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Abstract

An increasing number of application systems can be
characterized by their requirement to process sequences
of events in real-time. These sequences are principally of
constant rate, but may vary within given limits. Hence,
several parameter sets that seem to differ only slightly
have been proposed to describe such sequences. This in-
cludes the parameter sets used in the Tenet Protocol
Suite, in the traffic description of an ATM connection,
and in the model of linear bounded arrival processes
(LBAP) for transferring continuous media.

The existence of several parameter sets raises the
question whether or not the parameter sets differ in prin-
ciple or in notation only. To answer this question, the
paper proposes a generalized model for jitter constrained
periodic streams. That model subsumes the parameter
sets mentioned above, allows to prove their equivalence
and to transform the different sets of parameters each to
another.

1. Introduction

Multimedia and other real-time applications can be
characterized by their requirements to process sequences
of events in real-time. To do that, proper resources must
be made available in time by systems sometimes called
quality of service architectures. To provide or reserve
resources in time, the load for such systems, i.e. the char-
acteristics for these sequences of events, must be de-
scribed precisely. The sequences are principally of con-
stant rate that may vary within given limits. These se-
quences occur at various levels of a multimedia system,
e.g., at the cell relay level of an ATM hardware adapter or
at the interface of a file system.

Hence, processes of the following structure are of
interest: events occur at an interface of a distributed
system principally at a constant rate or with constant
distance, but the occurrence may vary over a given

interval. In other words, events may occur late or early
but do not exceed a given time span.

Surprisingly (or not surprisingly), it is not a single
scheme that has been proposed to describe the simple
abstraction of sequences of events but several that differ
somehow. Each new quality of service architecture project
seems to invent its own, new model and sets of parame-
ters. Hence, at the start of Dresden Real-time Operating
System Project, we tried to understand the principle dif-
ferences of the model to select one of them, or derive our
own.

For this purpose we looked at three of such parameter
sets of major importance: the traffic description parame-
ters for the Tenet Protocol Suite, the parameters according
to the traffic description used in ATM networks, and the
LBAP model proposed by Anderson. As will be shown in
the paper, these three models turn out to be equivalent in
a sense described below. To show this, yet another model
is introduced and it is shown how the parameters of the
three mentioned models can be transformed into our new
model.

The literature on real-time systems and communication
contains many investigations and results concerning par-
ticular aspects of traffic models, above all buffer space
requirements and end-to-end delay guarantees. For in-
stance, the „leaky bucket“ model (that means the Generic
Cell Rate Algorithm in ATM) is described in [4], burst
streams are considered in [9], both with respect to end-to-
end delay founded on an deterministic model. Zhang and
Ferrari [13] introduced a probabilistic model, and [7],
10], [12] deal with bounds of buffer space based on Mar-
kovian chains (discrete-time, finite state processes). On
the other hand a determistic model is used for the same
reason in [11].

However, only few papers compare several models or
traffic descriptions but with respect to server disciplines
[14] or traffic constraint functions [8]; the latter includes
the Tenet traffic model. Khan’s approach [6] is similar to
ours: he introduced the “(L, M, T) mechanism” to eva-
luate the leaky bucket behaviour, where L and T are the
minimum and mean distance respectively between two



ATM cells and M denotes the maximum burst size, but he
also supposed a stochastic input process. However, to the
best of our knowledge, there are no quantitative compari-
sons between parameter sets of traffic descriptions.

The paper is organized as follows. Section 2 describes
the new generalized model. Section 3 contains some re-
sults, above all the computation of the maximum burst
size and a lower bound of buffer size required to avoid
loss of data. These results enable to investigate the
equivalence of the three parameter sets mentioned above
in section 4. Finally, section 5 contains the conclusion
and outlines the future work.

The paper summarizes the results only, with exception
of a few cases.. The accurate formal definitions and the
complete proofs are included in [5].

2.  The Generalized Model

This paper deals with sequences of events (e.g., send-
ing or receiving data units, all units are of the same size)
called event streams in the following sense: Beginning
from a starting point t0 the events occur one after each
other with a principally constant distance T (that means
with constant rate R = 1/T). However they may vary over
a given interval: events may occur τ time units too early
or τ' time units too late as long as they obey a minimum
distance D < T (see Figure 1). Hence, T is the average di-
stance between two events. Without loss of generality we
assume t0 = 0.

