
Generic User-Level PCI Drivers

Hannes Weisbach, Björn Döbel, Adam Lackorzynski
Technische Universität Dresden

Department of Computer Science, 01062 Dresden

{weisbach,doebel,adam}@tudos.org

Abstract

Linux has become a popular foundation for systems with real-time requirements such as industrial
control applications. In order to run such workloads on Linux, the kernel needs to provide certain
properties, such as low interrupt latencies. For this purpose, the kernel has been thoroughly examined,
tuned, and verified. This examination includes all aspects of the kernel, including the device drivers
necessary to run the system.

However, hardware may change and therefore require device driver updates or replacements. Such an
update might require reevaluation of the whole kernel because of the tight integration of device drivers
into the system and the manyfold ways of potential interactions. This approach is time-consuming and
might require revalidation by a third party. To mitigate these costs, we propose to run device drivers in
user-space applications. This allows to rely on the unmodified and already analyzed latency characteristics
of the kernel when updating drivers, so that only the drivers themselves remain in the need of evaluation.

In this paper, we present the Device Driver Environment (DDE), which uses the UIO framework
supplemented by some modifications, which allow running any recent PCI driver from the Linux kernel
without modifications in user space. We report on our implementation, discuss problems related to DMA
from user space and evaluate the achieved performance.

1 Introduction

Several advantages make the Linux kernel an at-
tractive OS platform for developing systems with
real-time capabilities in areas as diverse as indus-
trial control, mobile computing, and factory automa-
tion: The kernel supports many popular computing
platforms out of the box, which provides a low bar-
rier starting to develop software for it. Being open
source, it can be easily adapted to the target plat-
form’s needs. A huge community of developers guar-
antees steady progress and fast response to problems.

Applying Linux in a real-time environment how-
ever leads to additional problems that need to be
handled. We imagine a system where a computer
controls a safety-critical industrial machine while in
parallel providing non-real-time services. For ex-
ample, it might provide work statistics through a
web server running on the same machine. The
RT PREEMPT series of kernel patches [1] aims to
provide the ability to do so. However, use of Linux

in safety-critical systems would need additional au-
dits and certifications to take place.

The web server in above example makes use of an
in-kernel network device driver. Now, if the network
driver needs to be upgraded for instance because of
a security-related bugfix, the whole kernel or at least
parts of it would need to be reaudited. These certifi-
cations incur high cost in terms of time and manual
labor. They become prohibitively expensive when
they need to be repeated every time a part of the
system is upgraded.

Running device drivers in user space allows to
circumvent recertification of the whole kernel by en-
capsulating the device driver in a user-level appli-
cation. If, like in our example, the network is solely
used by non-real-time work, it can be completely run
outside the real-time domain and doesn’t need to be
certified at all.

Linux already comes with UIO, a framework for
writing device drivers in user space [5]. However,

1

these drivers still need to be rewritten from scratch
using UIO. In this paper we propose an alternative
technique: Using UIO and other available kernel
mechanisms, we implement a Device Driver Envi-
ronment (DDE) – a library providing a kernel-like
interface at the user level. This approach allows for
reusing unmodified in-kernel drivers by simply wrap-
ping them with the library and running them at the
user level.

In the following section, we introduce the general
idea of the DDE and inspect the UIO framework with
respect to its support of a generic user-level driver
layer. We then discuss our implementation of a DDE
for Linux in Section 3. Thereafter, we continue an-
alyzing the special needs of Direct Memory Access
(DMA) from user space in Section 4 and present a
solution that requires only minimal kernel support.
In Section 5 we evaluate our DDE implementation
with an in-kernel e1000e network device driver run-
ning as user-space application.

2 User-Level Device Drivers
for Linux

Device drivers are known to be one of the single most
important sources of bugs in today’s systems [4].
Combined with the fact that most modern operat-
ing systems run device drivers inside their kernel, it
is not surprising that a majority of system crashes is
caused by device drivers – Swift and colleagues re-
ported in 2003 that 85% of Windows crashes may be
attributed to device driver faults [24].

