
Principles for the Prediction of Video Decoding Times
applied to MPEG-1/2 and MPEG-4 Part 2 Video

Michael Roitzsch Martin Pohlack
Technische Universität Dresden

Department of Computer Science
Operating Systems Group

{mroi,pohlack}@os.inf.tu-dresden.de

Abstract

In this paper, we present a method to predict per-frame
decoding times of modern video decoder algorithms. By
examining especially the MPEG-1, MPEG-2, and MPEG-
4 pt. 2 algorithms, we developed a generic model for these
decoders, which also applies to a wide range of other de-
coders. From this model, we derived a method to predict de-
coding times with an up-to-now unmatched accuracy while
keeping the overhead low. We show the effectiveness of this
method with an example implementation and compare the
resulting predictions with the actual decoding times using
video material from commercial DVDs.

1. Introduction
Scheduling complex real-time tasks is hard as their resource
requirements may not be known. Currently for video pro-
cessing one has to work with worst-case overprovisioning
of resources or ungraceful quality degradation. The funda-
mental problem here is that a video codecs’ resource usage
mostly depends on the data to be processed, that is, the cur-
rent video stream. The codec acts similarly to an interpreter
executing an interpreted program.

To allow future systems to overcome these limita-
tions, realtime and Quality-of-Service (QoS) considerations
should be applied [23, 16] to allow close-to-average case
resource allocation and graceful degradation of quality. In
this paper we present a method for predicting the required
resource usage based on easily obtainable metadata about
video streams. Obviously, this method must provide the de-
coding time with significantly lower resource usage than the
actual decoding.

Based on this inferred ahead-of-time knowledge, better
CPU time scheduling, graceful degradation in overload sit-
uations, and energy aware adaptation become possible. Fu-
ture systems employing such methods can provide better
QoS than current ones or similar QoS with fever hardware
resources by better utilizing available resources.

For example, a video player whose decoding component
cannot keep up with the display speed and therefore has
to skip decoding of frames should do so considering qual-
ity (i.e., introduced error) and resource savings (decoding

time). Close-to-average case resource allocation and grace-
ful degradation of quality are enabling mechanisms here.

Another possible application are video editing systems,
where the user can stack multiple layers of video and ap-
ply effects to them. These systems need to decide, which
parts of the final edit can be calculated on the fly (during
playback) and which parts need to be pre-rendered. The
pre-rendering has to include all critical parts to ensure suf-
ficient playback quality, but at the same time, it should be
reduced to the minimum to keep the application responsive.

As most of these application scenarios require ahead-of-
time knowledge of the resource usage and because the pri-
mary task in the media applications considered here is video
decoding, with CPU time being the key resource, this work
discusses a way to pre-determine per-frame decoding times
for recent video decoder technologies. It is beneficial, if
the method needs to be calibrated only once with a set of
sensible sample material and then works for a wide range
of content. We target calculating the decoding times on the
fly for each frame, because users cannot be expected to pro-
vide precalculated trace data or wait for its collection. This
ensures that the viewers expectation of watching arbitrary
videos without preprocessing delay can be fulfilled.

We chose the MPEG-1/2 [4, 5] and MPEG-4 pt. 2 [6]
decoder algorithms as the key algorithms to analyze be-
cause of their wide acceptance in the video world and the
availability of mature decoders and encoders in source code
under open-source licenses: MPEG-2 is present on today’s
DVDs and in DVB [1]. Thoroughly tested open-source de-
coder software is available from the libmpeg2 project [7].
Sophisticated encoders can be found in both the commer-
cial sector and the open-source community. MPEG-1 shows
enough similarity to MPEG-2 to regard MPEG-1/2 as one.
MPEG-4 pt. 2 is one video decoding algorithm specified in
the MPEG-4 standard family. It is not as commonly used as
MPEG-2 yet but is emerging. We use decoder and encoder
code from the XviD project [10].

In this work we present a predictor, which is fed with
only the compressed video data and produces estimates for
the execution time of a decoder cycle. The decoder itself
is not modified in any way. The predictor should be as in-
dependent of the actual decoder implementation as possible
to allow future upgrades to newer decoder versions without

any major modifications to the predictor.
In the next section we discuss related work and how our

work relates to the state of the art. In Section 3 we de-
scribe our approach — breaking down the entire decoding
of a frame into various sub-tasks. We achieve this by cre-
ating a generic decoder model, into which all examined de-
coders and hopefully a wide range of future decoders fit (see
Subsection 3.1). We will then discuss the influence of each
sub-task on the decoding time in Subsection 3.3. Addition-
ally we point out characteristic properties of the stream that
correlate positively with the decoding time and discuss the
extraction of values from the compressed video stream that
serve as metrics to quantify the discussed properties. The
mathematics used to calculate the coefficients of the lin-
ear combination will be explained in Section 4, followed
by comments on the implementation of the given principles
in Section 5. An evaluation of the results and a conclusion
together with an outlook conclude the paper.

2. Related work
Our work is founded on previous results in the research ar-
eas of decoder algorithms and mathematics. We used well
known numerical techniques such as the QR decomposi-
tion as well as established algorithms like the Householder
transformation [22]. This will be explained in Section 4.
Our ideas have been first implemented on the Dresden Re-
altime Operating System DROPS [9] and its video player
VERNER [20]. For results see [21]. Verner can utilize
streams from a real-time filesystem [19] or real-time net-
work connection [18], and displays content with real-time
guarantees [13]. For this paper we focus solely on the de-
coding step. We use a Linux implementation as our experi-
ence shows that the numbers are not significantly different
and measuring entire DVDs is more complex on DROPS
due to memory constraints. We adapted open-source code
from the libmpeg2 [7] and XviD [10] projects.

