
To be published in Proceedings of the 11th ACM SIGOPS European Workshop, Leuven, Belgium, 2004

Reducing TCB size by using untrusted components —
small kernels versus virtual-machine monitors

Michael Hohmuth Michael Peter Hermann Härtig
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Abstract

Secure systems are best built on top of a small trusted oper-
ating system: The smaller the operating system, the easier it
can be assured or verified for correctness.

In this paper, we oppose the view that virtual-machine
monitors (VMMs) are the smallest systems that provide se-
cure isolation because they have been specifically designed
to provide little more than this property. The problem with
this assertion is that VMMs typically do not support inter-
process communication, complicating the use of untrusted
components inside a secure systems.

We propose extending traditional VMMs with features for
secure message passing and memory sharing to enable the
use of untrusted components in secure systems. We argue
that moving system components out of the TCB into the un-
trusted part of the system and communicating with them us-
ing IPC reduces the overall size of the TCB.

We argue that many secure applications can make use of
untrusted components through trusted wrappers without risk-
ing security properties such as confidentiality and integrity.

1 Introduction

What is the architecture of choice for building secure sys-
tems? Proponents of virtual-machine monitors (VMMs) are
quick to point out that VMM technology leads to the small-
est, simplest systems that are the easiest to assure. Cer-
tainly, a superficial analysis and historic evidence seem to
support this thesis: VMMs are specifically designed to en-
force isolation, the technology is mature, and of the four TC-
SEC/A1 systems, the cheapest to build and validate was the
VAX/VMM hypervisor.

The basic assumption underlying this opinion is that the
trusted computing base (TCB) of applications running inside
a virtual machine cannot be made any smaller, as VMMs
add to the bare hardware little more than isolation, hardware
multiplexing, and trusted drivers, which constitute the basic
mechanisms needed for confinement.

In this paper, we object to this view. We assert that by
adding kernel features originally meant for extensible sys-

tems, such as message passing and memory sharing, the
overall size of the TCB (which includes all components an
application relies on) can actually be reduced for a large class
of applications.

Another assumption we address in this paper is that all
components on which an application has operational depen-
dencies must be in this application’s TCB. This presumption
leads to the unnecessary inclusion of many (protocol and de-
vice) drivers into the TCB.

The basic idea for reducing TCB size is to extract sys-
tem components from the TCB and consider them as un-
trusted without violating the security requirements of user
applications. There are two basic techniques that facilitate
this goal: trusted wrappers and inter-process communication
(IPC), which comprises message passing and shared mem-
ory. Trusted wrappers encapsulate isolated untrusted sys-
tem components and provide additional security properties.
Memory sharing and IPC are microkernel-like mechanisms
that enable efficient and controlled communication between
isolated system components. Adding microkernel-like fea-
tures (IPC) to VMMs may make the kernel more complex
(first increasing TCB size), but enables using untrusted com-
ponents outside the TCB, leading to an overall decrease in
TCB size.

Additionally, by adding IPC system calls, emulation of
communication devices (such as Ethernet emulation) for
inter-task communication can be removed from the TCB.

Allowing untrusted system components enables the safe
reuse of existing operating-system code. Reuse is generally
desirable because it provides the functionality of a large body
of known-to-work legacy code, and because it helps support-
ing backward compatibility with existing applications, data,
or network protocols. Reuse is especially attractive for de-
vice and protocol drivers, as these components often make
up the largest part of the operating system.1 For example,
device and protocol drivers make up more than 88 % of code
lines of the Linux 2.6 kernel2. However, reused code is usu-

1Of course, drivers for devices that have unlimited DMA access always
are a member of each subsystem’s TCB. We return to device drivers in
Section 3.3.

2This figure only counts lines that contribute to a x86 configuration. Ir-
relevant headers and architecture-dependent code are not considered.
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ally untrusted—the point of reuse is not to look at (and not
to worry about) the code. This motive is particularly present
when reusing binary code for which source code is not avail-
able.