One way to improve reliability in this area is
to separate device drivers from the kernel and run
them as independent user-level applications. Doing
so isolates drivers from each other and the remaining
components and increases the chance that a faulting
driver does not take down the rest of the system.
Properly isolated drivers may be restarted after a
crash as it is done in Minix3 [13]. Performance degra-
dation resulting frommoving drivers out of the kernel
into user space is often considered a major disadvan-
tage of this approach. However, it has been proven
that user-level device drivers may achieve the same
performance as if run in the kernel [16]. Further
research showed that existing device drivers can be
automatically retrofitted to run most of their critical
code in user space and only keep performance-critical
paths within the kernel [11].

Our ultimate goal is to provide a Device Driver
Environment, a common runtime library that can be
linked against arbitrary in-kernel device drivers in

order to run them as user-level applications without
modification. In this section we give an overview of
the DDE approach and analyze Linux’ UIO frame-
work regarding its capabilities of supporting generic
user-level device drivers.

2.1 The DDE Approach

Our approach for reusing in-kernel device drivers in
user space is depicted in Figure 1. The source code
of an unmodified native Linux device driver is linked
against a wrapper library, the Device Driver Envi-
ronment. The wrapper provides all functions the
driver expects to be implemented originally by the
Linux kernel. The DDE reimplements these func-
tions solely using mechanisms provided by a device
driver abstraction layer, called DDEKit.

Device Driver Environment

Linux Kernel

Native Linux

Device Driver

DDEKit Abstraction Layer

FIGURE 1: DDE Architecture

Only DDE knows about the intricate require-
ments of guest drivers. In turn, the DDEKit provides
abstract driver-related functionality (device discov-
ery and management of device resources, synchro-
nization, threading, etc.) and implements it using
functionality from the underlying host OS. Split-
ting development into these two layers allows to use
a DDEKit for a certain host platform in connec-
tion with different guest DDE implementations as
well as reuse the same guest DDE on a variety of
hosts. This layering has allowed for implementations
of DDE/DDEKit for different guest drivers (Linux,
FreeBSD [10]) as well as different host platforms
(Linux, L4/Fiasco [12], Genode [15], Minix3 [25],
GNU/HURD [7]).

In this paper we focus on implementing a DDE
for Linux PCI device drivers on top of the Linux
kernel. To achieve this goal, it is necessary to under-
stand the facilities at hand to perform device driver-
related tasks from user space. The User-level IO
framework (UIO) appears to be a good starting point
for this.

2

2.2 UIO Overview

The Linux user-level IO framework (UIO) is an ex-
tension to the kernel that allows user-level drivers to
access device resources through a file interface and
is depicted in Figure 2. The interfacing is performed
by the generic uio core. In addition to that, UIO
relies on a tiny device-specific driver stub, labelled
uio dev in the figure. During startup, this stub ob-
tains information about the device’s I/O resources
and when encountering an interrupt takes care of
checking whether the interrupt was raised by the de-
vice and handles the device-specific way of acknowl-
edging the interrupt.

Linux Kernel

User-Level

Device Driver

uio_core

uio_dev

FIGURE 2: UIO components and their in-

teraction

A user-level driver obtains access to the target
device’s resources through a /dev/uioXXX device file.
Reading the device returns the number of (interrupt)
events that occurred since the last read. Device I/O
memory can be accessed by mmap’ing the device. UIO
neither supports x86 I/O ports1 nor direct memory
access (DMA).

UIO for Generic User-Level Drivers

Our goal is to implement a DDE that allows generic
PCI device drivers to be run in user space. This
does not fit well with UIO’s dependence on a device-
specific stub driver. Unfortunately, there is no
generic way to move acknowledgment of an inter-
rupt out of the kernel. Instead, this is often highly
device-specific and requires running in kernel mode.

As an exception, the situation improves with PCI
devices that adhere to more recent versions of the
PCI specification [21] (v2.3 or later). These devices
allow generic detection of whether an interrupt is
asserted using an interrupt state bit in the PCI con-
fig space. Furthermore, it is possible to generically

disable interrupt delivery using an interrupt disable
bit. This enables the implementation of a generic
UIO PCI driver and removes the requirement of a
device-specific driver stub.

The lack of support for user-level DMA is an-
other issue that needs to be resolved in order to sup-
port arbitrary user-level PCI drivers. In the follow-
ing sections we present the details of our implemen-
tation of a DDE for Linux.