Decoding time prediction has been a research subject be-
fore, so previous results exist. Altenbernd, Burchard, and
Stappert present an analysis of MPEG-2 execution times in
[11]. The common idea behind their work and ours is to
gain metrics from the video stream that correlate well with
the decoding time. However, there are considerable differ-
ences in both approaches: Altenbernd et al. divide the de-
coder in two phases, using data extracted in the first phase
to predict the decoding time of the second phase. We want
to avoid such heavy modifications to existing decoder code
and rather provide a solution based on preprocessing. We
also model the decoder as a sequence of different phases,
but our division will be more fine grained (see Figure 1).
They also examine worst-case execution times, using source
code analysis, to completely avoid underestimations. We
do not want to rely on the specific source code, because the
efforts of the analysis have to be repeated when the code
changes due to optimizations. This simplification allows us
to generalize our method to target more decoders than just
MPEG-2. Because we cannot safely avoid underestimation

with our approach, we have to settle with a soft-realtime so-
lution, but the results are still important because the quality
assuring scheduling algorithm QAS [14] developed at TU
Dresden works on the basis of a probability distribution for
execution times. It remains an area of future research to
derive worst-case execution times with our method.

Another similar analysis has been conducted by Andy
Bavier, Brady Montz, and Larry L. Peterson in [12], but is
also limited to MPEG-1/2. They focus more on decoding
times at the granularity level of network packets, and do not
target transferability of the results between different videos.
Yet they also follow the path of predicting decoding times
by extracting metrics from the stream.

3. Decoder Analysis
This section deals with internals of the MPEG video coding
schemes. Those unfamiliar with this subject are invited to
refer to [17] for some introductory reading.

3.1. Decoder Model
By looking into the inner workings and functional parts of
the decoder algorithms in consideration, we established a
decoder model, generic enough to be applicable to a wide
range of algorithms. The simple basic structure of the
model can be seen in Figure 1: The decoder is modeled
as a chain of function blocks that are executed iteratively in
loops. Because we are concentrating on execution times, the
edges of the graph represent logical control flow rather than
data flow. Control starts at the bitstream parsing block and
implicitly ends with post processing when the compressed
data stream ends.

Every function block but the first can have multiple alter-
native and completely separated execution paths in the same
decoder algorithm. Those execution paths would be cho-
sen amongst by context data extracted from the compressed
video stream, like a frame type. As a notable special case,
the function blocks can have a “do-nothing” execution path.
In the following we discuss each block and examine their
input and output.
3.1.1. Bitstream Parsing The bitstream parsing receives
the compressed video stream for every frame and extracts
meta- and context-information from the stream that is re-
quired to control the following decoding steps.
3.1.2. Decoder Preparation When decoder algorithms
exploit temporal redundancy, they often work with previous
images. Those may need to be copied or modified without
disturbing existing images.
3.1.3. Decompression This function block is the first that
is executed inside a per-macroblock loop. A macroblock is
a 16×16 pixel area of the target image whose compressed
data is stored consecutively in the data stream and that is
decoded in one iteration of the loop.

The data needed to further decode the macroblock is
stored using a lossless compression technology like Huff-
man [15]. This compression is reversed in this step and the

decoder
prepare decom− coefficient

predictionpression
inverse
scan

post
processingquant.

inverse inv. block
transform1 2 3 4 5 6 7 10

per−frame loop per−macroblock loop

temporal
prediction

spatial
prediction 8 9

parsing
bitstream

Figure 1. Chained block model for decoders

intermediate data is kept in a buffer. In addition to the mac-
roblock data itself, each macroblock may come with meta-
data like a macroblock type or other information for follow-
ing decoder steps. As a special case, a macroblock might
consist entirely of such context data and no compressed im-
age data at all.
3.1.4. Inverse Scan Because the resulting video image is
two dimensional, the transforms used later in the compres-
sion are two dimensional as well. However, the decom-
pressed macroblock we received from the previous stage is
a one dimensional list of bytes. Those need to be rearranged
as a 2D matrix. Because this would partly countereffect the
preceding entropy compression step, this reordering is not
done in a line-by-line fashion, but in a different, often diag-
onal pattern.
3.1.5. Coefficient Prediction Decoders can analyze the
matrix to try to reconstruct image features that have been
compressed away by extrapolating additional data from ex-
isting data on the coefficient level.
3.1.6. Inverse Quantization During encoding, the matrix
of each macroblock has been multiplied with a quantization
matrix, which, more than all other steps, makes the com-
pression lossy. The quantization is reversed before decod-
ing proceeds by multiplying with an inverse quantization
matrix.
3.1.7. Inverse Block Transform The macroblock matrix
we dealt with in the previous steps was not necessarily in the
spatial domain. So the rows and columns of the matrix are
not directly mapped to the image’s x and y coordinates. The
algorithms usually choose a different domain, in which op-
erations like the quantization and coefficient prediction are
fairly simple matrix operations and fit the visual perception
model used by the algorithm in their effect on the final im-
age. A common domain is the frequency domain, which has
the nice property that quantization in the frequency domain
will gradually smooth out details in the spatial domain.

