
Taming Linux

Hermann Härtig, Michael Hohmuth, and Jean Wolter

Dresden University of Technology
Dept. of Computer Science
D-01062 Dresden, Germany

l4-linux@os.inf.tu-dresden.de

Tel.: +49 351 463-8282, Fax: +49 351 463-8284

Abstract. This paper describes the overall design, partial implementation and
brief performance evaluation of a system in which Linux and its applications run
besides real-time applications. The separation of the real-time and time-sharing
subsystems is not restricted to the use of the CPU but enforced as well for other re-
sources, namely main memory and caches. This paper details the changes needed
for the original Linux to decouple it from real-time processes and analyzes the
performance of the resulting system.

1 Introduction

During recent years a major change occurred in the use of computer systems that can be
characterized by the coexistence of real-time and non-real-time (time-sharing) applica-
tions on the same computer. This coexistence is caused by the use of new media such
as audio and video that have real-time requirements. So far, most of these systems deal
with that coexistence by throwing enormous amounts of resources at these applications.
Other systems, for example those based on QNX [9], deal with the situation by running
non-real-time applications as low-priority processes on real-time operating systems.
Another class of systems, for instance RT-Linux [18], extend time-sharing operating
systems by means to run high priority processes besides the non-real-time applications.
Both approaches do handle the real-time requirements with regard to the CPU as a
needed resource, but neglect other resources such as caches and disk bandwidth.

That situation is paralleled by the observation that recent advances in computer
architecture achieved enormous performance gains for the average case but added un-
certainties with regard to the worst-case performance, which is a major concern in real-
time systems. A prime example are caches that speed up applications with good locality
behaviour. If locality cannot be preserved (e. g., due to context switches), these gains
cannot be maintained easily. Hence, worst-case analysis for systems with caches often
leads to unacceptably high worst-case performance.

Both the coexistence of real-time and time-sharing applications and the properties
of current computer architectures with regard to worst-case performance are taken as
challenges by the Dresden Real-time Operating System project (DROPS). The archi-
tecture of DROPS is based on resource managers that are designed to separate real-time
and time-sharing processes with regard to all resources that matter.

real-time
servers

L4 µ-kernel

L Linux4

applications

CPU, memory,resource management:
caches, busses

Fig. 1. Structure of the Dresden Real-Time Operating System (DROPS)

The main challenge here is to organize the coexistence in an efficient way, at least
efficient enough to beat the “resource throwing” approach. To facilitate this, DROPS
is based on the L4 microkernel (µ-kernel) [10], with the time-sharing and real-time
subsystems running in user mode as separate operating-system personalities. The time-
sharing subsystem is comprised of a Linux system using the L4Linux server, a port of
the Linux kernel to the L4 µ-kernel [7]. The real-time subsystem consists of a set of
servers which support applications with quality-of-service requirements.

These two subsystems use a common management layer for system resources. Man-
agers for SCSI busses and ATM networking bandwidth and a file system have being
designed and are being implemented [2, 14]. However, in this paper we present results
for the management of CPU and caches.

In the rest of the paper, we first describe the overall structure of DROPS and the
resource management. Then we discuss related work, especially the RT-Linux operating
system from which DROPS borrowed some ideas. In Section 4 we discuss the changes
needed to apply to L4Linux, an implementation of Linux running as a user process on
the L4 µ-kernel [10]. At the end, we present some performance results and compare
them to RT-Linux.

2 DROPS

The DROPS project focuses on µ-kernel-based real-time systems, for instance for con-
tinuous media presentation. Our vision is that real-time components can get all the
system resources and processing power they need, and the rest can then be spent for a
time-sharing subsystem running on the same machine. This is enforced by a system-
wide resource management for all resources: not just for CPU time slices and main
memory, but also for caches and I/O busses (Figure 1).

L4 is a lean µ-kernel featuring fast message-based synchronous inter-process com-
munication (IPC), a simple-to-use external paging mechanism and a security mecha-
nism based on secure domains. The kernel implements only a minimal set of abstrac-

tions upon which operating systems can be built flexibly [10]. There are versions of L4
for various x86 and for the Alpha and MIPS CPUs [11], but in this paper we solely refer
to systems based on L4 for x86 (Pentium) processors.

