RTL threads. It also creates a ser-
vice thread in the I*Linux task. L4RTL threads use
this thread as their only connection to I!Linux, and
only for communication with time-sharing Linux pro-
cesses. Otherwise, L4RTL tasks can work completely
independent from I*Linux.

FIFOs and Mbuffs are implemented using shared-
memory regions between L4RTL threads and the
L4RTL load module. L4RTL threads allocate these
memory regions and then transfer a mapping of these
to the load module’s service thread inside L*Linux
using microkernel IPC. The shared-memory regions
contain all necessary control data. Once a L4RTL
thread and the load module have established the
mapping, they only communicate using their shared-
memory region. L4RTL has been designed so that
bugs in I*Linux that corrupt the shared-memory
data cannot crash L4RTL threads.

More Fiasco-microkernel IPC is necessary only for
FIFO signalling. For this purpose, the L4RTL li-
brary creates one thread in each L4RTL task (Fig-
ure 1). This thread handles signal messages from the
L4RTL load module and forwards them to L4RTL
threads.

In contrast to RTLinux, L4RTL does not contain a
scheduler. Instead, it relies on the Fiasco microker-
nel for scheduling.

L4RTL is the subject of ongoing work and research.
Currently, it does not implement all of the very rich
RTLinux API. However, everything relevant to the
discussion in this paper (and more) has been imple-
mented and works well, and we believe that the miss-
ing features have no influence on our measurements.

3 Cost of address spaces

Using original RTLinux and L4RTL, we ran a min-
imal interrupt-latency benchmark under worst-case
conditions. This experiment was meant to establish
an upper bound for the overhead that can be expected
from providing address spaces.

2From L*Linux’s point of view, this is a “Linux kernel module,” but of course I*Linux runs as a user program and not in

kernel mode.

3.1 Experimental setup

To induce worst-case system behavior, we have used
two strategies.

First, prior to triggering the hardware event, we con-
figure the system such that the kernel’s and the real-
time thread’s cache and TLB working sets they need
to react to the event are completely swapped out to
main memory (and the corresponding 1st-level and
2nd-level cache lines are dirty). For this purpose we
have written a Linux program that invalidates the
caches and TLB entries (cache flooder)

Second, we exercise various code paths in RTLinux,
[*Linux, and the Fiasco microkernel. These cover-
age tests are a probabilistic way to reveal code paths
with maximal execution time while interrupts are
disabled. Additionally, they increase confidence that
the DROPS system is indeed completely preemptible
as we claimed in Section 2.1. To avoid missing criti-
cal code paths because of pathologic timer synchro-
nization, we varied the time between triggering two
interrupts.

For code coverage we use a benchmarking suite for
UNIx, hbench [1]. This benchmark provides excel-
lent coverage for Linux and, in our experience, also
for I*Linux and the Fiasco microkernel.

As a reliable and measurable interrupt source, we
have used the x86 CPU’s built-in interrupt controller
(Local APIC?). This unit offers a timer interrupt
that can be used to obtain the time between the
hardware event and the reaction in kernel or user
code. When the Local APIC is used in periodic
mode, its overhead is close to zero because first, it
does not require repeated reinitialization, and sec-
ond, the elapsed time since the hardware trigger can
be read directly from the chip.

We used RTLinux version 3.0 with Linux 2.2.18 in
non-SMP mode. In this mode, the Local APIC is not
used for system purposes. Linux has the bigphysarea
patch applied to allow allocation of contiguous ph-
ysiscal memory pages we need for our cache flooder.
The version of [#Linux we used is 2.2.18.

3.2 Measurements

For both RTLinux and L4RTL, we measured the
exact time between the occurrence of the hard-
ware event and the first instruction in the real-time
thread. We measured this time under two conditions:
Average case (no additional system load) and under a
combination of the hbench and cache-flooding loads.
Additionally, we measured the time between the oc-
currence of the hardware event and the first instruc-
tion of the kernel-level interrupt handler (“kernel en-

3APIC = advanced programmable interrupt controller

try”). This measurement was intended to quantify
the effect of critical code sections that disable inter-
rupts within the kernels*. By measuring both kernel-
level and real-time—thread latencies, we were able to
filter out overhead not induced by introducing ad-
dress spaces but by artifacts of the kernels’ imple-
mentations.