3 A DDE For Linux

As described in Section 2.1, the user-space driver
environment consists of two parts: a host-specific
DDEKit providing a generic device driver abstrac-
tion and a guest-specific DDE that solely relies on
the functionality provided by the DDEKit. For our
implementation, we can build upon the already ex-
isting Linux-specific DDE for the L4/Fiasco micro-
kernel [12]. In addition to that we need to implement
a DDEKit for Linux as a host, which we describe in
this section.

3.1 Anatomy of a DDEKit

The DDEKit’s task is to provide a generic interface
that suits the needs of guest device driver environ-
ments. To come up with this interface, we analyzed
network, block, and character device drivers in two
different kernels (Linux and FreeBSD) [10], resulting
in a list of mechanisms all these drivers and their
respective environments rely on.

The most important task of a device driver is
managing I/O resources. Therefore, a driver abstrac-
tion layer needs to provide means to access and han-
dle interrupts, memory-mapped I/O, and I/O ports.
As most of the drivers we are concerned with are PCI
device drivers, DDEKit also needs to provide ways
to enumerate the system’s PCI devices or at least
discover the resources that are attached to a device.
Additionally, means for dynamic memory manage-
ment are crucial when implementing anything but
the most simple device driver.

While most device drivers operate single-
threaded, threading plays an important role in DDE
implementations, because threads can be used to im-
plement tasks such as interrupt handling, Linux Soft-
IRQs, as well as deferred activities (work queues).
The existence of threading implies that synchroniza-

1Actually, UIO does not need to support I/O ports, because these can be directly accessed by the user application if it is
given the right I/O permissions.

3

tion mechanisms such as locks, semaphores, and even
condition variables need to be present.

Furthermore, a lot of drivers need a notion of
time, which Linux drivers usually obtain by look-
ing at the magic jiffies variable. Hence, DDEKit
needs to support this. Apart from these features, in
order to be useful, the DDEKit also provides means
for printing messages and a link-time mechanism
for implementing prioritized init-calls, that is func-
tions that are automatically run during application
startup before the program’s main function is exe-
cuted.

3.2 I/O Ports and Memory

In order to drive PCI devices and handle their re-
sources, DDEKit needs means to discover devices at
runtime. This is implemented using libpci [18], which
allows scanning the PCI bus from user space. The
located devices are then attached to a virtual PCI
bus implemented by DDE. At runtime, any calls by
the driver to the PCI subsystem use this virtual bus
to perform their work.

After the virtual PCI bus is filled with
the devices to be driven, information about
the provided resources is obtained from
/sys/bus/pci/devices/.../resource. Access to
I/O ports is later granted by first checking whether
the ports requested by the driver match the ones
specified by the resource file, and thereafter grant-
ing the process port access using the ioperm system
call. I/O memory resources are also validated and
then made accessible by mmaping the respective sysfs
resource files.

3.3 Interrupt Handling

For managing interrupts, DDEKit/Linux makes use
of the UIO interrupt handling mechanism, which
supports generic interrupt handling through the
uio pci generic module for all PCI devices sup-
porting the PCI specification v2.3 or higher.

Once the driver requests an IRQ for a de-
vice, DDEKit locates the generic UIO driver’s
sysfs node (/sys/bus/pci/drivers/.../new id).
It then writes the PCI device’s device and vendor IDs
into this file and thereby makes uio pci generic

become responsible for handling this device’s inter-
rupts.

Thereafter, a new interrupt handler thread is
started. This thread performs a blocking read on
the UIO file that was generated when attaching

uio pci generic to the device. Whenever the read
returns, at least one interrupt event has occurred
and the handler function registered by the driver is
executed.

The interrupt handler thread is the only one
polling the UIO device file for interrupts. Af-
ter successful return from the blocking read, the
sysfs node for the device’s PCI config space
(/sys/class/uio/.../config) is written to disable
IRQs while handling the interrupts. In order to avoid
interrupt storms in the kernel while the user-level
driver is executing its handler, the disabled interrupt
is only turned on right before the interrupt thread be-
comes ready to wait for the next interrupt by reading
the UIO device.