In an earlier paper [7] we describe the time-sharing subsystem of DROPS we im-
plemented by porting the Linux kernel to the L4 µ-kernel, creating an L4Linux server
running completely in user mode (including device drivers and interrupt handlers) as an
application program. By using Linux as the base operating system, we have access to a
vast library of development tools, creating a powerful development platform. L4Linux is
binary compatible with Linux for the x86 architecture (PCs), allowing any off-the-shelf
Linux system distribution and software to be used without recompiling.

An important design criterion when designing L4Linux was that the Linux kernel
should be modified only minimally in order to allow easy integration of new Linux ker-
nel versions into L4Linux and to save development time. We didn’t intend to optimize
L4Linux to the underlying L4 architecture in the way the BSD single servers have been
optimized for the Mach µ-kernel [6, 8]. The simplest possible design matching this cri-
terion is of course a single-server design where the Linux server and user applications
run in separate tasks communicating using the L4 µ-kernel’s IPC mechanism. Details
can be found in [7].

Work is currently underway to build real-time components such as a real-time SCSI
driver, a file system and a network protocol suite supporting applications with quality-
of-service requirements.

In order to avoid real-time service disruptions by the time-sharing subsystem, we
had to make some changes to the L4Linux server so that instead of “taking over” the
whole machine, it can run under a resource manager handling all system resources.
Before we describe these changes in detail in Section 4, we’ll cover RT-Linux and other
related work in the next section.

3 Related Work

Real-time operating systems can be classified into three categories: The first one is com-
prised of systems which started as time-sharing operating systems and were retrofitted
later for real-time needs. Examples are Real-Time Unix and many recent systems which
implement the POSIX 1.b standard. Often such real-time extensions can only be added
at considerable expense, and real-time guarantees that can be made by such systems are
often constrained to CPU schedules only. The second class of real-time systems con-
sists of those systems that have been specifically designed to support real-time. There
are many successful commercial systems in this class, for instance VxWorks [16], and
QNX [9]. However, due to their specialized nature these operating systems often sup-
port only a subset of the Unix API so that many popular applications aren’t available
for them.

We believe that DROPS belongs to a third class: Run an only minimally modified
time-sharing kernel as an application on top of a real-time kernel. This is a clean design
because it cleanly separates the real-time and time-sharing components: It requires less
expenditure than making a time-sharing kernel fully preemptible, and it immediately
opens the huge library of existing development and application software.

New Mexico Tech’s Real-Time Linux (RT-Linux) [18] is similar to DROPS in that
the time-sharing subsystem runs as an application on top of a small real-time execu-
tive. Both systems use a Linux kernel with minimal modifications as the time-sharing
operating system.

In RT-Linux, the Linux kernel and all real-time tasks run along with the real-time
executive in kernel mode. The real-time executive is responsible for CPU scheduling
and also contains support for IPC between tasks using FIFOs. In order to be able to
schedule real-time tasks with high precision—even though Linux has a habit of dis-
abling interrupts for synchronization, and in the presence of interrupt-driven device
drivers in the Linux kernel—, RT-Linux has been modified to enable and disable “soft”
interrupts. All “hard” (machine) interrupts are caught by the real-time executive and
only passed on to Linux if it is responsible for handling the interrupt and has enabled
the corresponding soft interrupt; hard interrupts cannot be disabled by Linux.

DROPS’ L4Linux also uses soft interrupts to avoid disrupting the real-time subsys-
tem; this is described in more detail in Section 4.2. L4Linux differs from RT-Linux in
that Linux runs completely in user space as a task on the L4 µ-kernel. The real-time
subsystem consists of several separate L4 tasks, also running in user mode.

In comparison, DROPS has the advantage of fault separation (because all tasks run
in separate address spaces) at the cost of a higher context-switching overhead. Further-
more, DROPS not only guarantees real-time tasks all the CPU time they need but can
also manage several system resources including main memory, 2nd-level cache parti-
tions, networking bandwidth, and in the future SCSI bus bandwidth. DROPS offers the
additional feature that a real-time task can also be a Linux process. However, L4Linux
currently does not support symmetric multiprocessing (SMP), which RT-Linux does.
We expect to add SMP support when upgrading L4Linux to Linux 2.2 (whose concur-
rency model for interrupts better fits L4Linux’ multi-threaded design than the current
base version, 2.0).

