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Abstract

The combination of a real-time executive and an off-the-
shelf time-sharing operating system has the potential of pro-
viding both predictability and the comfort of a large appli-
cation base. To isolate the real-time section from a signif-
icant class of faults in the (ever-growing) time-sharing op-
erating system, address spaces can be used to encapsulate
the time-sharing subsystem. However, in practice designers
seldomly use address spaces for this purpose, fearing that
extra cost induced thereby limits the system’s predictability.

To analyze this cost, we compared in detail two systems
with almost identical interfaces—both are a combination of
the Linux operating system and a small real-time executive.
Our analysis revealed that for interrupt-response times, the
delay and jitter caused by address spaces are similar to or
even smaller than those caused by caches and blocked inter-
rupts. As a side effect of our analysis, we observed that pub-
lished figures on predictability must be carefully checked
whether or not such hardware features are included in the
analysis.

This paper is a follow-up of an earlier publication at the
3rd Real-Time Linux workshop [17]. It is different to that
paper in that we have further optimized our microkernel and
examined more hardware.

1 Introduction

Hybrid operating systems—systems with both a real-
time and a time-sharing subsystem—have two interesting
benefits. First, they offer a comfortable, well-known inter-
face with lots of existing applications. Second, they are able
to run real-time and standard non-real-time applications at
the same time on the same machine without impairing the
predictability of the real-time applications.

Existing hybrid systems differ in the degree of separa-
tion between the real-time and the time-sharing subsystem.

They can be categorized into the following three categories.
Shared-space systems introduce a small real-time execu-

tive layer into the time-sharing kernel. On top of that layer,
the time-sharing kernel and the real-time applications all
run in kernel mode. User mode is reserved for time-sharing
applications. In this architecture, real-time applications are
protected from errors in time-sharing applications.

Shared-kernel systems, like shared-space systems, em-
bed a real-time executive in the time-sharing kernel. How-
ever, real-time applications run in user mode. This has the
additional benefit that the time-sharing system can be pro-
tected from errors in real-time applications.

Separate-space systems move the whole time-sharing
subsystem to user mode. In these systems, only a small real-
time kernel runs in kernel mode. Real-time applications,
time-sharing applications, and the time-sharing operating-
system “kernel” run in separate address spaces in user
mode. Separate-space systems have the property that the
real-time subsystem is protected from a large class of errors:
Crashes in the time-sharing subsystem (either in the operat-
ing system or in user code) will not corrupt the real-time
subsystem, except if a device driven by the time-sharing
subsystem locks up the machine or corrupts main memory.

The increased level of fault tolerance of separate-space
systems is desirable for many real-time applications. In
many ways, it is more important to protect the real-time sub-
system from the time-sharing subsystem (both kernel and
applications) than the other way round: For example, a real-
time application may be safety-critical, but time-sharing op-
erating systems have become so big and bloated that it is
difficult to trust their stability. However, the undoubtable
benefits of separate address spaces do not come for free.

In this paper, we determine the cost of separate-space
systems relative to that of shared-space systems. We com-
pare these particular two types of systems because we feel
that separate-space systems lend themselves for the largest
number of applications, and we expect the largest perfor-
mance overhead relative to shared-space systems.

For our evaluation, we used RTLinux [27] from the
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shared-space–systems category, and L4RTL, a reimplemen-
tation of the RTLinux API as a separate-space system
based on a real-time microkernel and a user-level Linux
server. We chose these systems because they are easily
comparable—both are based on the Linux kernel—and be-
cause we had available the source code of these systems.
Also, we knew from earlier experiments that RTLinux has
excellent real-time–scheduling properties [16, 17].

We concentrated on predictability in worst-case situa-
tions rather than writing yet another instance of the noto-
rious “who has the fastest IPC implementation” type of pa-
pers. For example, while the “fastest IPC” papers in general
tried to secure optimal environments for their mechanisms,
like warm caches of the communicating processes [12, 19],
we looked at the predictability of base mechanisms under
conditions such as flooded caches.