3.4 Threads and Synchronization

Threads are a fundamental building block of a DDE,
because drivers may use a wide range of facilities
that might be executed in parallel: soft-IRQs, ker-
nel threads, and work queues are implemented by
spawning a dedicated thread for each such object.
Furthermore, threads are used for implementing in-
terrupts as discussed in Section 3.3. However, not
all of these activities are actually allowed to execute
in parallel. Therefore, means for (blocking) synchro-
nization are needed.

As DDEKit/Linux is implemented to run in
Linux user space, we can make use of the full range
functions provided by the libpthreadAPI to imple-
ment threading as well as synchronization.

3.5 Timing

Linux device drivers use timing in two flavors: first,
the jiffies counter is incremented with every clock
tick. DDEKit/Linux emulates jiffies as a global
variable. During startup, a dedicated jiffies

thread is started that uses the libC’s nanosleep to
sleep for a while and thereafter adapt the jiffies

counter accordingly. For the drivers we experimented
with so far, it has proven sufficient to not tick with
HZ frequency as the Linux kernel would, but in-
stead only update the jiffies counter every 10th
HZ tick. This might be adapted once a driver needs
a finer granularity. Furthermore, as device drivers
run as independent instances in user space, this can
be configured for every device driver separately ac-
cording to its needs and the jiffies counting over-
head can even be completely removed for drivers that
don’t need this time source.

4

The second way Linux drivers use timing is
through the add timer group of functions that allows
to program deferred events. DDEKit/Linux provides
an implementation by spawning a dedicated timer
thread for every driver instance. This thread man-
ages a list of pending timers and uses a semaphore
to block with a timeout until the next timer occur-
rence should be triggered. If the blocking semaphore
acquisition returns with a timeout, the next pending
timer needs to be handled by executing the handler
function. Otherwise, an external thread has mod-
ified the timer list by either adding or removing a
timer. In this case the timer thread recalculates the
time to sleep until the next trigger and goes back to
sleep.

3.6 Memory Management

Running in user space means that DDEKit/Linux
may use LibC’s malloc and free functions for inter-
nal memory management needs. However, this does
not suffice for implementing Linux’ memory manage-
ment functions. Linux’ kmalloc is internally already
implemented using SLABs or one of their equiva-
lents. Our implementation currently provides a spe-
cific SLAB implementation in DDEKit, but we plan
to use Linux’ original memory allocator in the fu-
ture and only back it with page-granularity memory
allocations provided from DDEKit.

Additionally, Linux drivers may use the group
of get free pages functions to allocate memory
with page granularity. DDEKit/Linux supports page
granularity allocations through a function that uses
mmap in order to allocate page-aligned memory.

A remaining problem is that drivers commonly
acquire DMA-able memory in order to allow high
amounts of data to be copied without CPU in-
teraction. This is impossible by solely relying on
user-level primitives. This means that an imple-
mentation of DMA allocation functions such as
dma alloc coherent requires additional thought.
We go on to discuss our solution to this problem
in the following section.

4 Attacking the DMA Problem

In order for DMA to or from a memory region to
work properly, the region needs to meet three crite-
ria:

1. The region’s physical address needs to be avail-
able as DMA does not use virtual addresses.

2. It needs to be physically contiguous so that no
virtual-to-physical address translations need to
be done during the DMA transfer.

3. It needs to be pinned, that is the region or parts
of it must not be swapped out during the DMA
transfer.

None of these criteria are met by user-
level memory allocation routines such as malloc,
posix memalign or mmap, because they work on
purely virtual addresses and the underlying kernel
is free to map those pages anywhere it wants.

As it is necessary to get kernel support for han-
dling DMA, we implemented a small kernel module
providing an interface to the in-kernel DMA API.
The module supports two modes: copy-mode pro-
vides a simple translation layer between user and
kernel pages for DMA and zero-copy mode facilitates
an IOMMU to improve DMA performance.

4.1 Copy-DMA

Our kernel module for supporting DMA from user
space closely collaborates with the uio core as
shown in Figure 3. The uio dma module is noti-
fied by the uio core when a device is bound to it
and creates an additional device node /dev/uio-dma
which user-level drivers can use to obtain DMA-able
memory for a specific device2.

Linux Kernel

User-Level

Device Driver

uio_core

uio_dev

uio_dma

FIGURE 3: Introducing the uio dma mod-

ule

Linux device drivers can allocate DMA memory
either using dma alloc coherent or they can request
to map DMA memory for a certain buffer in virtual
memory and a DMA direction (send/receive) using
{dma,pci} map single.