Figure 1. Jitter constrained stream

Definition 1. Let

D, T, τ, τ' ∈  R    with   T > D > 0,   τ, τ' ≥ 0, (1)

and i ∈  N. A sequence of events (Ei)i=0,1,... is a (τ,τ')-
constrained periodic stream with a constant period T and
minimal distance D (shortly: jitter constrained stream) iff
the following holds:  event Ei occurs at

ai ∈  [ti – τ, ti + τ'] ⊆  R      real event time
with

ti = iT periodical (or expected) event time
and the distances obeys the condition

ai+1 – ai  ≥ D ∀ i ∈  N.

Let us now consider bursts, i.e. streams where events
may follow each other at shortest possible intervals.
Furthermore, let us identify the events Ei with the mo-
ment ai of their occurrence. So an “event sequence of
length k+1” is a sequence  aiai+1...ai+k  (i, k ∈  N), where
the elements of the sequence obey definition 1. An event
sequence obeying definition 1 is called a burst of length l
(shortly l-burst or burst), l ∈  N, l > 0, if the events follow
each other at distance D, but the distance to an earlier and
to a later event time is greater than D. (A l-Burst is assu-
med to have length l only, before and after that we expect
a break.)

Obviously, a burst B is definitely given by its starting
point a(B) = ai  and its length  l(B) = l. Furthermore, in
our model the length of a burst is bounded by a natural
number L. Thus, a burst is called a maximum burst if it
has maximum length L.

Next we investigate two “worst cases”:
• burst streams, i.e. streams consisting of maximum

bursts only (data are to be transferred in packets as
large as possible; the breaks between the bursts can
vary respecting definition 1);

• tightly packed streams, i.e. transferring the data units
through packets with varying size, but at earliest pos-
sible time.
It is the objective of the next section to derive im-

portant performance measures:
− maximum burst size L
− earliest be and latest bl starting point of a maximum

burst
− earliest starting point bl of an l-burst
− intervals between bursts (interburstiness), especially

the smallest and the largest distance Is, Il between
maximum bursts

− lower bound P of buffer size to avoid loss of data
− number of events, N(t), occurring before time t
− calculating the parameters  τ, τ'  from L.

3. Some Results

3.1. Burst streams

A jitter constrained stream is called a (maximum) burst
stream in our model if it is a sequence (Bi)i=0,1,... of bursts
Bi  where

l(Bi) = L       ∀ i ∈  N.

Obviously, a burst with maximum length L is genera-
ted if the burst initial time a(B) is as late as possible,
which means  a(B) = bs , bs = τ'. Thus, it follows (see
Figure 2)
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Figure 2. Maximum burst length
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Similarly:

bl = τ' (3.1)

be = K(T – D) – τ  =  (T – D)
τ τ+

−






'

T D
 – τ. (3.2)

Is = 2K(T – D) + T – (τ + τ') . (3.3)

Il = T + τ + τ' . (3.4)

Furthermore, a burst stream is periodically with the
period LT. That is, it holds for a stream (Bi)i=0,1,... of ma-
ximum bursts:

a(Bi) ∈  [be  + iLT,  bl + iLT]    ∀  i ∈  N. (4)

Often it is not of interest to compute the maximum
burst length L from the parameters given in (1). Rather,
the maximum burst size is given and we need to deter-
mine the parameters τ, τ'. It follows from (2):

[ )τ τ+ ′ ∈ − − −( )( ), ( )L T D L T D1 . (5)

Now let us derive a lower bound P of buffer size that
loss of data is impossible. We suppose that “event” means
the arrival of a data unit (e.g., an ATM cell) for a server
process; all data units are of the same size. The process
handles or consumes the data units with the same con-
stant period T as the arriving units, but without variation
or jitter. To avoid loss of data it is necessary to store data
units arriving too early in a buffer. For the server process,
we consider two policies:

(P1) It is guaranteed that the server process has always
work to do (may be the process must wait at the be-
ginning).

(P2) The policy is work conserving, i.e., the server
process begins its work when a data unit arrives.

Furthermore, we assume: if the arrival time of a data unit
coincides with the time when the server process takes the
next data unit from the buffer then the size of used buffer
does not change. Then it follows:

Theorem 1. Given a jitter constrained stream of data
units of equal size exclusively, consisting of maximum
bursts, and a server process. Loss of data units is not al-
lowed; then the lower bound of buffer size P is

P
T

= + ′





τ τ
(6)

if the server begins to take the data units out of the buffer
not later than at the latest starting point bs of a maximum
burst. That is true for both policies, (P1) and (P2).