This work further develops a theme we introduced in our
European SIGOPS 2002 paper “Security Architectures Re-
visited,” in which we argued that secure systems should be
based on small isolated components, and shortly outlined
the reuse of untrusted legacy components through trusted
wrappers (which we somewhat confusingly called tunnel-
ing) [7]. Since then, several authors proposed conventional
virtual-machine technology without support for using un-
trusted components. The authors of Terra [4] even de-
nounced microkernel technology as “exotic,” implying that
nothing can be learned from it. Therefore, in this paper we
analyze the misconceptions that lead to this view and provide
a blueprint for reducing TCB size.

This paper is organized as follows. In Section 2, we re-
visit the term “trusted computing base” to point out com-
mon problems in its use and to define it precisely. In Sec-
tion 3, we explain how trusted wrappers work and in which
scenarios they can help reducing TCB size. Section 4 com-
pares VMMs and microkernels and identifies kernel services
needed for the efficient support of untrusted components. We
discuss related work in Section 5 and conclude the paper in
Section 6.

2 “Trusted computing base”: a re-
visitation

The term “trusted computing base” (TCB) has become an
imprecise, often misused term. For example, its users of-
ten assume that there is only one TCB in a system. This is
wrong because the word “trust” refers to relationships among
components, each of which relies on a different set of com-
ponents for its correct function. We refer to the set of com-
ponents on which a subsystem S depends as the TCB of S.

We assume that adversaries can compromise untrusted
system components, but not trusted ones.

It is illuminating to define precisely the meaning of the
word “trust” in TCB. It refers to the assertion that the TCB
fulfills certain specifications such as security, functional, and
timing requirements. The security requirements fall into
three mostly orthogonal main categories: confidentiality, in-
tegrity, and availability. In this paper, without loss of gen-
erality we subsume all functional and nonfunctional (timing,
etc.) requirements under the “availability” label.

There is some divergent terminology in the security com-
munity about the definitions of the three security categories.
Therefore, it is important to define them precisely and to
point out potential misunderstandings. We use the follow-
ing definitions (derived from security measures introduced
in [10]):

Confidentiality: Only authorized users (entity, principal,
etc.) can access information (data, programs, etc.).

Integrity: Either information is current, correct, and com-
plete, or it is possible to detect that these properties do
not hold.

Availability: Data is available when and where an autho-
rized user needs it.

Especially our definition of integrity is inconsistent with
that of some prominent authors, including Gasser’s [5]:
These authors define integrity to imply that data cannot be
modified and destroyed without authorization. We refer to
this property, which implies both integrity and availability
according to our definition, as recoverability.

We deviate from the alternative integrity definition for two
reasons. First, it creates overlap between integrity and avail-
ability, rendering the two categories nonorthogonal. Second,
it is useful to reason about our (weaker) definition of integrity
and about availability in isolation from recoverability.

The tools we have at our disposal for ensuring integrity
are very different from the tools we use to ensure availabil-
ity: In general, we can secure integrity (and confidentiality)
using cryptographic means, whereas we establish availabil-
ity (and recoverability) using software assessment and verifi-
cation and—especially when establishing trust through soft-
ware assessment is impossible or impractical (e. g., when
using untrusted networks), or if hardware failures are part
of the threat model—by introducing redundancy and using
trusted backup media.

3 Trusted wrappers: Reusing un-
trusted components

For many applications, data confidentiality and integrity are
vastly more important than availability; Gasser [5] conveys
this observation as “I don’t care if it works, as long as it is
secure.” Here are some examples: Remote–file-system users
are happy with not trusting networks and disks as long as
their data is backed up regularly (or permanently in a redun-
dant disk array) and integrity and confidentiality are not at
risk. Users of laptops and personal digital assistants (PDAs)
are more ready to take the risk of having their mobile device
stolen (rendering all data on it unavailable) if data confiden-
tiality and integrity are ensured. People use legacy applica-
tions inside VMware on top of Linux, hoping that VMware
ensures the integrity of their Linux systems.