This decoder step now transforms the macroblock matrix
into the spatial domain, which involves complicated math-
ematics, sometimes even with floating point calculations.
The resulting spatial matrix corresponds to a portion of the
final image and has the same dimensions as the macroblock
matrix.
3.1.8. Spatial Prediction The spatial and temporal pre-
diction steps described now use previously decoded data
of either the same frame (spatial prediction) or a different
frame (temporal prediction) to reconstruct or merely guess

the part of the image being covered by the currently decoded
macroblock. This step can potentially be executed at the
same time as the Steps 4 (inverse scan) to 7 (inverse block
transform), but we will not pursue this parallelism, because
the commonly available decoder implementations are sin-
gle threaded. The outcome of the inverse block transform
is then added to or otherwise merged with this prediction to
reduce the residual error between the two.
3.1.9. Temporal Prediction Today’s decoder algorithms
benefit tremendously from temporal redundancy in the
video. The most basic idea is to not always store entire
video images, but to store the differences to the previous
image. This has been extended over decoder generations
to allow other reference images than just the previous one
and to compensate for motion by storing translation vectors
with the macroblocks. It even includes rotating and warp-
ing parts of the reference image, compressing the motion
vectors by applying prediction to them or weighted inter-
polation between areas of multiple reference images in the
most sophisticated algorithms.

The merging of the results of prediction and inverse
transform ends the per-macroblock loop (denoted by ⊕).
Execution will continue with the decompression of the next
macroblock. It should be noted that most algorithms bun-
dle consecutively stored macroblocks with common prop-
erties in a so called slice. This bundling is not yet relevant
for considerations about execution time, but it will become
more interesting when algorithms start to associate a seman-
tic with slices, for example marking slices containing more
important parts of the image like objects in the foreground.
3.1.10. Post Processing Post processing applies a set of
filters to the resulting image so that compression artifacts
are reduced and the perceived image quality is enhanced.
However, with today’s algorithms, post processing is often
optional, so in realtime applications, a video decoder can
skip the post processing stage if the scheduled CPU time
is exceeded. Therefore, we will not analyze the execution
time of the post processing stage and examine the manda-
tory parts of the decoding.

3.2. MPEG-4 part 2
We will now give a brief overview on how MPEG-4 pt. 2
fits into the function blocks of the developed decoder model
using the same numeration as in Figure 1.

1. The bitstream parser handles the packetized MPEG-4
video elementary bitstream. Syntax elements are not

byte aligned. The stream can contain a complexity
estimation header, which stores information we could
use for our metrics extraction, like DCT block counts.
Unfortunately this header is optional and the common
encoder implementations do not use it, so existing
videos would have to be reencoded with an extended
encoder to benefit from this header.

2. The P-, B-, and S-frames use a special treatment of
the edges of the reference frames for motion vectors
beyond the frame boundaries.

3. The bitstream uses several tables for variable length
coding of the coefficients and the motion vectors.

4. Varying inverse scan tables are available.
5. The coefficient prediction treats both the DC coeffi-

cient and the AC coefficients by copying rows from
macroblocks above and columns from macroblocks
left of the current position.

6. The inverse quantization uses a quantization matrix to
scale the coefficients. Adaptive quantization by chang-
ing the matrix within one frame is possible.

7. The block transform is the IDCT.
8. There is no spatial prediction in MPEG-4 pt. 2.
9. The temporal prediction is a motion compensation us-

ing one forward and one backward reference frame
with up to quarter pixel accuracy and macroblock sub-
blocking. The S-frame uses one reference and shifts or
warps the entire image using global motion vectors.

10. MPEG-4 pt. 2 contains an optional post processing
step with different quality levels.

Other decoder algorithms can be similarly mapped to the
steps of the model. For MPEG-1/2 we show this in [21].

3.3. Metrics for Decoding Time
Using the XviD [10] implementation of the MPEG-4 pt. 2
algorithm and a selection of example videos, we measured
the per-frame execution time spent inside the various func-
tion blocks on a 400 MHz Pentium II machine. The example
videos listed in Table 1 span a variety of stream parameters,
which is necessary to evaluate their influence on the decod-
ing time.

The profiling facility included in the XviD implementa-
tion has been a good starting point for a logical splitting
of the decoder. It is interesting to note that over 50 % of
the decoding time for every frame is spent on temporal pre-
diction, so this step is most important (average has been
taken over all sample videos from Table 1). We will now go
through the various function blocks of the decoder model
and show how their decoding time can be estimated using
values derivable from the stream.
3.3.1. Bitstream Parsing (Step 1) Because most of the
parsing takes place at the macroblock level, we can expect
the execution time for this step to be closely related to the
amount of pixels per frame, because the amount of mac-
roblocks to parse correlates well with the amount of pixels.
This works for I-frames as can be seen in Figure 2. (The

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Pixelcount [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 2. Estimating the bitstream parsing time for I-
frames.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Pixelcount [in thousand]

AMZa
MTRa
IBMa

Regression

Figure 3. Estimating the bitstream parsing time for B-
frames (1).

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Pixel count + 26 * Byte count [in thousand]

AMZa
MTRa
IBMa

Regression

Figure 4. Estimating the bitstream parsing time for B-
frames (2).

samples appear in clusters because the pixel count is con-
stant throughout each video.)

However, the P-, B- and S-frames show a different be-
havior. We chose the B-frames to demonstrate this in Fig-
ure 3, the P- and S-frames behave similarly. Because these
frame types allow a greater variety of coding options for
each macroblock than the I-frames, which naturally consist
entirely of intracoded macroblocks, the amount of bytes per
non-I-frame has an influence, too. As can be seen in Fig-
ure 4, the result improves when taking this into account by
calculating a linear combination of pixel count and bytes
per B-frame that matches the execution time best. This idea
also works for P- and S-frames.

3.3.2. Decoder Preparation (Step 2) The MPEG-4 pt. 2
algorithm extends the edges of reference frames before they
are used for temporal prediction. Because the length of the
image edges correlates with the square root of the pixel
count, we would expect a square root match between the
pixel count and the execution time for this step. Figure 5
shows exemplary for P-frames that this assumption is cor-
rect. The B- and S-frames behave the same and for I-frames,
there are no reference frames to be modified.