3.2. Tightly packed streams

Now we investigate event streams consisting of bursts
Bi with different length. All the starting points a(Bi) are
supposed to be as early as possible obeying definition 1.

Definition 2. A jitter constrained stream is a tightly
packed stream iff it is a sequence (Bi)i = 0,1,... of bursts Bi

where

li := l(Bi) ≤ L           L according to (2),

ai := a(Bi) = ti T + bli

with

t li j
j

i

= ∑
=1

,   b l T Dl
i

i = − − −( )( )1 τ

for all  i ∈  N  (li are the free parameters of the sequence).
Considerations similarly to section 3.1 yield:
Theorem 2. Given a jitter constrained stream of data

units consisting of bursts with different length and a ser-
ver process. The bursts arrive as early as possible and loss
of data units is not allowed. Then the minimum buffer
size P is
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if the server begins to take the data units out of the buffer
not later than at time

bL = (L – 1)(T – D) – τ. (8)

Taking into account the desired comparison of diffe-
rent models, we compute an upper bound N(t) of number
of events occuring until time t inclusively. Let us assume
τ' = 0  with respect to chapter 4, then  b ≤ 0  follows
where b = a(B0)  denotes the first starting point of a
tightly packed stream. Next we transform the time axis
such that the time begins with the first event. Then we
can prove:

Lemma. Let N(t) the number of events occuring in a
tightly packed stream until time t; time is measured from
the first burst event. Then it holds for all t ∈  R:
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(9)

On closer inspection of the lemma’s assumption, we
expect that it is not necessary to introduce two parameters
τ, τ' in definition 1. More precisely:

Definition 3. Two models  (D, T, τ1, τ'1),  (D, T, τ2, τ'2)
according to definition 1 are equivalent if they both de-
termine the same maximum burst length L.

It follows that all further stream characteristics are
equal respectively, except for the absolute time measures.
In particular, the minimum buffer size according to (6)
and (7) and the interburstiness are equal in two equivalent
models. If we transform the time as described above (time
“begins” with the first event) then the streams are
identical. Hence, it follows from theorem 2:

Corollary. The models  (D, T, τ, τ'),  (D, T, τ + τ', 0),
and  (D, T, 0, τ +τ')  are equivalent.

Before we compare our model with some other models
and parameter sets we consider the borderline case D = 0
that was not allowed so far in definition 1. A precise
analysis of section 2 and 3 shows that all essential notions
can be extended and results are true in that case too
(however, we cannot identify an event Ei with its time
a(Ei)).

4.  Equivalence of Parameter Sets

4.1. ATM

The comparison between event streams according de-
finition 1 and sequences of events in ATM connections is
based on [1]; refer to chapter 4.4: Traffic Contract Para-
meters and Related Algorithms.

The following traffic parameters describe the traffic
characteristics of an ATM connection:

PCR Peak Cell Rate
CDVT Cell Delay Variation Tolerance
SCR Sustainable Cell Rate (optional)
BT Burst Tolerance (optional).

The Generic Cell Rate Algorithm  GCRA(I,L)  controls
the traffic of an ATM connection. A stream of cells is in
accordance to that algorithm if ATM-cells may arrive
earlier than a theoretical arrival time TAT but not too
early. The ability to send cells prematurly can be used to
build bursts. This algorithm has two parameters I
(increment) and L (limit). It generates a jitter constrained
stream with two specific features:
(a) The delay is not bounded. If an event occurs at time

ta after its theoretical arrival time then TAT is upda-
ted to the current time ta.

(b) TAT is initialized to the current arrival time of the
first cell event.

Furthermore, in [1] are defined:

− R
Tp

p

= 1
Peak Cell Rate PCR,

 Tp: Peak Emission Interval ;
 minimum inter-arrival time between two

basic events in the PCR reference model;
− τ*: Cell Delay Variation Tolerance;
 limit parameter L of the GCRA describing

the “cell clumping phenomenon”;
− δ: time required to send an ATM cell.

Hence, the “worst case” processes generated by the
GCRA in the PCR reference model are (τ*, 0)-jitter
constrained with period Tp and minimal distance δ; τ' = 0
follows from (a). The formula for the maximum number
N of conforming back-to-back cells (i.e. the maximum
length of bursts if D = δ)

N
Tp

= +
−













1
τ

δ

given in [1] is obviously the same as (2) because L = N
(note τ' = 0).