2The notification is necessary so that the uio dma module has access to the respective UIO PCI device data structure.

5

A näıve idea would be to simply implement a de-
vice driver that allows allocating DMA memory from
the kernel and then use it from user space. However,
on many platforms it is possible to use any physi-
cal memory for DMA. Therefore, many drivers do
not explicitly allocate DMA memory upfront, but
instead simply start DMA from arbitrary memory
regions, even from their stack. This means the DMA
allocator driver would have to provide all dynamic
memory allocations for the user space driver. Not
only would this circumvent the convenience of man-
aging user space memory using libC’s malloc and
free, but it would also decrease the possibility of
using GDB with a user space driver, because such
kernel memory would not be ptraceable.

DDE’s implementation of dma alloc coherent

performs an mmap on the uio-dma device which in
turn allocates DMA-able memory in the kernel and
establishes a mapping to user space so that upon
return from the system call the driver can use this
memory area for DMA.

For the map single family of functions an ioctl

on the uio-dma device is used to send a virtual user
address and the DMA direction to the kernel mod-
ule. The system call returns the physical address the
driver can then use to initiate DMA.

If upon a DMA MAP ioctl the direction indi-
cates that data shall be sent from user space, the
kernel module allocates a DMA-able kernel buffer
and copies the user data into this buffer before re-
turning the DMA buffer’s physical address. If DMA
shall be done from the device into a user buffer,
the ioctl only allocates a DMA buffer in the ker-
nel and delays copying data from the DMA buffer
to the user buffer until the buffer is unmapped us-
ing dma unmap single. It is safe to do so, because
only after this function call the DMA can safely be
assumed to be finished and therefore the user-level
driver should not touch the buffer beforehand any-
way.

4.2 DMA With Fewer Copies

While the copy-DMA method works without any fur-
ther support than the one that is already present
within the kernel, more recent hardware featuring
an IOMMU can be used to get rid of the copying
steps between user and kernel buffers.

Copy-DMA uses different kernel- and user-level
buffers because it needs to ensure that the kernel
buffers that are effectively used for the DMA opera-
tion are in fact physically contiguous, which cannot
be guaranteed for the user-level buffers.

IOVA

space

Physical

Memory

Virtual

Memory

FIGURE 4: Mapping DMA buffers using
an IOMMU

Using an IOMMU comes to the rescue here. In
this case we can use an arbitrary buffer that is vir-
tually contiguous (which includes every buffer allo-
cated using malloc). The uio dma module upon en-
countering the DMA ioctl then only needs to run
through the list of pages forming the buffer and per-
form an equally contiguous mapping into the device’s
IOVA space. Thereafter, the user-level driver can use
the IOVA address returned from the ioctl call and
program DMA without needing to care about phys-
ical contiguity.

A minor intricacy arises because of the fact that
user-level buffers do not always start and end at
a page boundary. This means that multiple DMA
buffers may share the same page, so that upon un-
mapping one of the buffers, the uio dma module can-
not safely remove the IOVA mapping as other DMA
buffers may still contain the same page. Therefore,
uio dma uses reference counting to detect when a
page may really be unmapped.

5 Case Studies

There are three interesting questions concerning
user-level device drivers:

1. Does running the driver in user space modify
the real-time capabilities of a PREEMPT RT
kernel?

2. How does the user space driver’s performance
compare with an in-kernel driver?

3. Which benefits can be gained by running a
driver in user space and using existing profiling
and debugging tools?

In this section we try to answer these questions us-
ing a real-world example. We downloaded the Linux

6

e1000e network interface driver from the Intel web-
site [6] and compiled it to run in user space.

For all our experiments we used a quad-core Intel
Core i7 running at 2.8 GHz with 2 GB of RAM. The
operating system was a Linux 3.0.1-rt11 kernel with
the PREEMPT RT option switched on. We tested
the e1000e driver with an Intel 82578DCGb ethernet
card.

5.1 Real-Time Operation

To evaluate the influence of running PCI drivers
in user space on the system’s real-time behav-
ior, we used the cyclic test utility provided by
OSADL [20]. Figure 5 shows the maximum laten-
cies for several scenarios we tested.