In essence, for many applications it is acceptable to use
untrusted components and to provide confidentiality and in-
tegrity in higher layers of a system. The important insight
here is that trust dependencies are not always transitive:
For instance, a subsystem that requires confidentiality from
a component C does not necessarily require confidentiality
from all subcomponents used by C.
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We refer to components that provide security objectives
for untrusted components using cryptographic means as
trusted wrappers.3

3.1 Reuse example

Trusted wrappers enable the reuse of existing untrusted com-
ponents in secure systems. To illustrate secure reuse, let us
walk through a network-stack example. (For the moment,
please ignore the dangers of not trusting drivers for devices
with DMA capabilities—we will return to devices in Section
3.3.)

In this example, we consider the level of security to ex-
pect when accessing the Internet under the condition that the
network stack is either trusted or untrusted.

Trusted network stack

Confidentiality: Yes—through cryptographic means

Integrity: Yes—through cryptographic means

Availability: No—because the Internet is untrusted

Even though the network stack is trusted, availability cannot
be guaranteed to Internet users because network outages are
common and because all network traffic will eventually cross
a trust boundary, after which it will travel though the un-
trusted network stacks of routers that constitute the Internet.
Additionally, Internet connections are susceptible to denial-
of-service attacks.

When an application needs communication availability, it
is forced to have available a trusted backup medium—for
example, a private leased line or a direct USB connection
to the communication partner—or a set of backup Internet
connections.

Untrusted network stack Now let us extract the net-
work stack from an application’s trusted computing base and
use a trusted wrapper component to provide confidentiality
and integrity. Not having to trust the network stack allows
us to reuse a robust, known-to-work implementation such as
FreeBSD’s or Linux’s TCP/IP stack.

Confidentiality: Yes—encrypt data before handing it to the
network stack

Integrity: Yes—sign data before handing it to the network
stack

Availability: No—because the Internet is untrusted and be-
cause an adversary could compromise the network stack

In comparison to using a trusted network stack, the overall
picture does not change. We still provide confidentiality and
integrity, and availability is still missing at this layer. Again,

3In previous work, we have referred to the use of trusted wrappers as
tunneling, in analogy to establishing secure channels over IP using IPSec
tunneling.

applications must take extra precautions when availability is
required.

This scenario involves one risk that is not present in the
previous trusted-stack scenario: When an adversary compro-
mises the untrusted network stack, she can potentially pre-
vent any further communication with the application through
the network (even if the network is completely trusted, which
it is not in our scenario). Again, applications must shield
against this attack using the standard means for providing
availability: It needs to communicate using backup media,
or using a redundant copy of the network stack, which in the
simplest case might just be a rebooted instance of the net-
working software.

Restarting the network stack is relatively straightforward
because it needs almost no persistent state. The situation is
somewhat different for untrusted storage components. Here,
an adversary could effectively and completely deny recover-
ability. The standard countermeasure for storage-availability
problems is to back up all data to a trusted medium in regular
intervals.

3.2 Perimeter versus sandbox wrappers

Using untrusted components is useful both within a secure
system and on its perimeter, that is, at the interface to pe-
ripheral devices. These two modes impose slightly different
requirements on the TCB, which we evaluate in this section.

In the first mode, perimeter wrapping, untrusted compo-
nents never see unprotected (i. e., unencrypted) data. The
untrusted software resides on the perimeter of the system,
and trusted components use it to communicate with the outer
world. This mode of operation is comparatively uncritical in
that no special encapsulation of the untrusted component is
required. The system must only provide for the unobserv-
ability of the actions and data of its trusted parts.