Diagr. sym. Video name Duration Resolution Size Profile Properties Source
AMZa Amazon documentary 1:37 min 1440×1080 97 MB ASP high quality HD content, detailed images Download from [8]
MTRa Movie trailer "The

Sweetest Thing" 1:13 min 720×576 8.6 MB ASP dynamic, fast cuts advertising DVDMTRs 63 MB SP
VOYs Voyager 1:20 min 352×288 13 MB SP low in movement, noisy image TV recording
IBMa IBM Linux commercial

"Prodigy" 1:50 min 352×240 508 KB ASP low in movement, many monochrome
shapes, ASP version highly compressed IBM website (now at [3])IBMs 2.8 MB SP

Table 1. The sample videos used in the decoding time analysis (SP=simple visual profile, ASP=advanced simple profile). The
videos have been transcoded to MPEG-4 pt. 2 with varying encoder settings to investigate the effects of all properties.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Pixelcount [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression (a * Sqrt(x))

Figure 5. Estimating the decoder preparation time for
P-frames.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Byte count [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 6. Estimating the decompression time for I-, P-,
B- and S-frames.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Intracoded macroblock count [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 7. Estimating the coefficient prediction time for I-,
P-, B- and S-frames.

3.3.3. Decompression and Inverse Scan (Steps 3 and 4)
The decompression should be the dominant task here, be-
cause the inverse scan is as easy as selecting a scan table and
then using one table lookup for every decompressed coef-
ficient. The execution time therefore correlates well across
all frame types with the per-frame length of the bitstream.
Figure 6 shows the match.
3.3.4. Coefficient Prediction (Step 5) The coefficient
prediction is only done for intracoded macroblocks, so the
execution time of this step correlates with their number. In-
tracoded macroblocks can occur within every frame type,
but the estimation works equally well for all types as shown
in Figure 7.
3.3.5. Inverse Quantization (Step 6) The inverse quan-
tization is done once for every macroblock, so this corre-

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5 10 15 20 25 30 35 40

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Macroblock count [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 8. Estimating the inverse quantization time for I-,
P-, B- and S-frames.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Macroblock count [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 9. Estimating the inverse block transform time for
I-, P-, B- and S-frames.

lates well with the total macroblock count. The macroblock
count should not be mistaken for a scaled pixel count. Be-
cause of not coded macroblocks, the pixel count only yields
an upper bound for the macroblock count. The diagram for
all frame types can be seen in Figure 8.

3.3.6. Inverse Block Transform (Step 7) As with the in-
verse quantization, the total macroblock count gives a good
estimate, as Figure 9 shows. There is still deviation from
the linear match, which might stem from either cache ef-
fects or different amounts of zero values in the macroblocks.
Depending on the implementation, algorithms can be faster
when more coefficients are zero. However, looking into that
has the disadvantage of increased prediction overhead, so
we decided against it, as the potential gain in accuracy is
small.

3.3.7. Temporal Prediction (Step 8) This step is the most
time consuming. Unfortunately, its execution time is also
the hardest to predict. Because motion compensation is only
done for intercoded macroblocks, one might be tempted to
derive the execution time from the count of intercoded mac-
roblocks. Figure 10 shows that this fails.

The reason is that there are various different methods of
motion compensation due to macroblock subblocking and
different storage types for motion vectors. These options
are independent of the macroblock type. Distinguishing be-

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Intercoded macroblock count [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Figure 10. Estimating the temporal prediction time for
P-frames (1).

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Reference frame memory accesses [in million]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 11. Estimating the temporal prediction time for
P-frames (2).

tween all these methods and accounting for them individ-
ually is problematic, because there are too many combina-
tions and covering them all with sample videos is difficult.

But when looking at the bigger picture, we realized that
motion compensation is basically just copying pixels from
a reference image into the current frame. Because of half
pixel or quarter pixel accuracy and the necessary interpola-
tion and filtering, one pixel copy operation can range from
1 to 20 memory accesses. Therefore, the number of mem-
ory accesses into the reference frame should result in a far
better prediction. Of course this number cannot easily be
measured directly, but looking at the code for motion com-
pensation, we can count the memory accesses. Note that all
decoder implementations must access the same amount of
data, because of the required interpolation. We assume that
no decoder implementation will make many superfluous
memory accesses, so their count should be similar across
implementations.

Depending on the lower bits of the motion vectors, which
differentiate between full, half or quarter pixel references,
we created a formula to calculate the number of memory
accesses. For that, the motion vectors need to be decoded
completely, which takes time and increases prediction over-
head. However, because the temporal prediction accounts
for a big portion of the overall decoding time, we think this
step is necessary. We will show the effect on the overhead
in Subsection 6.2.1. The promising results for P-frames can
be seen in Figure 11. This works equally well for B-frames.

It may be a bit surprising that memory accesses alone es-
timate the execution time so well, given that different inter-
polation and filtering is done for full, half and quarter pixel
accesses. We assume that with today’s processors, these ad-
ditional operations are covered up by the memory accesses

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

Reference frame memory accesses + 5056 * GMC operations [in million]

AMZa
MTRa
IBMa

Regression

Figure 12. Estimating the temporal prediction time for
S-frames.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 5 10 15 20 25 30 35 40 45

C
P

U
 c

y
c
le

s
 [
in

 m
ill

io
n
]

1.39 * intracoded macroblocks + intercoded macroblocks [in thousand]

AMZa
MTRa
MTRs
VOYs
IBMa
IBMs

Regression

Figure 13. Estimating the merging time for P-, B- and
S-frames.

because of parallel execution. To verify this assumption on
a different hardware architecture, this estimation has been
run on a PowerPC (MPC7447a) machine, which showed
similar results for P- and B-frames. The match was not as
linear as in Figure 11, but still correlated well (correlation
coefficient 0.998).