Each group has four bars corresponding to
threads running on the 4 CPUs in our test ma-
chine. The group labelled no load shows the la-
tencies for running cyclic test on the idle system
running with idle=poll to mitigate power manage-
ment effects. For the group labelled hi load we set
each CPU’s load to 100% and reran cyclic test.
Thereafter, we added network load to the system
by running the IPerf UDP benchmark [8] between
the test machine and a remote PC. The groups with
labels * e1000e show the latency for using network
through the in-kernel e1000e driver. The groups la-
belled * user give latencies obtained for running the
experiment with the e1000e driver in user space using
DDE.

 0

 10

 20

 30

 40

 50

 60

no_load

hi_load

no_load_e1000e

hi_load_e1000e

no_load_user

hi_load_user

M
ax

im
um

 la
te

nc
y

in
 m

ic
ro

se
co

nd
s

cyclic_test latencies without IOMMU

FIGURE 5: Maximum cyclic test latencies
for the non-IOMMU scenario

Additionally, we tried to figure out whether turn-
ing the machine’s IOMMU on or off makes a differ-
ence and therefore reran our experiments with the
IOMMU turned on. The results for these experi-
ments are shown in Figure 6.

 0

 10

 20

 30

 40

 50

 60

no_load

hi_load

no_load_e1000e

hi_load_e1000e

no_load_user

hi_load_user

no_load_user_m
ap

hi_load_user_m
ap

M
ax

im
um

 la
te

nc
y

in
 m

ic
ro

se
co

nd
s

cyclic_test latencies with IOMMU

FIGURE 6: Maximum cyclic test latencies

for the IOMMU scenario

In addition to the experiments also present in
the no-IOMMU case, we added two more bar groups
labelled * user map. These groups show maximum
latencies obtained when using the no-copy version of
the uio dma module.

In both setups we see that the maximum laten-
cies using user-level device drivers are within the
bounds of the other measurements. Although we ob-
serve a peak in the latency for hi load user, this peak
is within the bounds of the unmodified measurements
(e.g., hi load in the previous experiment). We con-
clude that running device drivers in user space using
DDE has no influence on the real-time capabilities of
the system.

5.2 UDP/TCP Performance

To evaluate the performance of user-level DDE
drivers, we linked our user-level e1000e driver to the
lwIP stack [9] and then ran a UDP and TCP through-
put benchmark while connected to an external com-
puter. For comparison, we also ran the same bench-
mark using the in-kernel device driver and the builtin
Linux TCP stack.

Figure 7 shows the average and maximum
throughputs achieved in these experiments. For
UDP it is notable, that even though the network link
is a 1Gb NIC, IPerf was only able to saturate 800
MBit/s. Furthermore, user-level and kernel stacks
perform equally well. However, the CPU utilization
for the user-level driver is higher: the kernel stack
ran at about 50% utilization, while the user stack
consumed 80%.

7

 0

 200

 400

 600

 800

 1000

UDP_avg

UDP_m
ax

TCP_avg

TCP_m
ax

T
hr

ou
gh

pu
t i

n
M

B
it/

s

IPerf throughput

Kernel stack
User lwIP stack

FIGURE 7: IPerf throughput results

TCP performance is unfortunately much worse
for the user-level TCP stack than with the in-kernel
one. We are still investigating these issues and right
now attribute this to problems with the lwIP stack.

5.3 Testing, Debugging, and Profiling

So far we showed that user-level device drivers allow
for increased isolation at acceptable speed while not
influencing the system’s real-time capabilities. An-
other advantage of running them as user applications
is the availability of debugging and profiling tools
that ease driver development. In this section we in-
troduce two examples where user-level tools could be
applied to kernel code and helped us find problems
in our implementation of DDE.

Debugging DDE

While working on the user-level e1000e device driver,
we experienced hangs in TCP connectivity and
started debugging them. With the help of the GDB
debugger we were able to figure out that the problem
occurred when the driver was in NAPI polling mode
and ran out of its network processing budget.

In the Linux kernel, the driver at this point vol-
untarily reschedules, giving other kernel activity the
chance to run. This was improperly implemented
within the DDE as it simply returned from the Soft-
IRQ handler. In our case however, it would have
been necessary to raise the Soft-IRQ again. This did
not happen and so the driver went to sleep until it
got woken up by the next interrupt.