Sandboxing, on the other hand, works by using untrusted
components internally to work on unprotected data, for ex-
ample, for converting between data formats or for running
legacy applications on classified data. This technique re-
quires complete isolation for untrusted components, includ-
ing measures to prevent open or covert communication to the
outside world.

Another consequence of sandboxing is that there is no
easy way for ensuring availability, which makes this method
impractical when this property is needed.

3.3 Reusing legacy device drivers

As we explained in the introduction, the reuse of existing
device and protocol drivers is especially desirable because
of their sheer number and size. However, device drivers are
special in that they access physical resources, which leads to
the inclusion of most drivers into the TCB of all subsystems.

Drivers for devices that are capable of direct memory
access (DMA) present the first fundamental problem: On
systems without DMA protection, the driver can program
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the device to read or write to any physical memory frame,
whether or not it is mapped into the driver’s address space.

This problem is an instance of a more general problem:
When a driver can access or allocate shared physical re-
sources, its actions can be observed by all other drivers with
access to the same resources, which allows for communica-
tion among all these drivers. Therefore, all drivers who have
access to the same physical resources are part of the TCB of
all subsystems using any of the drivers.

To remove drivers from the TCB of subsystem S, the oper-
ating system must provide complete memory safety includ-
ing DMA protection, and it has to give resource-access guar-
antees the drivers used by S to avoid observability.

The current x86 PC architecture does not provide DMA
protection. However, DMA protection is becoming more
widespread: Some 64-bit chipsets (such as those designed
for AMD’s Opteron and the Alpha) provide a memory man-
agement unit for mapping 32-bit PCI-bus addresses to 64-bit
memory-bus addresses and can be used for DMA protection
on a per-bus basis. PCI Express will include a similar facil-
ity. PCs enabled for Microsoft’s NGSCB will include DMA
protection for a portion of the physical memory as well.

3.4 µSINA: Trusted wrappers in action

In the µSINA project, we have implemented an IPSec-based
virtual-private-network (VPN) gateway that uses trusted
wrappers to cut down the TCB [8].

For IP routing, this application uses two untrusted in-
stances of L4Linux, a port of the Linux kernel to the L4
microkernel interface [6], running as user-mode programs
on one machine. While the Linux instances are untrusted,
µSINA uses a set of trusted device drivers (running in their
own address spaces). We have to trust these drivers because
they have full DMA access.

The µSINA VPN gateway is designed to ensure confiden-
tiality for communication across the Internet. To achieve
this goal, we use a trusted cryptography engine and a trusted
IPSec policy module. The cryptography engine serves as a
trusted wrapper for the Linux instance used for outbound IP
routing: It provides confidentiality and integrity for all In-
ternet communication. (We currently do not wrap the other
Linux instance, used for local IP routing, as our requirements
did not call for integrity or confidentiality on the “inner net-
work” better than that provided by Linux.)

The µSINA TCB consists of less than 25,000 lines of code,
including the microkernel and the drivers. In comparison,
the core of the x86 version of the Linux 2.6.3 kernel, not
including any drivers, comprises more than 500,000 lines of
code.

4 VMMs versus microkernels

In this section, we propose extending VMMs with kernel ser-
vices known from microkernels to allow efficient use and
reuse of untrusted components.

In the previous section we demonstrated how large, ex-
isting software components can be reused as untrusted sub-
systems in secure systems. There is, however, an important
prerequisite: To be able to use untrusted components, the
system must offer secure isolation of trusted and untrusted
components, which in turn requires secure IPC for efficient
cooperation among trusted and untrusted parts.

Traditional VMM systems are specifically designed for se-
cure separation, but do not provide services for explicit mem-
ory sharing, and provide IPC only via emulated communica-
tion devices, whereas microkernels are designed for efficient
communication and sharing.

To efficiently support untrusted components, we propose
adding secure and fast IPC (including memory sharing) to
VMMs. This addition first increases the TCB of all appli-
cations, but extracting subsystems from the TCB and mor-
phing them into untrusted components results in an overall
decrease in TCB size.