S-frames, however, encompass global motion compen-
sation (GMC), so a different approach is required here. Be-
cause we did not want to look into the more complicated
(hard to predict) warping algorithm, we just counted the
number of macroblocks using global motion compensation
and calculated a linear combination of the memory accesses
from non-GMC macroblocks and the amount of GMC mac-
roblocks to match the execution time. The good results
shown in Figure 12 indicate that the execution time per
GMC macroblock is fairly constant.
3.3.8. Merging (Step ⊕) The merging combines the re-
sults of the temporal prediction with the decoded mac-
roblocks, so a linear match of intra- and intercoded mac-
roblock counts should estimate the execution time well
enough. Because this step has only a small influence on
the total decoding time, we can tolerate the deviations seen
in Figure 13
3.3.9. Summary We have now established which metrics
are useful to get reasonable estimations for the execution
time of the various stages. It is evident that the separation
of the decoding process into the suggested steps simplifies
finding useful metrics, because the decoding time behavior
of the individual function blocks is much easier to overlook.
The time required for the entire decoding process is the sum
of the separate execution times, so these metrics will also
allow predictions for the frame decoding times. The metrics
are:

• Pixel count,

• Square root of pixel count,
• Byte count,
• Intracoded macroblock count,
• Intercoded macroblock count,
• Motion compensation reference frame memory ac-

cesses, and
• Global motion compensation macroblock count.

With similar considerations as presented for MPEG-4 pt. 2,
we have selected metrics for the prediction of MPEG-1/2
[21]. In Section 5 we will discuss how to actually obtain
these metrics.

4. Numerical Background
We have now extracted a set of q metric values for each
frame of the video. In a learning stage, on which we will
present details in Section 5, we will receive a metric vector
mi and the measured frame decoding time ti for each of a
total p frames (i = 1 . . . p). Accumulating all the metric
vectors as rows of a metric matrix M and collecting the
frame decoding times in a column vector t, we now want to
derive a column vector of coefficients x, which will, given
any metric row vector m, yield a predicted frame decoding
time m x. Because the prediction coefficients x must be
derived from M and t alone, we model the situation as a
linear least square problem (LLSP):

‖Mx− t‖2e → min
x

That means the accumulated error between the prediction
Mx and the measured frame decoding times t is mini-
mized. The error is expressed by the square of the Eu-
clidean norm of the difference-vector. Because of its in-
sensitivity against badly conditioned matrices M , we chose
QR decomposition with Householder’s transformation as
the method to solve the LLSP. For a more detailed explana-
tion of the involved mathematics, please refer to literature
such as [22, 21].

4.1. Metric Selection and Refinement
For the general problem of metric finding we see two ap-
proaches: (a) First, a domain expert has to model the prob-
lem using smaller sub-steps. Then, by looking at the work
done in the sub-steps, he has to guess interesting metrics
which can be easily obtained from the data to be processed
and which correlate with the work done in the sub-steps.
These selected metrics are then verified with obtained re-
source usage statistics of the original problem. (b) Second,
for more simple problems, one could get useful results with-
out splitting up the original problem into smaller pieces and
without a domain expert selecting metrics. One could just
use all easily available metrics and try to find the relevant
metrics by validating it against measured data. In both cases
only those metrics are relevant for our approach which can
be obtained with much less resource usage than solving the
original problem.

For this paper we took the first approach, as the domain
is highly complex and a lot of different metrics are avail-
able. For both approaches an automatic method for metric
validation is required, which we describe in the following.

In general, it should be possible to feed the LLSP solver
with sensible metrics and it should figure out which ones to
use and which ones to drop by itself. Of course, the best
result for the linear least square problem is always achieved
by using as many metrics as possible, but one of the de-
sign goals is to make the results transferable to other videos,
which might not always work when using metrics too greed-
ily. Using too many metrics can lead to overfitting to the
training material, leading to bad predictions for videos not
included in the training set. The main cause for this are
similarities of columns with linear combinations of other
columns. The special case of this situation is an actual lin-
ear dependency, resulting in a rank-deficient matrix. This
leads to instabilites in the resulting coefficients, such that
we can increase certain coefficients and compensate by de-
creasing others with little or no influence on the prediction
results. The barebone LLSP solver will always search for
the optimal fit, which might be too specific to predict other
video’s decoding times with the resulting coefficients. To
overcome this problem, we drop metrics before solving the
LLSP, deliberately making the fit less good for the training
set, but more transferable to other videos outside the train-
ing set.

In the resulting R matrix of a QR decomposition, the
remaining error, called residual sum of squares, for an n-
column matrix is the square of the value in the n’th col-
umn of the n’th row. This value indicates the quality of
the prediction: The smaller, the better. If we have to drop
columns for transferability, we want to do so without too
much degradation on the quality of the result. Therefore,
we iteratively drop columns and then choose the one that
best fits our goals, but results in the smallest increase of this
error indicator. A linear dependency or a situation close to
it can also be detected with this indicator: If we drop a col-
umn and there is only a minor increase in the residual sum
of squares, the dropped column had little to no influence on
the result, so the column can be sufficiently approximated
as a linear combination of others. We propose an algorithm
to eliminate such situations in [21].