In the next section, we’ll examine in detail the changes made to the L4Linux server
so that it cannot disrupt the real-time subsystem on the same machine.

4 Taming Linux

Because of our goal of making only minimal changes to the Linux kernel, we designed
L4Linux like yet another port of Linux to a new architecture: Only architecture-specific
parts of the kernel were modified, and the port to the L4 µ-kernel is much like a port
to for instance the Motorola 68k architecture. Therefore, the resulting L4Linux system
is basically just like any other Linux system, and as such it behaves like any typical
monolithic kernel: It takes over the whole machine, controlling everything.

To fit nicely within the DROPS framework, however, L4Linux had to be “tamed”
such that system-wide global resource management would become possible. We have
identified the following issues which need to be resolved to make L4Linux a well-
behaving member of the DROPS system: The L4Linux kernel:

– has full control over all resources controlled by the L4 µ-kernel: task numbers, task
priorities, main memory and the I/O address space, interrupt request lines, and the
interrupt disable/enable privilege

– disables and enables hardware interrupt requests at will
– drives all devices
– doesn’t support partitioning the cache (explained below)

In the following subsections, we’ll address each of these issues, discussing their
handling in the DROPS system and the modifications required to L4Linux.

4.1 Controlling System Resources

The “L4Linux controls all system resources” issue has been addressed by introducing
an instance between L4Linux and L4 from which the resources must be requested ex-
plicitly, a supervisor task called “Rmgr” (resource manager). This task is started as L4’s
first user task and magically “owns” all L4 µ-kernel resources enumerated in the pre-
vious subsection. System resources can be given to other user tasks on request using a
special IPC protocol. Rmgr can be configured flexibly (but currently only at boot time)
using a script language.

Using Rmgr it is possible to constrain the L4Linux server in the system resources
it can allocate. The allocations are static in nature1, so the modifications required to
L4Linux can be restricted to the boot code where all system resources configured as
“available for L4Linux” are requested from Rmgr.

Rmgr also supports starting L4 tasks which are not also Linux programs—this
wasn’t possible previously with L4Linux. This way, drivers or other real-time com-
ponents independent from L4Linux can be started at boot time or later.

4.2 Interrupt Request Enabling and Disabling

The Linux kernel uses the C interfacescli() andsti() for entering respectively leav-
ing critical code sections. In the x86 version, these interfaces are translated into the
cli andsti assembly statements which disable respectively enable the propagation of
hardware interrupt requests to the CPU. This implementation had been adopted unmod-
ified in the L4Linux port.

However, in DROPS it is unacceptable to disable interrupts for longer periods for
synchronization purposes. Interrupts should remain enabled virtually at any time in
order to prevent interference with L4’s scheduler which depends on precise timer inter-
rupts. The only legal use of thecli andsti assembly statements should be to protect
code sections directly dealing with the PC’s programmable interrupt controller (PIC),
that is, in interrupt handlers.

We therefore modified the implementation of thecli() andsti() C interfaces
to work without disabling interrupts while still ensuring their semantics (to protect
a critical section). Our new implementation uses a lock which is acquired incli().
Whencli() detects that the lock is already held, the current context is enqueued in

1 In fact, for main memory allocations it is desirable for the real-time subsystem to request
more memory from L4Linux when it is short on memory. This would be easy to implement
in L4Linux using the Rmgr protocol and using Linux’get free page() interface, but this
hasn’t been done yet. So, main memory allocation currently is static, too.