Profiling DDE

When we initially ran the e1000e driver in user space,
performance was by far not as convincing as in the
experiments described in Section 5.2.

Using Valgrind’s [19] Callgrind profiler, we were
able to investigate where the performance went. We
were caught by surprise by the result: DDE man-
ages a list of virtual-to-physical mappings for all
allocated memory. This list is used to implement
the virt to phys lookup mechanism. This is im-
plemented as a linked list and the assumption was
that this would suffice, because there would never
be many mappings stored in this list and calls to
virt to physwould take place rather less frequently.

Callgrind’s output however told us that this func-
tion accounted for a huge amount of execution time.
With this knowledge we were able to take a closer
look at what regions were registered in this list and
found out that in many cases, we did not need to
store this information at all, thereby reducing the
amount of time spent searching the virt-phys map-
pings.

6 Related Work

Our work relates to the problem of reusing existing
device drivers when designing a new operating sys-
tem. LeVasseur et al. proposed to use per-driver vir-
tual machines to reuse and isolate device drivers [17].
Poess showed that the DDE approach also works
for binary device drivers [22], which is not yet im-
plemented in our system. Friebel implemented a
DDE for FreeBSD device drivers which uses the split
DDEKit/DDE architecture [10]. Building upon this,
it should now also be possible to use FreeBSD device
drivers within Linux user space. Boyd-Wickizer’s
SUD framework [2] also allows running Linux drivers
in user space but focusses more on security and iso-
lation and instead of the real-time capabilities of the
system.

Our work is also related to Schneider’s device
driver validation mechanism [23]. By wrapping
drivers in user-level applications, we can use the sys-
tem’s native analysis and profiling tools in order to
observe driver behavior and identify security viola-
tions. The RUMP framework for NetBSD has similar
goals as our work and allows debugging and devel-
oping device drivers for NetBSD in user space [14].
However, it is not intended to be used for actually
running drivers at user space in production systems.

Chipounov proposed to perform heavyweight

8

instruction-level tracing and symbolic execution in
order to generate device-specific code that can be
dropped into existing per-OS device driver skele-
tons [3]. While this approach eases device driver
reuse, applying it to a real-time kernel has the same
drawbacks as native in-kernel drivers in that they
still need to be revalidated every time an update is
applied.

7 Conclusion

In this paper we presented a Device Driver En-
vironment that allows executing generic Linux in-
kernel PCI drivers as user-level applications on top
of Linux. This is achieved by implementing the DDE
as a wrapper library implementing the facilities ex-
pected by in-kernel drivers at user space using off-
the-shelf kernel mechanisms such as UIO and sysfs.
With the help of a small kernel module our frame-
work also supports DMA from user space.

Using this framework, we were able to run the
widely used e1000e network interface driver in user
space on a PREEMPT RT kernel. Experiments us-
ing cyclic test showed that the real-time latencies of
the system were not influenced by the fact that the
driver was running from user space. Furthermore, it
was possible to use common Linux program analy-
sis tools such as the GDB debugger and Valgrind to
profile and debug drivers.

The DDEKit for Linux is available for download
at http://os.inf.tu-dresden.de/ddekit/.

Acknowledgments

We’d like to thank several people whose hard work
within the recent years has made design and imple-
mentation of the Device Driver Environment possi-
ble. Thank you, Christian Helmuth, Thomas Friebel,
and Dirk Vogt. Carsten Weinhold provided valuable
hints on improving this paper.

This work was partially supported by the Ger-
man Research Association (DFG) within the Special
Purpose Program 1500, project title ASTEROID.

References

[1] Linux RT project. http://www.kernel.org/pub/

linux/kernel/projects/rt/.

[2] Silas Boyd-Wickizer and Nickolai Zeldovich. Toler-
ating malicious device drivers in linux. In Proceed-

ings of the 2010 USENIX conference on USENIX
annual technical conference, USENIX ATC’10,
pages 9–9, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[3] Vitaly Chipounov and George Candea. Reverse en-
gineering of binary device drivers with RevNIC. In
EuroSys ’10: Proceedings of the 5th European Con-
ference on Computer Systems, pages 167–180, New
York, NY, USA, 2010. ACM.