We found that the cost induced by address-space
switches to real-time applications does not significantly dis-
tort the predictability of the system. In general, most of the
worst-case overhead we observed must be attributed to im-
plementation artifacts of the microkernel we used, not to the
use of address spaces.

The remainder of this paper is organized as follows. In
Section 2, we consider related work. Section 3 introduces
RTLinux and L4RTL, the two systems we have compared.
In Section 4, we describe in detail our experiments and what
we have learned. We conclude the paper in Section 6 with a
summary and an outlook on future work.

2 Related work

There is a large body of work on microbenchmarking
IPC or interrupt latencies (see for example [1, 12, 19]) and
many worst-case evaluations for real-time operating sys-
tems (e. g., [23]). However, we are unaware of any work
that specifically addresses the worst-case overhead of using
address spaces in real-time systems.

In this paper, we concentrate on hybrid real-time and
time-sharing operating systems:

KURT [21] and Linux/RK [18] are real-time extensions
of the Linux kernel. These systems target real-time applica-
tions that make use of UNIX system services and that may
run in separate address spaces (i. e., they are shared-kernel
system). Additionally, KURT can also operate as a shared-
space system. As both systems try to keep the amount of
changes to Linux as small as possible, their real-time CPU-
scheduling accuracy is limited by non-real-time parts of the
Linux kernel, for example device drivers that disable inter-
rupts for synchronization.

To our knowledge, RT-Mach [24] and LynxOS [20] also
both belong to the shared-kernel system category. These
systems have extended existing systems with real-time
mechanisms. In RT-Mach’s case, one could argue that it

is a separate-space system because it runs operating-system
servers as user-level tasks. However, Mach (from which
RT-Mach has evolved) still is a “fat kernel” because it is de-
signed to contain everything that the designer of a user-level
operating-system server could find useful, including device
drivers and paging policies.

We have not used these shared-kernel systems in our
study for two reasons. First, separate-space systems lend
themselves to a superset of the possible applications of
shared-kernel systems. Second, we believe that separate-
space systems inherently have a higher overhead than
shared-kernel systems when compared to shared-space sys-
tems. Therefore, our results can be meaningfully inter-
preted for shared-kernel systems as well: They represent
an upper bound on the cost for shared-kernel systems.

We know of few systems in the separate-space systems
category. Some, like QNX [8] and OnCore OS, have a real-
time kernel and come with a set of non-real-time operating-
system servers and programs.

TenAsys INtime [22] is a real-time extension of Win-
dows NT and Windows 2000. While both the Windows-
NT kernel and the INtime real-time executive run in kernel
mode, they are physically protected from each other using
the x86 CPU’s task-switching mechanism [23]. It is not
clear to us which level of fault tolerance this architecture
provides.

We have not considered these separate-space systems be-
cause no comparable shared-space system exists and be-
cause we did not have access to their source code. Instead,
we used the Fiasco real-time microkernel [9] and L4Linux
[6], a user-level Linux operating-system server that runs on
top of the Fiasco microkernel.

There are several systems with a design similar to our
L4Linux. User-mode Linux [25], Linux/a386 [14], and Mk-
Linux [4] are ports of the Linux kernel to user mode that
run on top of various operating systems: The first two run
on top of UNIX or Linux itself, while the latter runs on top
of a (non-real-time) microkernel. Neither runs on top of a
minimal real-time kernel.

Many ad-hoc UNIX and Windows modifications fit into
the category of shared-space systems. Today the most
prominent exponent of shared-space type is RTLinux [27].
RTLinux uses a systematic approach for adding real-time
capabilities to an existing time-sharing kernel. It has excel-
lent real-time–scheduling properties [16, 17]. We have used
this system as a base for our experiments and discuss it in
detail in the next section.