L4 µ-kernel

L Linux

RT disk driver

Ext2fs

IDE drv

4

RTfs stub

RT drv stub

RT filesystem

Fig. 2. L4Linux can use external drivers at any level. In this example, we use two stub drivers:
one at the file system level and one on the block device level.

the lock’s wait queue and put to sleep. When leaving the critical section,sti() checks
whether there is a context waiting in the queue and if so, wakes it up. In L4Linux,
all contexts which need to be synchronized—the kernel’s main thread, the high-priority
low-level interrupt handlers (“top halves”) and the low-priority interrupt handlers (“bot-
tom halves”)—run in separate L4 kernel threads for which L4 handles all the context
switching. L4 IPC primitives are used for putting threads to sleep and waking them up.

This way, interrupts can be delivered even if L4Linux has entered a critical section.
However, the thread executing the interrupt handler honors thecli() lock and adds
itself to the lock’s wait queue if it is currently held, and so the synchronization semantics
are preserved.

Ideally, L4Linux would not be allowed to execute thecli andsti assembly state-
ments at all (this is a task attribute under L4 which can be granted or denied using
Rmgr). However, because L4Linux contains device drivers with interrupt handlers, it
must be able to program the PIC and disable interrupts while doing so. Currently we
feel this isn’t much of a risk. Should we ever become convinced that L4Linux must
not disable interrupts at all, we either must externalize all device drivers with interrupt
handlers into separate server tasks (we already have done this for some of them—see
section 4.3) or we must externalize PIC programming.

The very few places where the use of thecli()C interface really means “I’m going
to program the PIC, pleasedo disable interrupts,” were easily identified and changed
not to use the newcli() implementation.

4.3 Device Drivers

The original L4Linux controls all devices using the unmodified Linux-for-x86 drivers.
However, for resources shared between the real-time and the time-sharing subsystems
it is unacceptable to use a driver in the time-sharing subsystem because such a driver
cannot give quality-of-service guarantees for the real-time subsystem.

Therefore we are creating drivers for the real-time subsystem which support re-
source planning and preallocation. We currently have drivers (ported from Linux re-

page
number

2nd-level cache

0 1 2 3 4 5 6 7

physical memory

Fig. 3. Cache partitioning using main memory coloring. For a physically indexed 2nd-level cache,
the main memory pages are mapped to different cache portions. By controlling the colors of main
memory one task may allocate, the cache can be partitioned between the tasks.

spectively developed in-house) for SCSI controllers and Ethernet and ATM networking
cards [5, 13, 15], and work is underway to make SCSI bus and networking bandwidth
resources scheduled by a system-wide resource management. We are also developing a
real-time file system using these drivers.

These drivers and the real-time file system should eventually be used by L4Linux,
too. The strategy here is to replace its native drivers with stubs that communicate with
the real drivers via L4 IPC. Such stubs can be plugged in at any level (Figure 2). For
instance, we currently have two stubs in the works: One uses an external ATM protocol
server (which uses a low-level ATM driver in a separate task). The second uses an
external SCSI block device driver (with embedded low-level drivers) which maintains
two different request queues for requests from real-time and non-real-time tasks.

4.4 Main Memory Management and Cache Partitioning

We have implemented a virtual memory management server (called “VM server”) for
L4 which allows separating the 2nd-level memory cache working sets of real-time and
time-sharing tasks into separate partitions so that time-sharing applications cannot dis-
rupt the cache working sets of real-time applications. This allows the worst-case execu-
tion times of real-time programs to be bound to a significantly lower level. The cache
partitioning is accomplished by coloring the main memory pages and controlling which
colors of pages can be allocated by a given task set (Figure 3) [12, 17].

The main obstacle in adopting Linux to running under this memory management
policy was that Linux requires to be run in a virtual address space mapping the physical
memory one-to-one; this is an important assumption of many Linux device drivers.
Therefore, L4Linux uses memory management tricks (using L4’s memory management
primitives and information provided by the VM server) to map all physical memory
pages it acquired from the VM server one-to-one, thus leaving holes in its own address
space.

However, Linux assumes that its kernel code, data and bss segments as well as an
initialization memory region (from which Linux subsystems can grab memory chunks
at system initialization time) are mapped contiguously into its virtual address space—
an assumption that clashes with the requirement that all pages be mapped in one-to-
one from the physical space. Fortunately, we didn’t find any driver which mistakes its

initialization memory as physical memory; and so this contiguous memory region can
be composed of non-contiguous physical memory pages.