5. Metrics Extraction and LLSP Solver
We used an open-source decoder for the extraction with ad-
ditional instructions to collect the desired metrics. We re-
moved all actual decoding code, so that only the required
bitstream parsing remained, creating our metrics collector.
For MPEG-1/2, the libmpeg2 decoder library [7] in version
0.4.0 and for MPEG-4 pt. 2, the XviD library [10] in version
1.0.3 have been used. Our stripped-down parsers have about
20 % LoC (each ca. 4,000) of the original libraries and run
completely independently of the actual decoding steps.

The LLSP (linear least square problem) solver and the
collector support two phases of operation:

• Learning mode, in which the collector accumulates
metrics and a timed unmodified decoding step deliv-
ers real frame decoding times,

• Prediction mode, in which previously obtained LLSP
coefficients are multiplied with online-collected met-
rics to predict frame decoding times.

During learning mode, the solver collects metric values in
a matrix. If the data accumulation is finished, the coeffi-
cient vector x is calculated with the enhanced QR decom-
position presented above. This step has a complexity of
O(p ∗ q4), where q is typically fixed and small, compared
to p being unbound. Therefore, the video length has linear
impact which is what you would expect. The resulting coef-
ficients are then stored for use in prediction mode, typically
on videos other than those in the learning set.

In both learning and prediction mode, the potential for
decoder frame reordering has to be taken into account. De-
tails on this can be found in [21].

6. Results
We will now present decoding time predictions on real-
life video material taken from commercial DVDs (complete
movies), covering a huge feature variety. We also discuss
the prediction overhead, how to choose a sensible training
set, and where to apply the prediction. Because MPEG-
4 pt. 2 is one of our main contributions we discuss MPEG-
1/2 results only very briefly.

6.1. Choosing Videos for Learning Mode
The videos used in learning mode have to span the entire
feature set of the decoder and each of the metrics needs
to vary at least once. For MPEG-4 pt. 2, the video clips
need to cover both the simple and the advanced simple vi-
sual profiles to represent the feature combinations of the al-
gorithm sufficiently well. To calculate the influence of the
pixel count the training videos must differ in their resolu-
tion. The training videos and the video material used for
verification in the following are completely disjunct. One
could probably gain even more prediction accuracy by tun-
ing the training set towards certain use cases, but we did not
yet explore this possibility.

6.2. Prediction Accuracy and Overhead
Frame decoding time prediction could be done anywhere

from the actual encoding step until directly before decod-
ing. We see three useful methods: First, directly on en-
coding, by embedding relevant metric into the stream, such
that the last prediction step on the target machine will be
extremely cheap. However, the decoder has to be adapted
to use this information. Second, by using a stripped down
stream parser as described in Section 5 and running it di-
rectly before the decoding component. In this case, addi-
tional stream parsing overhead occurs, but no change is re-
quired in the decoder. And third, directly in the decoder,
such that metadata extraction has to be done only once.
Here, the actual stream parsing would have to be split into

!!

"#

"!

"$#

"$!

"# "%## "&## "'## "(## "$###

)
*+
,
"-
+
.
/

012+,

31,4*56,4"6*+,
7,2.81,4"6*+,

!!

"#

"!

"$#

"$!

"# "%## "&## "'## "(## "$###

)
*+
,
"-
+
.
/

012+,

9:.;<86,",11;1

Figure 14. Predicted and measured frame decoding
times and the absolute error for "The Sixth Sense".

!"

!#"""

!$""""

!$#"""

!"%& !"%$# !"%$!"%"# !" !"%"# !"%$!"%$#

'
()
*
+
!,
-
.
/
0

1+2)034+!+((-(

Figure 15. Histogram for the relative error of "The Sixth
Sense" decoding time prediction.

two phases as suggested in [11]. For the last two cases one
requires some frames being buffered to actually utilize the
scheduling information.

In the following we will discuss the second method as it
is the least invasive, there are no changes required for the
video streams or the decoder. If one strives for a solution
with even less overhead, our prediction approach does work
with all three of them.

The codecs in use were optimized for the target CPU and
used the available SIMD extensions (MMX, SSE, Altivec),
except for the XviD codec, where no working Altivec-
optimization was available.
6.2.1. MPEG-4 pt. 2 We used the two IBM commercials
and the two movie trailers from Table 1 on page 5 to train
the coefficients. We played these four clips in learning
mode on a 1.5 GHz AMD Sempron 2200+ machine to cal-
culate the coefficients. In prediction mode, we used the de-
rived coefficients to predict the frame decoding times for
several transcoded commercial DVDs, which were not part
of the training set. The promising results can be seen in
Table 2.

Detailed results for the DVD "The Sixth Sense",

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1900 1920 1940 1960 1980 2000

T
im

e
 [
m

s
]

Frame

Predicted time
Measured time

Figure 16. Prediction of stochastical load fluctuations
for "The Sixth Sense" video.

transcoded to MPEG-4 pt. 2, are presented in Figures 14–
16. The relative error has an average of−2.8 % at a standard
deviation of 3.9 % (error ranges from −42.6 % to 16.1 %
with an 95 % quantile of 0.92 ms, meaning that 0.92 ms
overprovisioning yields 95 % overpredicted frames). The
absolute error has an average of −0.27 ms at a standard de-
viation of 0.37 ms (error ranges from −5.97 ms to 2.88 ms).
Negative errors here mean that the prediction underesti-
mated, positive errors imply overestimation. The correla-
tion coefficient of predicted against measured values is 0.99,
so the prediction is quite accurate. In particular, we can pre-
dict not only the long-term behavior of the decoding time,
but also short-term fluctuations as can be seen enlarged in
Figure 16. [23] uses the terms “structural load fluctuation”
and “stochastical load fluctuation” for these long-term and
short-term variations respectively. We believe, now that
both can be predicted, the term “stochastical” should be re-
considered.