There exist two basic approaches for determining the
worst-case execution time for an instruction path of a given
system: static and dynamic program analysis. Static pro-
gram analysis determines the maximum execution times by
analyzing the code off-line [3]. This method requires a pre-

formerly RadiSys INtime
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cise model of the hardware (including processors, caches,
TLBs, buses, input–output subsystem) to calculate the exe-
cution time at instruction or block level. The other method,
dynamic program analysis, works by executing code paths
using different input patterns and determining the pattern
that results in the longest execution time. However, as the
input pattern and code paths that lead to worst-case execu-
tion times are not known, it is important to ensure realistic
code and data coverage. In our study, we have used dynamic
program analysis because it does not require a detailed hard-
ware model and thus is easier to apply. Section 4.1 explains
our methods for generating high coverage in detail.

3 RTLinux and L4RTL

For an accurate comparison of the cost of address spaces
in real-time systems, we have partially reimplemented the
RTLinux API in the context of the DROPS system. The re-
sulting system, called L4RTL, can run unmodified RTLinux
programs after re-compilation.

In this section, we provide a short overview over the ar-
chitecture of both RTLinux and L4RTL. In Section 4, we
will describe our approach for quantifying the worst-case
overhead of introducing address spaces to systems using the
RTLinux API.

3.1 RTLinux: A real-time Linux

FSMLabs’ RTLinux [27] is a small real-time executive
that works as an extension to the Linux kernel. The Linux
kernel runs on top of the real-time executive as one low-
priority application program. The RTLinux executive, the
Linux kernel and all real-time threads share one kernel ad-
dress space and all run in kernel mode. Figure 1 illustrates
RTLinux’ structure.

RTLinux supports applications with hard real-time CPU-
scheduling requirements. The co-located Linux kernel con-

tains modifications so that it enables and disables “soft” in-
terrupts for synchronization. This allows RTLinux to sched-
ule real-time threads with high precision despite Linux’s
habit of disabling interrupts for synchronization and despite
Linux’s interrupt-driven device drivers.

The real-time executive includes a scheduler with static
priorities that can schedule real-time threads in periodic and
aperiodic mode, according to a number of different schedul-
ing policies. It is independent from the Linux scheduler,
which only schedules Linux processes but not RTLinux
threads. RTLinux also offers an interface that allows real-
time threads to attach to hardware interrupts.

RTLinux comes with facilities to exchange messages and
bulk data with non-real-time Linux processes: FIFOs and
Mbuffs. Real-time processes can use these IPC mechanisms
in a nonblocking mode so that they can continue to work
even if a Linux process does not manage to keep up with
the amount of data a real-time thread sends it.

RTLinux implements FIFOs as ring buffers. Real-time
threads can sleep, waiting for a FIFO condition variable, or
can access the FIFO in a nonblocking mode. Linux pro-
cesses access FIFOs using normal read and write system
calls, which also trigger a signal for the condition vari-
able. A write operation from a Linux process immediately
restarts the waiting real-time thread.

Mbuffs are blocks of memory shared between Linux pro-
cesses and real-time threads. Therefore, RTLinux provides
only open and close operations on Mbuffs for Linux pro-
cesses.

RTLinux is available for several hardware architectures.
The x86 implementation supports as uniprocessors as well
as SMP machines.

3.2 L4RTL: A real-time Linux—with address
spaces

3.2.1 The DROPS system

We have developed L4RTL, a new implementation of the
RTLinux API, in the context of the Dresden Real-Time Op-
erating System, DROPS.

DROPS is an operating system that supports applications
with real-time and quality-of-service requirements as well
as non-real-time (time-sharing) applications [5]. It uses the
Fiasco microkernel as its base.

The Fiasco microkernel is a fully preemptible real-time
kernel supporting static priorities. It uses non-blocking
synchronization for its kernel objects. This ensures that
runnable high-priority threads never block waiting for
lower-priority threads or the kernel [9].