5 Performance Measurements

The original L4Linux as presented in [7] is about 2 % to 4 % slower than the original
monolithic Linux kernel for application-level benchmarks on the same hardware2.

In this section we’ll answer the following questions:

– How does taming the L4Linux server as described in sections 4.1 and 4.2 affect its
performance?

– How does restricting L4Linux to a cache partition comprised of half of the system’s
2nd-level memory cache (128 KB of 256 KB) as described in section 4.4 affect its
performance?

– How does taming L4Linux affect the responsiveness of real-time tasks running on
the same system?

– How can cache partitioning improve the performance and predictability of real-time
tasks?

The last question has already been addressed in detail by Liedtke and colleagues
[12], and therefore we skip the discussion here for brevity and just present the result:
In one of the experiments, a 64� 64 matrix multiplication, the slowdown induced by
introducing a cache-intensive secondary workload could be reduced by 74 % when par-
titioning the 2nd-level cache.

The first three questions are discussed in the following subsections, which are are
organized as follows:

We use two different benchmarking packages for the performance evaluation of the
Linux systems. First, we will present a series of microbenchmark measurements exe-
cuted using hbench:OS in Section 5.1. Then, Section 5.2 shows the results for running
a macrobenchmark, the AIM Multiuser Benchmark Suite VII.

Finally, Section 5.3 evaluates the real-time responsiveness of of our system.
Where applicable, the performance of L4Linux is compared with monolithic Linux

and with RT-Linux. All measurements were conducted on a single machine.3

2 Actually, [7] reports a slowdown of 5 %–10 %; however, in the meantime we’ve found and
fixed a bug adversely affecting L4Linux’ performance; please see the slides accompanying [7]
for more details.

3 We used a 133 MHz Pentium PC based on an ASUS P55TP4N motherboard using Intel’s
430FX chip set, equipped with a 256 KB pipeline-burst second-level cache and 64 MB of 60 ns
Fast Page Mode RAM. We used version 2 of the L4 µ-kernel. L4Linux is based on Linux ver-
sion 2.0.21, RT-Linux on version 2.0.29; according to the ‘Linux kernel change summaries’
[4], only performance-neutral bug fixes were added to 2.0.29, mostly in device drivers. We
consider both versions comparable.

1 2 3 4

write /dev/null[lat]
null process[lat]
simple process[lat]
/bin/sh process[lat]
mmap[lat]
2-proc context switch[lat]
8-proc context switch[lat]
pipe [lat]
UDP [lat]
RPC/UDP[lat]
TCP[lat]
RPC/TCP[lat]
pipe [bw�1]
TCP[bw�1]
file reread[bw�1]
mmap reread[bw�1]

2.7462
1014
7599
52083
24.8
8.33
8.75
33.1
159.30
326.71
211.50
440.85
40.1
18.7
34.1
86.1

Linux

.

.

.

. .

. .

. .

.

.

.

. . .

. . . .

. . .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

. . . .

.

.

.

.

. .

.

. . . .

. . . .

. . . .

.

.

. L4Linux, tame

..........................

.........................

..........................

.........................

..........................

.........................

..........................

...

...

...

...

...

...

...

...................

..................

...................

..................

...................

..................

...................

.......

......

.......

......

.......

......

.......

.

.

.

.

.

.

.

.

.

.

.

.....

....

.....

....

.....

....

.....

....

...

....

...

....

...

....

...........

..........

...........

..........

...........

..........

...........

....

...

....

...

....

...

....

........

.......

........

.......

........

.......

........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........

........

........

........

........

........

........

.

.

.

.

.

.

.

.......

......

.......

......

.......

......

.......

............

............

............

............

............

............

............

L4Linux
............

............

............

............

............

............

............

RT-Linux

Fig. 4. hbench:OS results, normalized to native Linux. These are presented as slowdowns: A
shorter bar is a better result.[lat] is a latency measurement,[bw�1] the inverse of a bandwidth
one. The numbers in the white boxes show the absolute values for native Linux in microseconds
(for latencies) and in MB/s (for bandwidths), respectively. Hardware is a 133 MHz Pentium.