[4] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating systems errors. In SOSP ’01: Proceed-
ings of the Eighteenth ACM Symposium on Operat-
ing Systems Principles, pages 73–88, New York, NY,
USA, 2001. ACM.

[5] Jonathan Corbet. UIO: user-space drivers. https:

//lwn.net/Articles/232575/, 2007.

[6] Intel Corp. Network adapter driver for Gigabit
PCI based network connections for Linux. http:

//downloadcenter.intel.com, 2010.

[7] Zheng Da. DDE for GNU/HURD. http://www.

gnu.org/software/hurd/dde.html.

[8] Jon Dugan and Mitch Kutzko. IPerf TCP/UDP
bandwidth benchmark. http://sourceforge.net/

projects/iperf/, 2011.

[9] Adam Dunkels. Minimal TCP/IP implementation
with proxy support. Technical Report T2001:20,
SICS – Swedish Institute of Computer Science,
February 2001. Master’s thesis.

[10] Thomas Friebel. Uebertragung des Device-
Driver-Environment-Ansatzes auf Module des BSD-
Betriebssystemkerns. Master’s thesis, TU Dresden,
2006.

[11] Vinod Ganapathy, Matthew J. Renzelmann, Arini
Balakrishnan, Michael M. Swift, and Somesh Jha.
The design and implementation of microdrivers.
In ASPLOS’08: Proceedings of the Thirteenth In-
ternational Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 168–178, Seattle, Washington, USA,
March 2008. ACM Press, New York, NY, USA.
http://doi.acm.org/10.1145/1346281.1346303.

[12] TU Dresden OS Group. DDE/DDEKit for
Fiasco+L4Env. http://wiki.tudos.org/DDE/

DDEKit, 2006.

[13] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip
Homburg, and Andrew S. Tanenbaum. Failure re-
silience for device drivers. In DSN ’07: Proceedings
of the 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, pages
41–50, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[14] Antti Kantee. Rump device drivers: Shine on
you kernel diamond. http://ftp.netbsd.org/pub/
NetBSD/misc/pooka/tmp/rumpdev.pdf, 2010.

[15] Genode Labs. Genode dde kit. http://genode.

org/documentation/api/dde_kit_index.

9

[16] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale,
Stefan Götz, Charles Gray, Luke Macpherson,
Daniel Potts, Yueting Shen, Kevin Elphinstone, and
Gernot Heiser. User-level device drivers: Achieved
performance. Journal of Computer Science and
Technology, 20, 2005.

[17] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and
Stefan Götz. Unmodified device driver reuse and im-
proved system dependability via virtual machines.
In In Proceedings of the 6th Symposium on Operat-
ing Systems Design and Implementation, pages 17–
30, 2004.

[18] Martin Mares. PCI Utilities. http://mj.ucw.cz/

pciutils.html, 2010.

[19] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instru-
mentation. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, PLDI ’07, pages 89–100,
New York, NY, USA, 2007. ACM.

[20] OSADL. Cyclic test util-
ity. https://www.osadl.org/

Realtime-test-utilities-cyclictest-and-s.

rt-test-cyclictest-signaltest.0.html, 2011.

[21] PCI SIG. PCI Local Bus Specification.
http://www.pcisig.com/specifications/

conventional/conventional_pci_23/, 2002.

[22] Bernhard Poess. Binary device driver reuse. Mas-
ter’s thesis, Universitaet Karlsruhe, 2007.

[23] Fred Schneider, Dan Williams, Patrick Reynolds,
Kevin Walsh, and Emin Gun Sirer. Device driver
safety through a reference validation mechanism. In
Proceedings of the 8th USENIX Symposium on Op-
erating Systems Design and Implementation OSDI
’08, December 2008.

[24] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity oper-
ating systems. SIGOPS Oper. Syst. Rev., 37(5):207–
222, 2003.

[25] Andrew Tanenbaum, Raja Appuswamy, Herbert
Bos, Lorenzo Cavallaro, Cristiano Giuffrida, Tomáš
Hrubý, Jorrit Herder, Erik van der Kouwe, and
David van Moolenbroek. MINIX 3: Status Report
and Current Research. ;login: The USENIX Maga-
zine, 35(3), June 2010.

10