For time-sharing applications, DROPS comes with
L4Linux, a Linux server that runs as an application program
on top of the Fiasco microkernel [6]. L4Linux supports
standard, unmodified Linux programs. We have modified
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L4Linux so that it uses locks instead of disabling interrupts
for internal synchronization to prevent its device drivers
from disabling interrupts and thereby inducing scheduling
delays [7].

The current stable version of Fiasco only supports the
x86 architecture in non-SMP mode. Development versions
are available for x86-SMP and IA64 machines.

3.2.2 L4RTL implementation

We implemented L4RTL as a library for RTLinux appli-
cation programs and a dynamic load module for L4Linux.
Figure 2 gives an overview of L4RTL’s structure.

The L4RTL library implements the RTLinux API for
real-time RTLinux applications. RTLinux applications
run as user-mode threads in address spaces separate from
L4Linux’s address space. We call these threads and address
spaces RT threads and RT tasks, respectively. Each RT task
can contain several RT threads, and these threads can coop-
erate using the RTLinux API.

There can be more than one RT task. All of these tasks
can use the same single L4Linux server. However, L4RTL
currently does not allow real-time threads in different tasks
to communicate with each other using the RTLinux API.

The L4RTL dynamic load module for L4Linux imple-
ments the API for use by Linux programs to communi-
cate with RT threads. It also creates a service thread in
the L4Linux task. RT threads use this thread as their only
connection to L4Linux, and only for communication with
time-sharing Linux processes. Otherwise, L4RTL tasks can
work completely independent from L4Linux.

In theory, the service thread in L4Linux could be a bottle-
neck as several RT threads could wish to communicate with
L4Linux at the same time. However, this is not an issue

From L4Linux’s point of view, this is a “Linux kernel module,” but of
course L4Linux runs as a user program and not in kernel mode.

for our tests since we do not use FIFOs for real-time com-
munication but only for transferring measurement values to
L4Linux at the end of the run.

FIFOs and Mbuffs are implemented using shared-
memory regions between RT threads and the L4RTL load
module. RT threads allocate these memory regions and
then transfer a mapping of these to the load module’s ser-
vice thread inside L4Linux using microkernel IPC. The
shared-memory regions contain all necessary control data.
Once a L4RTL thread and the load module have established
the mapping, they only communicate using their shared-
memory region. L4RTL has been designed so that bugs in
L4Linux that corrupt the shared-memory data cannot crash
RT threads.

Besides initialization, more Fiasco-microkernel IPC is
necessary only for FIFO signalling. For this purpose, the
L4RTL library creates one thread in each L4RTL task (Fig-
ure 2). This thread handles signal messages from the
L4RTL load module and forwards them to RT threads.
RTLinux does not need to generate an IPC for FIFO sig-
naling since RT tasks share the same address space as the
Linux kernel and Linux tasks are woken up by calling the
appropriate Linux-kernel function in a virtual interrupt con-
text.

In contrast to RTLinux, L4RTL does not contain a sched-
uler. Instead, it relies on the Fiasco microkernel for schedul-
ing. In our study we use the same scheduling policy for both
systems—fixed-priority round-robin scheduling.

L4RTL is the subject of ongoing work and research. Cur-
rently, it does not implement all of the very rich RTLinux
API. However, everything relevant to the discussion in this
paper (and more) has been implemented and works well,
and we believe that the missing features have no influence
on our measurements.

4 Cost of address spaces

Let us now consider the cost that we introduce with ad-
dress spaces in real-time systems. More specifically, let
us compare the latency of interrupts on the shared-space
system RTLinux, and the the L4RTL system with separate
address spaces. We conduct a minimal interrupt-latency
benchmark under worst-case conditions. With this exper-
iment we present a detailed breakdown of the overhead
incurred by L4RTL compared to RTLinux and determine
which cost can be attributed to the introduction of address
spaces and to other implementation artifacts of the system.
This experiment was meant to approximate the upper bound
for the overhead that can be expected from providing ad-
dress spaces.