5.1 Microbenchmarks

For a close look at the exact performance penalties involved we use the hbench:OS mi-
crobenchmark suite. It measures basic operations like system calls, context switches,
memory accesses, and pipe operations. This benchmark has been developed to compare
different hardware from the operating system’s perspective and therefore also includes
a variety of OS-independent benchmarks, in particular measuring the hardware memory
system and the disk [3]. Since we always use the same hardware for our experiments,
we only present selected operating-system dependent parts. The hardware-related mea-
surements indeed reported the same results on all systems.

Figure 4 shows a chart of slowdowns for various operations for monolithic Linux,
RT-Linux, L4Linux, and tame L4Linux (without cache partitioning). The exact bench-
mark results have been skipped here for brevity and can be found in the online version
of the paper.4

Discussion. As can be seen from Figure 4, while some differences are lost in the noise,
minor penalties for some microbenchmarks are introduced when adding soft interrupts
in Linux (with RT-Linux) respectively L4Linux (with the tamed version). These are due
to the increased context switching overhead that occurs when a hard interrupt happens
while soft interrupts are disabled. Also, the soft versions ofcli() andsti() need
significantly more cycles than their hard counterparts when more than one context tries
to enter a critical section.

The generally larger number for the L4Linux versions come from the higher number
of user/kernel-boundary crossings in the µ-kernel based Linux variant. (Please see [7]
for a breakdown of the penalties involved with one system call.)

4 http://os.inf.tu-dresden.de/pubs/#pub-part98

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Jo
bs

 p
er

 M
in

ut
e

AIM simulated load

AIM Suite-7 Benchmark - Jobs per Minute

Monol. Linux
RT-Linux
L4Linux, not tame
L4Linux, tame
L4Linux, colored

kernel relative
average
throughput

maximum
throughput
[jobs per
minute]

monolithic Linux 100 % 129.6
RT-Linux 99.8 % 129.3
L4Linux 96.2 % 124.7
L4Linux, tame 96.1 % 123.7
L4Linux, tame and
with colored cache

80.7 % 114.8

Fig. 5. AIM Multiuser Benchmark Suite VII. Left: Jobs completed per minute depending on
AIM load units. Right: Average throughput (normalized to monolithic Linux) and maximum
throughput of the various Linux kernels.

5.2 Application Benchmarks

For an overall system performance test we use the commercial AIM Multiuser Bench-
mark Suite VII. It uses Load Mix Modeling to test how well multiuser systems perform
under different application loads [1]. (The AIM benchmark results presented in this
paper are not certified by AIM Technology.)

Figure 5 shows the achieved throughput (jobs per minute) depending on simulated
load for monolithic Linux, RT-Linux, the original L4Linux, tame L4Linux, and tame
L4Linux running with a partitioned cache (128 KB of 256 KB). The AIM benchmark
successively increases the load until the maximum throughput of the system is deter-
mined. From these results the average performance relative to monolithic Linux and the
maximum throughput can be computed (displayed on right side in Figure 5).

Discussion. For macrobenchmarks, the introduction of soft interrupts doesn’t seem to
have much effect. The average slowdown of L4Linux compared to monolithic Linux is
3.8 % while for a tame L4Linux server it is 3.9 %. Similarly, the slowdown of RT-Linux
against monolithic Linux is 0.2 %.

Again, the general performance penalty of the L4Linux version compared to Linux
and RT-Linux (about 3.8 %) is mainly due to the higher number of user/kernel-boundary
crossings. One other factor which contributes to the performance loss is the large per-
centage of main memory the L4 µ-kernel reserves at boot time for its own internal use
(14 MB of 64 MB); when comparing L4Linux to a monolithic Linux kernel running
with a similar handicap, the performance penalty decreases to below 2 %. We expect to
lower L4’s high memory footprint in its next release with a better kernel memory man-
agement scheme and with the advent of a memory management protocol which allows
L4 to dynamically grow its kernel memory only when needed.