We also tested the prediction quality under completely
different and extreme conditions: a PowerPC system
(PowerBook G4 1.33 GHz running Mac OS X 10.4), train-
ing the coefficients with the same set of short learning clips
and then predicting the decoding times for the Amazon ad-
vanced simple profile high definition video. Here the rel-
ative error has an average of 3.2 % at a standard deviation
of 4.5 % (error ranges from −43.1 % to 16.5 %). The abso-
lute error shows an average of 3.31 ms at a standard devia-
tion of 4.66 ms (error ranges from −25.13 ms to 17.53 ms).
Given that the coefficients have been derived from standard
definition content (i. e., the training set does not contain
HD content) and are now applied to a high definition video
with about four times the frame size, we think these results
are outstanding and demonstrate the robustness of our ap-
proach.
6.2.2. Overhead The average overhead introduced by the
online metrics extraction for the above Amazon HDTV
video is 5.6 %. The main source for overhead is the bit-
stream parsing and macroblock decompression. Directly
accessing single macroblocks in the compressed stream is
not possible, as there is no index facility. The only means
of finding the position of a macroblock is to decompress
the complete preceding bitstream in the slice. A possible
approach is to split the decoder in two and parse and de-
compress the bitstream in the first part. The metrics can
then be extracted from the preprocessed data and the second
decoder part would do the rest of the decoding, using the al-
ready decompressed macroblocks as an input. We wanted to
avoid such constructions because they usually require heavy
modifications to decoder code, so new decoder implemen-
tations would be difficult to deploy. Altenbernd, Burchard,
and Stappert have taken this approach in [11], and they also
ended up with overheads of 4–9 %, depending on the video,
so there may not be much benefit in pursuing this.

Another way to reduce the overhead would be to not de-
code the motion vectors that we use to predict the tempo-
ral prediction step as discussed in Subsection 3.3.7. This

would lower the overhead from 5.6 % to 4.1 %, but would
also reduce the quality and transferability of the prediction
coefficients.

6.2.3. MPEG-1/2 We used two videos with different res-
olutions that cover both MPEG-1 and MPEG-2 to train
the predictor and did a thorough evaluation of our method
with some commercial DVD material. The good results in
Table 2 have again been measured on an AMD Sempron
2200+ machine (1.5 GHz).

6.2.4. Summary Although small parts still could use im-
provement, we think the overall goal of accurately predict-
ing decoding times for MPEG-1/2 and MPEG-4 pt. 2 in both
the simple and advanced simple profiles has been accom-
plished. The prediction coefficients derived from one set of
learning videos can be applied to a wide range of content not
included in the learning set, which is critical to future appli-
cations’ usability, because it reduces the amount of learning
necessary for good results.

7. Conclusion
We presented the design and implementation of a system to
predict decoding times with an up-to-now unmatched accu-
racy (avg. errors down to −0.0 %) and acceptable overhead
(5.6 %). The prediction relies on preprocessing and statis-
tical evaluation of training runs rather than requiring heavy
source code analysis or decoder modifications. This ensures
that the presented results will not be obsoleted by further de-
coder development such as code optimizations, because the
method is largely independent of the specific decoder code.
For the prediction we only require one calibration to the
target machine with a sensible set of short training videos,
then the prediction works for other videos. We also veri-
fied our approach with material from popular commercial
DVDs and achieved very accurate predictions (i. e., all rel-
ative errors of predictions were below 5 % and all absolute
error were below 0.4 ms).

8. Outlook
To deal with current or future multimedia requirements
overprovisioning of resources, as it is common today, is un-
economic. Here, the prediction of decoding times itself is
already helpful, but the results should be regarded in a larger
context. Schedulers of future operating systems will bene-
fit from knowing resource usage beforehand when support-
ing QoS applications. Our work can provide this knowl-
edge and should be complemented by research on percep-
tion models, which could assigns benefit values to video
frames. This would allow frames to compete for CPU time
on the basis of a true price-performance ratio, resulting in
optimal video presentation even in high load situations to
really improve the user’s experience.

To compensate for the complexity of future algorithms,
the bitstream parsing overhead should be reduced signifi-
cantly. The most promising approach is to pre-determine
the required metrics already during encoding and embed

DVD Properties Algorithm rel. error (%) abs. error (ms) values w/in±0.1 rel. error values w/in±0.5 ms abs. error 95% quantile*

Chicken
Run

animated,
claymation

MPEG-2 −0.5 (5.6) −0.02 (0.28) 96.8 % 97.5 % 0.32 ms
MPEG-4 pt. 2 −4.0 (4.8) −0.32 (0.41) 87.7 % 71.0 % 1.05 ms

The Fifth
Element

colorful, fast
action

MPEG-2 −4.5 (5.3) −0.18 (0.20) 86.3 % 95.1 % 0.49 ms
MPEG-4 pt. 2 −2.0 (3.4) −0.18 (0.32) 97.0 % 82.4 % 0.77 ms

King Kong
(1933)

still camera, black
and white

MPEG-2 −4.4 (4.4) −0.23 (0.22) 90.1 % 88.4 % 0.60 ms
MPEG-4 pt. 2 −2.3 (3.3) −0.23 (0.34) 97.8 % 78.4 % 0.83 ms

Lola rennt many fast
steadicam shots

MPEG-2 −0.0 (6.2) −0.01 (0.31) 94.0 % 96.3 % 0.35 ms
MPEG-4 pt. 2 −2.2 (4.3) −0.18 (0.39) 93.8 % 78.9 % 0.82 ms

The Sixth
Sense

slow motion, dark
atmosphere

MPEG-2 2.8 (7.5) 0.08 (0.26) 82.4 % 88.5 % 0.25 ms
MPEG-4 pt. 2 −2.8 (3.9) −0.27 (0.37) 94.3 % 72.9 % 0.92 ms

* Increasing the predictions by this value results in 95 % overestimation.