We used two test machines for our measurements:

wake up interruptible()
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1. a PC with a 200 MHz Pentium Pro with 64 MB
EDO RAM and 256 KByte 2nd-level cache (4-way, 32
bytes/line)

2. a PC with an 1.6 GHz Pentium 4 CPU, 256 MB
SDRAM and 256 KByte 2nd-level cache (8-way, 64
bytes/line)

Both RTLinux and L4RTL were based on Linux kernel
version 2.2.20. We used the latest version of RTLinux, ver-
sion 3.1.

In the experiment, we measured the time between the
occurrence of a hardware event that triggers an interrupt and
the reaction in an RTLinux real-time thread. We conducted
the experiment for both original RTLinux and L4RTL.

4.1 Experimental setup

To induce worst-case system behavior, we have used two
strategies.

First, prior to triggering the hardware event, we make
sure that the kernel’s and the real-time thread’s cache and
TLB working sets needed to react to the event are com-
pletely swapped out and the corresponding 1st-level and
2nd-level cache lines are dirty.

Second, we exercise various code paths in RTLinux,
L4Linux, and the Fiasco microkernel. These coverage tests
are a probabilistic way to reveal code paths with maxi-
mal execution time under disabled interrupts. Additionally,
they increase confidence that the DROPS system is indeed
completely preemptible as we claimed in Section 3.2.1.
To avoid missing critical code paths because of pathologic
timer synchronization, we varied the time between trigger-
ing two interrupts in a range from 2 milliseconds to 30 mil-
liseconds. Times smaller than 2 milliseconds are not practi-
cal because this time is required for rigorous cache and TLB
flushing.

For cache and TLB dirtying purposes we have written a
Linux program that invalidates the caches. It ensures that
all 1st-level and 2nd-level cache lines are dirty and need
to be written back to main memory when the hardware
event occurs. Note that all of the first-level and the second-
level cache lines mapping to a specific memory address can
contain dirty data from different memory addresses. That
means that in the worst case, a single memory read op-
eration results in three memory accesses: write-back of a
dirty first-level cache line, write-back of a dirty second-level
cache line, and finally the read that was actually intended
[15].

Because the cache-flooding program uses more memory
pages than the number of page mappings that can be cached
in the CPU, it has the side effect of flushing the TLB. One
pass of the program needs up to 2.3 milliseconds on Pen-
tium Pro and about 1.2 milliseconds on Pentium 4. Consid-

ering a maximum interrupt frequency of 500 Hz we there-
fore ensure that the cache and TLB is dirty before an inter-
rupt is triggered.

As the 2nd-level cache is physically tagged on the x86
architecture, the cache-flooding program requires access
to physically contiguous memory. We have modified the
Mbuff driver for RTLinux such that it hands out physical
contiguous memory pages which where reserved using the
bigphysarea mechanism [2]. In DROPS, physical memory
is offered by a memory server.

For code coverage we use a benchmarking suite for
UNIX, hbench [1]. This benchmark provides excellent cov-
erage for Linux and, in our experience, also for L4Linux
and the Fiasco microkernel, as it makes use of almost all of
the Fiasco microkernel’s services. We can make this state-
ment with confidence because of Fiasco’s small size and
limited amount of functionality it implements. For exam-
ple, hbench heavily starts and deletes processes, resulting
in address spaces being created and deleted, and executes
L4Linux system calls, resulting in microkernel IPC. As an
exception, we have avoided the use of certain microker-
nel services altogether when these services where required
neither for L4Linux nor for L4RTL, for example, message-
buffer–copying IPC. The fact that these services are not
required indicates that they could have been absent in the
first place, and their use would not contribute to our study
of the impact of address spaces.

As a reliable and measurable interrupt source, we have
used the x86 CPU’s built-in interrupt controller (Local
APIC). This unit offers a timer interrupt that can be used
to obtain the time between the hardware event and the reac-
tion in kernel or user code. When the Local APIC is used
in periodic mode, its overhead is close to zero because first,
it does not require repeated reinitialization, and second, the
elapsed time since the hardware trigger can be read directly
from the chip. We use the Local APIC in periodic mode
changing the interrupt rate after 100 interrupts are released.