When IPC is available as an operating-system service, the
emulation of communication devices does not need to be part
of the TCB. IPC also enables fine-grained protected compo-
nents, which is impractical when the unit of protection is a
hardware-like virtual machine.

Traditional VMMs and microkernels can be thought of
as the extremes of a continuum. Recent additions to this
continuum are paravirtualized systems, such as Xen [1] and
Denali [11], and systems that “virtualize” a user-mode–only
process model, such as Fluke [3], which reside in proximity
to traditional VMMs and classic microkernels, respectively.

We propose to allocate another spot in the center of
this space: VMMs with microkernel-like features, or VM-
enabled microkernels.

Table 1 summarizes the properties of the systems in the
continuum. All system architectures in the design space do
support reuse of untrusted components in some form. How-
ever, only microkernel-like systems enable their efficient em-
ployment through fast IPC.

µSINA on a VM-enabled microkernel If the L4 mi-
crokernel we used in our VPN implementation (Section 3.4)
would include VM support, we could have used two unmod-
ified Linux kernels instead of L4Linux servers. We would
have developed our IPSec IP-interface driver, which defers
trusted functions to the external trusted servers via IPC, in
the context of original Linux instead of that of L4Linux.

5 Related work

Terra [4] has been proposed as a virtual-machine–based se-
curity architecture for trusted systems. Terra enhances tradi-
tional VMM technology with features for attestation, trusted
user communication, and protection from administrators. Its
authors describe the virtual-machine interface as a “small,
stable interface” and imply that it can be implemented with
12,000 lines of code. However, drivers are clearly not in-
cluded in this figure, and Terra has to fully trust them. Terra
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Feature VMM Para-VMM VM-µK user-VM µK
Process model supervisor & user supervisor & user supervisor & user only user only user
Protection granularity coarse coarse fine fine fine
High-performance IPC + + +
Explicit memory sharing + + +
Legacy reuse possible + + + + +
Binary legacy reuse—user + + + + +
Binary legacy reuse—kernel + ?
All drivers part of TCB – –
Device emulation + + +
IPC needs device emulation – –

Legend: “+” and “–” indicate features that are present. “+” stands for features that enable using untrusted
components, “–” stands for features that hinder their adoption. “?” represents an optional feature.

Table 1: Features of VMM and microkernel systems

does not enable the reuse of untrusted components and does
not offer IPC; communication between virtual machines is
possible only using an emulated network.

Xen [1] is a paravirtualizing VMM. It supports a Linux
kernel with minor modifications. The Xen kernel includes
device drivers, which are controlled by privileged, fully
trusted virtual machine. It currently does not support IPC
or the use of untrusted components. Xen supports communi-
cation across protection boundaries using a virtual network
device.

Nooks [9] is an architecture for using potentially erro-
neous device drivers within the Linux kernel. The encap-
sulation of these drivers ensures the integrity of the Linux
kernel. However, Linux cannot protect itself against avail-
ability failures. The kernel has no means to preempt a driver
that does not return control.

In earlier work, we have designed and implemented
microkernel-based security architectures called Nizza that
make extensive use of untrusted components [7]. Nizza is
a general-purpose security architecture that uses L4Linux as
its legacy component. Like Terra, it provides attestation and
a trusted path to the user using a small trusted windowing en-
vironment [2]. µSINA (which we discussed in Section 3.4)
is a specialized implementation of the Nizza security archi-
tecture.

6 Conclusions

In this paper, we have proposed extending traditional VMMs
with features for secure message passing and memory shar-
ing to enable the use of untrusted components in secure sys-
tems. We argued that moving system components out of the
TCB into the untrusted part of the system and communicat-
ing with them using IPC reduces the overall size of the TCB.

We argued that many secure applications can make use of
untrusted components through trusted wrappers without risk-
ing security properties such as confidentiality and integrity.
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