Table 2. Prediction results for some German Region 2 DVDs without copy protection. The table lists the average errors with
the respective standard deviations in brackets. The MPEG-2 streams have been taken directly from the DVDs, the MPEG-
4 pt. 2 streams have been created from them with ffmpeg [2] (coding options: -f m4v -vcodec mpeg4 -b 2000 -qpel -mv4 -gmc
-bf2). With both algorithms, the entire movies have been measured.

them at prominent positions inside the bitstream. The
MPEG-4 pt. 2 bitstream already contains this concept in a
complexity estimation header, which stores information like
macroblock and DCT coefficient counts. Unfortunately this
header is optional and the common encoder implementa-
tions do not make use of it. Future video bitstreams and con-
tainer formats should make this header mandatory. We esti-
mate a compressed bitrate of 2 KBit / s for this information,
which seems quite affordable compared to about 4 MBit / s
for current Video DVDs (ca. 0.05 %).

Another challenge is to further automate the implemen-
tation of new algorithms like it has already been done with
column dropping. One could think of automatic derivation
of metrics from profiling runs and function call frequency.
This might even lead to results for codecs that are only
available in binary form. On the other hand, the predic-
tion could be made more precise and it would be an inter-
esting research subject to include source code analysis into
our method to completely avoid underestimations in the pre-
dicted decoding times.

References
[1] ETSI TR 101 154: Digital Video Broadcasting (DVB); Im-

plementation guidelines for the use of MPEG-2 systems,
video and audio in satellite, cable and terrestrial broadcast-
ing applications.

[2] FFmpeg project. http://ffmpeg.sourceforge.net/.
[3] IBM Linux commercial. http://rxns-rbn-sea02.rbn.com/

ibmpdc/pdc/open/qtdemand/aug03/prodigy90_med.
mpg.

[4] ISO/IEC 11172-2: Coding of moving pictures and asso-
ciated audio for digital storage media at up to about 1,5
Mbit/s, Part 2: Video.

[5] ISO/IEC 13818-2: Generic coding of moving pictures and
associated audio information, Part 2: Video.

[6] ISO/IEC 14496-2: Coding of audio-visual objects, Part 2:
Visual.

[7] libmpeg2 project. http://libmpeg2.sourceforge.net/.
[8] Microsoft WMV HD Content Showcase. http:

//www.microsoft.com/windows/windowsmedia/
content_provider/film/ContentShowcase.aspx.

[9] The Dresden Real-Time Operating Systems Project. http:
//os.inf.tu-dresden.de/drops/overview.html.

[10] XviD project. http://www.xvid.org/.

[11] P. Altenbernd, L.-O. Burchard, and F. Stappert. Worst-Case
Execution Times Analysis of MPEG-2 Decoding. In Pro-
ceedings of the 12th Euromicro Conference on Real-Time
Systems (ECRTS).

[12] A. Bavier, B. Montz, and L. L. Peterson. Predicting MPEG
Execution Times. In Proceedings of the joint international
conference on measurement and modeling of computer sys-
tems, 1998.

[13] N. Feske and H. Härtig. Demonstration of DOpE — a Win-
dow Server for Real-Time and Embedded Systems. In 24th
IEEE Real-Time Systems Symposium (RTSS), pages 74–77,
Cancun, Mexico, Dec. 2003.

[14] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter,
and H. Härtig. Quality Assuring Scheduling - Deploying
Stochastic Behavior to Improve Resource Utilization. In
22nd IEEE Real-Time Systems Symposium (RTSS), London,
UK, Dec. 2001.

[15] D. A. Huffman. A method for the construction of minimum
redundancy codes. In Proceedings of the IRE, 1952.

[16] D. Isović and G. Fohler. Quality aware MPEG-2 Stream
Adaptation in Resource Constrained Systems. In Proceed-
ings of the 16th Euromicro Conference on Real-Time Sys-
tems (ECRTS).

[17] D. Isovic, G. Fohler, and L. Steffens. Timing constraints
of mpeg-2 decoding for high quality video: misconcep-
tions and realistic assumptions. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems (ECRTS 03),
Porto, Portugal, July 2003. IEEE.

[18] J. Loeser and H. Härtig. Low-latency Hard Real-Time Com-
munication over Switched Ethernet. In Proceedings of the
16th Euromicro Conference on Real-Time Systems (ECRTS),
pages 13–22, Catania, Italy, June 2004.

[19] L. Reuther. Disk Storage and File Systems with Quality-
of-Service Guarantees. PhD thesis, TU Dresden, Fakultät
Informatik, Nov. 2005.

[20] C. Rietzschel. VERNER – ein Video EnkodeR uNd playER
für DROPS, 2003. Master’s thesis.

[21] M. Roitzsch. Principles for the Prediction of Video Decod-
ing Times applied to MPEG-1/2 and MPEG-4 Part 2 Video,
2005. Großer Beleg (Undergraduate thesis).

[22] J. Stör and R. Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag, 1980.

[23] C. C. Wüst, L. Steffens, R. J. Bril, and W. F. Verhaegh.
QoS Control Strategies for High-Quality Video Processing.
In Proceedings of the 15th Euromicro Conference on Real-
Time Systems (ECRTS).