The drawback of this interrupt source is that unlike other
interrupt sources, it cannot be given a higher hardware pri-
ority than other interrupt sources. In other words, except for
disabling all interrupts in the CPU, it is impossible to glob-
ally specify which other interrupts must not occur until this
interrupt has been acknowledged. We have therefore sim-
ulated hardware-interrupt priorities by manually disabling
interrupts in the external PIC (not in the CPU) immedi-
ately after entering the kernel until the user-level interrupt
handler in the L4RTL measurement thread has acknowl-
edged its interrupt. This adds overhead—1.5 µs on Pentium
Pro, 1.8 µs on Pentium 4—which has to be considered later
when we talk about worst-case interrupt latencies. Note that
the kernel is entered through an interrupt gate, which auto-
matically disables interrupts on the CPU prior to interrupt-

advanced programmable interrupt controller
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handler invocation.
With this precaution in place, our interrupt source could

not be blocked by any other interrupts, and no other inter-
rupt can preempt our interrupt’s handler—not even the sys-
tem’s timer interrupt. Our interrupt source could only be
delayed when an interrupt handler servicing another inter-
rupt did not enable the interrupts in the CPU.

4.2 Measurements

4.2.1 What we measured

For both RTLinux and L4RTL, we measured the exact time
between the occurrence of the hardware event and the first
instruction in the real-time thread. We measured this time
while both the hbench and the cache-flooding load where
active.

Additionally, we measured the time between the occur-
rence of the hardware event and the first instruction of the
kernel-level interrupt handler in both RTLinux and the Fi-
asco microkernel. This measurement was intended to quan-
tify the effect of critical code sections that disable interrupts
within these kernels. By measuring both kernel-level and
real-time–thread latencies, we were able to filter out over-
head not induced by introducing address spaces but by ex-
tended periods of execution with disabled interrupts.

4.2.2 Expectations

To estimate the costs for RTLinux und L4RTL under worst
case conditions we have to compare the execution path of
both systems when an interrupt is released:

RTLinux. First, there are costs of releasing the interrupt
at the hardware and entering the kernel through the interrupt
gate. These costs increase if the interrupts are blocked at
the CPU for synchronization purposes. The Linux kernel
is not an issue here because all cli and sti statements
are emulated by the real-time executive preventing blocking
of real-time tasks by time-sharing tasks. Second, there are
costs of missing TLBs and caches. Then the kernel module
code is executed which does only check if the interrupt is
connected to a real-time task and then passes to the interrupt
handler.

L4RTL. The costs to enter the kernel are expected to be
in the same order of magnitude as under RTLinux. We use a
similar mechanism to prevent blocking of interrupts by the
Linux server (see 3.2.1). The costs for executing the kernel
path will be somewhat more expensive because Fiasco has
additional overhead for switching to the address space of
the real-time task. Then we return to user mode and have

L4Linux is not an issue here, because it never disables interrupts for
synchronization.

some additional overhead for missing cache lines and TLB
entries.

4.2.3 Results and discussion

The diagrams in Figures 3 and 4 show the densities of the
interrupt-response times under the load conditions.

The worst-case time we measured for RTLinux is 23 µs
on the Pentium Pro and 24 µs on Pentium 4. From these
values we have to subtract the overhead added by block-
ing the interrupts at kernel entry (refer to Section 4.1). The
resulting worst-case interrupt latencies of about 22 µs for
Pentium 4 and 21 µs for Pentium Pro are somewhat higher
than the official values claimed for RTLinux.

For L4RTL on Fiasco we measured 58 µs on Pentium
Pro versus 33 µs on Pentium 4. These values result in worst-
case interrupt latencies of 56 µs on Pentium Pro and 31 µs
on Pentium 4.