The version of L4Linux running with a partitioned cache suffers an even larger
performance degradation. The slowdown is acceptable (0 %–6.5 %) for loads smaller
than 30, but after that point the penalty increases to 28 %–32 %. The additional penalty

40

60

80

100

120

140

160

180

200

220

7000 7500 8000 8500 9000 9500 10000

m
ic

ro
 s

ec
on

ds

iteration

periodicity on standalone L4

Fig. 6. Periodicity of a real-time task on
stand-alone L4

0

50

100

150

200

250

300

350

400

450

7000 7500 8000 8500 9000 9500 10000

m
ic

ro
 s

ec
on

ds

iteration

periodicity on untamed L4Linux

Fig. 7. Periodicity of a real-time task
running besides original L4Linux

40

60

80

100

120

140

160

180

200

220

7000 7500 8000 8500 9000 9500 10000

m
ic

ro
 s

ec
on

ds

iteration

periodicity on tamed L4Linux

Fig. 8. Periodicity of a real-time task running besides the tamed version of L4Linux

These diagrams show the latency of subsequent activations of two tasks alternately trig-
gered by a 100-µs interrupt handler. The x-axis shows the number of the current activa-
tion, and the y-axis shows the elapsed time since the previous activation.
Please note that the y-axis has been scaled differently in the three diagrams.

originates not only from the limited part of the 2nd-level cache it can use but also
from two other factors: First, and most importantly, due to the way the cache is parti-
tioned, L4Linux not only runs with only half the cache but also with only half the main
memory—only 25 MB (the main memory must also be partitioned [12]); that is why
the machine starts thrashing at a much lower load. Second, because a fragmented main
memory is being used, L4Linux can not any longer make use of the Pentium CPU’s
4-MB memory pages (it hasn’t mapped a contiguous 4-MB chunk of main memory),
resulting in more TLB faults because L4Linux now shares the TLB for 4-KB pages with
its applications.

5.3 Real-Time Responsiveness

The real-time responsiveness has been tested by measuring the periodicity of two high-
priority user tasks which are alternately triggered by a third user task using a 100-

µs timer interrupt routine as its activation source. The two periodic tasks record the
Pentium CPU’s cycle counter every time they are activated. The two cycle counter logs
are coalesced later to a single long log where the difference of two adjacent elements is
the time between two task activations.

This test has been conducted in three system environments: first running stand-
alone on L4, then running besides the original L4Linux server, and finally besides a
tame L4Linux server (without cache partitioning). During the last two measurements
the L4Linux server was stressed with a high system load: a ‘dd’ on a disk device and a
‘find’ running in parallel. The results are plotted in Figures 6, 7 and 8.

Discussion. Figure 6 shows that the periodicity that can be accomplished with the L4
µ-kernel is quite high. However, there are some small systematic errors: there is a small
deviation of about 1 to 7 µs which happens systematically every 1.8 ms, L4’s timer
interrupt interval. These deviations stem from L4 not yet being fully preemptible.

Figure 7 shows that when the test program runs besides a non-tame L4Linux server,
a 100 µs periodicity cannot be guaranteed. A lot of interrupts are simply lost because
Linux disables hardware interrupt propagation for too long.

Figure 8 shows that using a tame L4Linux server, the 100 µs periodicity can be guar-
anteed just fine, but the deviation is larger (up to 24 µs). At one point the graph shows
that an interrupt is being lost. Obviously under high load the L4 µ-kernel sometimes
still disables interrupts longer than it should—clearly there is room for improvement
here.

These results are similar to those presented for RT-Linux in [18]. The authors report
a maximum variation of 15 µs for a task with a 100-µs period under RT-Linux.

6 Conclusion

In our experience, building a multi-personality µ-kernel-based system with a time-
sharing and a real-time subsystem running on the same machine is relatively easy to
accomplish. The performance of the time-sharing part isn’t hampered significantly by
the construction we have chosen. Also, we don’t see a reason to give up on memory
protection between real-time tasks.

Our experiments show that the L4 µ-kernel is not yet fully capable of real-time
scheduling because it is not fully preemptible. We expect this to be fixed in the near
future.

Acknowledgments

We’d like to thank our anonymous reviewers for their valuable comments. Robert Baum-
gartl, Martin Borriss, Sven Rudolph, and Sebastian Sch¨onberg provided helpful feed-
back and commentary on earlier versions of this paper.