Analogously, in [1] are defined:

− R
Ts

s

= 1
Sustainable Cell Rate SCR

 Ts: minimum inter-arrival time between two 
basic events in the SCR reference model;



− τs: limit parameter L of the GCRA
(called Burst Tolerance BT).

Just as above the processes generated by the GCRA in the
SCR reference model are (τs, 0)-jitter constrained with
period Ts and minimum distance Tp. The formulas for the
maximum burst size MBS and the computation of τs from
MBS

( )( ) ( )[ )
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s s p s p

T T

T T T T,

are identical to (2) and (5) because L = MBS.
In the same way the formula in [1] for the maximum

number of cells, N(t), that can be emitted with spacing no
less Tp

N t
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corresponds to (9).

4.2. Linear Bounded Arrival Processes

Anderson introduced a continuous media resource
model [2] that decomposes a distributed system into a set
of resources such as CPU, networks, and file systems.
Several data streams with different quality are to be
processed, stored, and transferred between the system
components, while maintaining guaranteed end-to-end
performance, e.g., throughput and delay. The workload
(or the traffic) occurring at the interface of a resource is
described in terms of discrete messages with three para-
meters:
− M maximum message size (it is not considered in 

this paper)
− R maximum message rate
− W workahead limit.

The workahead results from the ability of processes or
devices to generate bursts that are transmitted within a
short interval with a rate greater than R. Thus, sequences
of messages are considered where bursts with a maximum
size can occur, but they are not allowed to follow each
other too tightly packed, and they must obey an average
rate. A message arrival process is called a linear bounded
arrival process (LBAP) if

NI(t0,t1) ≤ W + R(t1 – t0)       ∀  t1 > t0. (10)

where  NI(t0,t1)  denotes the number of messages arriving
at interface I in the time interval [t0, t1].

Considering the remark at the end of section 3.2 it
does not surprise: A linear bounded arrival process with

the parameters R and W is a  
W

R

−





1
0, -jitter

constrained stream with period  T = R-1  and minimum
distance D = 0.
Since for such a stream yields with (2)

L
W

RT
W= + −





=1
1

,

and it follows from (9) (withour transformation of the
time axis) for the number of events occuring until time t,
N(t):

N t
t

T

W

RT

t

T
W( ) ≤ + + −
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
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= + 
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+ −1
1

1 1.

Since we can omit    because N(t) is a natural number

a priori it follows

N(t) ≤ W + Rt.

This is the same like (10) except the notations and the
assumption  t0 = 0.

4.3. The Tenet Protocol Suite

The Tenet Real-Time Protocol Suite [3] was developed
to meet the real-time demands and guaranteed perfor-
mance requirements of applications communicating in an
internetwork, such as bounds on throughput, delay, or
reliability. This protocol suite is a set of communication
protocols that can transfer real-time streams with guaran-
teed quality in packet-switching internetworks. For the
Tenet suite, clients must specify their worst-case descrip-
tion of the traffic it will transmit over a so called real-time
channel (e.g. network devices, or processors). That
description consists of four traffic parameters:

X

X

I

S

min

ave

minimum inter - message time

minimum average inter - message time

averaging interval

maximum message size.







max

As in section 4.2 we ignore Smax in this paper. Al-
though it is not recognizable at first glance, the traffic has
the same properties: it consists of events with a constant
rate in principle but varies over an interval. It is obvious
that  D = Xmin,  T = Xave  with respect to definition 1. Now
N(I) denotes the number of messages arriving or sent
within an interval with length I. Thus, including the
bounds of the interval it holds per definition

(11)



N I
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or with another notation and respecting  N(I) ∈  N:

N t
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1 .
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







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I

Xave

  is the maximum burst length

(note that bursts do not result from earlier but from later
arrival of messages). Thus, summarized it follows:
A stream described by the Tenet parameters  Xmin, Xave, I

according to (11) is a  0, ( )min
I

X
X X

ave
ave −







 -jitter

constrained stream with period Xave  and minimum
distance Xmin. according to definition 1.

5. Conclusions and Future Work

A generalized set of parameters to describe jitter con-
strained periodic streams has been introduced and used to
prove some important characteristics and properties for
such systems:
− maximum burst size
− lower bound of buffer size to avoid loss of data
− interburstiness
− number of events occurring before time t.

Then, it has been shown, that our model subsumes
well-known parameter sets to describe traffic in distribu-
ted systems.

Future work to be done includes the probabilistic ex-
tension of the model. And it includes to apply the model
what it was designed for, i.e., to build system components
that obey the parameters of the model.
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