The diagrams in Figures 2 and 3 show the densities
of the interrupt response times under the two load
conditions. Table 1 gives an summarization of the
worst-case measurement results.

| kernel entry | kernel path | user entry |

L4RTL 53 us 39 us 85 us
RTLinux 93 us 596 us 68 us
TABLE 1: Worst-case interrupt execution

times on L4RTL and RTLinux

The mazximal time to invoke the Fiasco microker-
nel’s handler was 53 pus, and the maximal time to
start the corresponding L4RTL thread was 39 us.
As the sum of these separate maximums is close to
the total maximum (86 us), it seems that the code
path that disables interrupts and the code path that
starts the L4RTL thread use different code and data
and are accounted for separately. We believe that the
kernel-entry cost can be attributed to deficiencies in
our microkernel’s preemptability.

Perhaps the most interesting result is that the worst-
case latency for RTLinux is 68 us. RTLinux achieves
a higher level of kernel interruptibility than the Fi-
asco microkernel. This fact leads to better worst-case
response times in our code-coverage tests—39 us ver-
sus 56 ps. However, RTLinux seems to have long
periods of disabled interrupts, too. It takes up to
53 wus to invoke a kernel handler. The fact that this
value is close to the total maximum of 68 us sug-
gests that the code that keeps interrupts disabled is
close or identical to the code that is executed when
an interrupt occurs (Figure 2, bottom row). In other
words, it is probably RTLinux itself that impairs the
system’s interruptibility.

All in all, our measurements show that unrelated lim-
itations in our microkernel, namely its disabling of
interrupts for up to 53 us, was more problematic for
L4RTL’s real-time performance than the introduc-
tion of address spaces for real-time tasks into the
system.

We deduce that providing address spaces for real-
time tasks does not lead to unacceptable worst-case
scheduling delays. Moreover, the introduction of ad-
dress spaces introduces less uncertainty than blocked
interrupts and caches.

4I*Linux is not an issue here, because it never disables interrupts for synchronization.

Frequency

Frequency

Frequency

Frequency

idle: kernel entry

idle: kernel path

-1

10

107

1072

1072

Frequency

107

107

107

107

107°

107°

10 20 30 40 50 60
IRQ occurence rate (us)

worst case = 7 us

lat_syscall_sbrk: kernel entry

70 80 0 10 20 30 40 50 60
IRQ occurence rate (js)

worst case = 6 us

lat_syscall_sbrk: kernel path

70

80

10

-1

10

10

107

107

107°
0

Frequency

T

10 20 30 40 50 60
IRQ occurence rate (us)

worst case = 53 us

70 80 0 10 20 30 40 50 60
IRQ occurence rate (yis)

worst case = 56 us

70

80

Frequency

Frequency

flooder: rt task entry

Legend: X axis shows interrupt latency. Y axis shows density of occurrence of particular latencies.
Note that the Y axis has a logarithmic scale.

FIGURE 2:

RTLinuz performance under no load (first row) and hbench + cache flooder

combined (second row). Left: Time to enter kernel mode. Center: Time to activate handler

in RTLinuz thread.

idle: kernel entry

Right: Accumulated, total time

idle: kernel path

Frequency

10°

107

1072
107

107

107°

10 20 30 40 50 60
IRQ occurence rate (yis)

worst case = 37 us

lat_syscall_sigaction: kernel entry

70 80 0 10 20 30 40 50 60
IRQ occurence rate (yis)

worst case = 17 us

lat_syscall_sigaction: kernel path

70

80

107

1072

0

Frequency

107

107

107°

10 20 30 40 50 60
IRQ occurence rate (us)

worst case = 53 us

Legend: X and Y axes have the same meaning as in Figure 2

L4RTL performance under no load (first row) and hbench + cache flooder

FIGURE 3:

70 80 0 10 20 30 40 50 60
IRQ occurence rate (us)

worst case = 39 us

70

80

Frequency

Frequency

10
107"
1072
107°
107
107°
0 10 20 30 40 50 60 70 8
IRQ occurence rate (js)
worst case = 13 us
lat_syscall_sbrk: rt task entry
10°
107t
107
107
il | ‘ ‘ ‘
107°
0 10 20 30 40 50 60 70 80
IRQ occurence rate (ys)
worst case = 68 us
idle: rt task entry
10°
107"
1072
10*3 L
10
107
0 10 20 30 40 50 60 70 80
IRQ occurence rate (jis)
worst case = 43 us
lat_syscall_sigaction: rt task entry
10°
107
1072

107°

107

10~

10 20 30 40 50 60
IRQ occurence rate (us)

worst case = 85 us

combined (second row). Left: Time to enter kernel mode. Center: Time to activate handler
in RTLinux thread. Right: Accumulated, total time

70

80

4 Conclusion and future work

In this paper, we have compared two Linux-based
real-time operating systems: RTLinux, a shared-
space system, and L4RTL, a separate-space system.
We learned that address spaces, when provided by a
small real-time executive and used to protect criti-
cal real-time tasks from a shaky time-sharing subsys-
tem, do not come for free. They increase worst-case
response times, adding delays and jitter.

However, the good news is that the additional over-
head in worst-case situations is comparable to costs
introduced by blocked interrupts and by common
hardware features of modern CPUs, such as caches.
These costs seem to be well-accepted by designers.
So far, we have only claimed that separate address
spaces are effective means to isolate the real-time sec-
tion from faulty time-sharing subsystems. As future
work, we plan to test this claim by injecting faults,
for example arbitrary memory accesses, to the Linux
section in kernel and user space and to add a reboot-
ing facility for the time-sharing subsystem.

To improve worst-case execution times, we plan to
extend the Fiasco microkernel with a facility for em-
ulating tagged TLBs (“small address spaces” [6]) and
to apply a user-level memory-management server
that provides cache partitioning.

References

[1] A.B. Brown and M. L. Seltzer. Operating system
benchmarking in the wake of Imbench: A case
study of the performance of NetBSD on the Intel
x86 architecture. In ACM SIGMETRICS Con-
ference on Measurement and Modeling of Com-
puter Systems, pages 214224, Seattle, WA, June
1997.

[2] H. Hartig, R. Baumgartl, M. Borriss, Cl.-J.
Hamann, M. Hohmuth, F. Mehnert, L. Reuther,
S. Schonberg, and J. Wolter. DROPS: OS sup-
port for distributed multimedia applications. In
Proceedings of the Fighth ACM SIGOPS Fu-
ropean Workshop, Sintra, Portugal, September
1998.

[3] H. Hartig, M. Hohmuth, J. Liedtke,
S. Schonberg, and J. Wolter. The perfor-
mance of p-kernel-based systems. In 16th ACM
Symposium on Operating System Principles
(SOSP), pages 66-77, Saint-Malo, France,
October 1997.

[4] Hermann Hartig, Michael Hohmuth, and Jean
Wolter. Taming Linux. In Proceedings of the
5th Annual Australasian Conference on Parallel
And Real-Time Systems (PART ’98), Adelaide,
Australia, September 1998.

[5] M. Hohmuth and H. Hartig. Pragmatic nonblock-
ing synchronization for real-time systems. In
USENIX Annual Technical Conference, Boston,
MA, June 2001.

[6] J. Liedtke. Improved address-space switching
on Pentium processors by transparently multi-
plexing user address spaces. Arbeitspapiere der
GMD No. 933, GMD — German National Re-
search Center for Information Technology, Sankt
Augustin, September 1995.

[7] RTLinux FAQ. URL: http://www.rtlinux.
org/documents/faq.html.

[8] Victor Yodaiken and Michael Barabanov. A Real-
Time Linux. In Proceedings of the Linux Appli-
cations Development and Deployment Conference
(USELINUX), Anaheim, CA, January 1997. The
USENIX Association.