Many thanks to AIM Technology for providing us with the AIM Multiuser Bench-
mark Suite VII.

References

1. AIM Technology.AIM Multiuser Benchmark, Suite VII, 1996.
2. Martin Borriss and Hermann H¨artig. Design and implementation of a real-time ATM-

based protocol server. Technical Report SFB-G2-02/98, Sonderforschungsbereich der
Deutschen Forschungsgemeinschaft 358, TU Dresden, June 1998. Available from URL:
http://os.inf.tu-dresden.de/pubs/#pub-rtatm.

3. A. B. Brown and M. I. Seltzer. Operating system benchmarking in the wake of lmbench:
A case study of the performance of NetBSD on the Intel x86 architecture. InACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems, pages 214–224,
Seattle, WA, June 1997.

4. M. E. Chastain. Linux kernel change summaries. URL:ftp://ftp.shout.net/pub/

users/mec/kcs/.
5. Uwe Dannowski. Portierung des Linux ATM-Treibers f¨ur FORE PCA-200E auf den

Mikrokern L4. Term paper, TU Dresden, 1997. In German. Available from URL:
http://os.inf.tu-dresden.de/project/atm/.

6. D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an application program. InUSENIX
1990 Summer Conference, pages 87–95, June 1990.

7. H. Härtig, M. Hohmuth, J. Liedtke, S. Sch¨onberg, and J. Wolter. The performance of µ-
kernel-based systems. In16th ACM Symposium on Operating System Principles (SOSP),
pages 66–77, Saint-Malo, France, October 1997. Paper and slides available from URL:
http://os.inf.tu-dresden.de/L4/.

8. Johannes Helander. Unix under Mach: The Lites server. Master’s thesis, Helsinki
University of Technology, 1994. Available from:http://www.cs.hut.fi/~jvh/
lites.MASTERS.ps.

9. D. Hildebrand. An architectural overview of QNX. In1st USENIX Workshop on Micro-
kernels and Other Kernel Architectures, pages 113–126, Seattle, WA, April 1992.

10. J. Liedtke. On µ-kernel construction. In15th ACM Symposium on Operating System Princi-
ples (SOSP), pages 237–250, Copper Mountain Resort, CO, December 1995.

11. J. Liedtke, K. Elphinstone, S. Sch¨onberg, H. Härtig, G. Heiser, N. Islam, and T. Jaeger.
Achieved IPC performance (still the foundation for extensibility). In6th Workshop on Hot
Topics in Operating Systems (HotOS), pages 28–31, Chatham (Cape Cod), MA, May 1997.

12. J. Liedtke, H. H¨artig, and M. Hohmuth. OS-controlled cache predictability for real-time
systems. InThird IEEE Real-time Technology and Applications Symposium (RTAS), pages
213–223, Montreal, Canada, June 1997.

13. Frank Mehnert. Portierung des SCSI-Ger¨atetreibers von Linux auf L3. Term paper, TU
Dresden, November 1996. In German. Available from URL:http://os.inf.tu-dres-

den.de/L4/.
14. Sven Rudolph. Admission Control f¨ur ein echtzeitf¨ahiges Dateisystem. Master’s thesis, TU

Dresden, May 1998. In German. Available from URL:http://os.inf.tu-dresden.de/

pubs/.
15. René Stange. SystematischeÜbertragung von Ger¨atetreibern von einem monolithischen

Betriebssystem auf eine mikrokernbasierte Architektur. Master’s thesis, TU Dresden, May
1996. In German. Available from URL:http://os.inf.tu-dresden.de/L4/.

16. Wind River Systems, Inc., Alameda, CA.VxWorks Programmer’s Guide, 1993.
17. A. Wolfe. Software-based cache partitioning for real-time applications. InThird Interna-

tional Workshop on Responsive Computer Systems, September 1993.
18. Victor Yodaiken and Michael Barabanov. A Real-Time Linux. InProceedings of the Linux

Applications Development and Deployment Conference (USELINUX), Anaheim, CA, Jan-
uary 1997. The USENIX Association.