RTLinux achieves a higher level of kernel interruptibility
than the Fiasco microkernel (first column in Figures 3 and
4). We believe that we can further reduce the kernel-entry
cost of our microkernel in the future. As stated in Section
4.1, the interrupt source could be delayed when an interrupt
handler servicing another interrupt did not enable the inter-
rupts in the CPU. We have found that the timer interrupt of
the current implementation of Fiasco disables the interrupts
up to 23 µs on PPro 200 and up to 13 µs on P4.

The actual worst-case real-time–handler invocation
times are shown in the center column of Figures 3 and 4.
These results represent the cost needed to activate a real-
time interrupt handler with or without address spaces. The
main implementation-dependentartifacts, namely interrupt-
blocking times, have been factored out from these times.
The difference in handler-invocation time between RTLinux
and L4RTL (on Fiasco) can be attributed to the introduction
of address spaces. We observe that this extra worst-case
cost is not significantly larger than uncertainties introduced
by dirty caches or blocked interrupts, which designers of
real-time systems seem to accept readily.

The difference between RTLinux and L4RTL on Pen-
tium 4 is smaller than on PPro 200 (3 µs versus 27 µs). One
reason could be that the Pentium 4 has doubled cache-line
sizes which results in fewer cache misses.

In [17] our tests resulted in much higher costs for the
kernel path of RTLinux on different hardware (800 MHz
Pentium III Coppermine, 256 KByte 2nd-level cache, VIA
Apollo Chipset). We have rechecked our test and got the
same results for RTLinux (56 µs for the kernel path). With
our improved version of Fiasco, we now get a worst-case
execution time of 22 µs for the kernel path (corresponds to
center column of Figures 3 and 4) and a worst-case total in-
terrupt latency of 35 µs (corresponds to right column). We
cannot explain why RTLinux exhibits much higher interrupt
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Figure 3. Interrupt latencies measured on Intel Pentium Pro 200 MHz
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Figure 4. Interrupt latencies measured on Intel Pentium 4 1600 MHz
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response times on this hardware. One possible explanation
would be that (RT)Linux enables some SMM feature of the
hardware which Fiasco does not (for more information, re-
fer to Section 5). Furthermore, the memory interface of this
machine seems to be much slower than on other machines:
While one pass of our cache-flooding program needs about
2.3 milliseconds on a Pentium Pro and about 1.2 millisec-
onds on a Pentium 4, it needs about 32 milliseconds on the
800 MHz Pentium III.

4.2.4 Worst-case execution time of the real-time appli-
cation

Real-time applications always must deal with the worst
case. For their worst-case execution time, they have to
take into account invalidated caches and a flushed TLB.
We have not measured these secondary (after-invocation)
cache-reloading and TLB-reloading costs in the RTLinux
real-time thread, because in a worst-case scenario, they
are equivalent for both RTLinux and L4RTL. (In the av-
erage case, we estimate the cost to be somewhat higher for
L4RTL: The TLB is always flushed when a task switch to a
L4RTL task occurs, and L4RTL probably invalidates more
cache lines than original RTLinux before invoking the in-
terrupt handler.)

There are ways on x86 CPUs to guarantee real-time
threads a fixed, nonrevocable share of cache and TLB en-
tries to reduce the secondary worst-case cost, but neither
original RTLinux nor L4RTL currently implement them. In
the remainder of this section, we outline two of these tech-
niques.

For TLB entries, a possible implementation would be
to issue 4-MByte pages exclusively to real-time tasks. As
4-MByte pages use a TLB separate from the TLB for 4-
KByte pages, TLB conflict misses cannot evict a 4-MByte–
page TLB entry. To prevent the TLB entries from being
flushed during an address-space switch, a tagged TLB can
be emulated by marking the TLB entries as “sticky” (using
the global flag in page-table entries) and by using the x86
CPU’s segmentation hardware for address-space protection
despite “sticky” virtual-memory regions (also referred to as
the “small address-space trick”) [11].

To avoid the flooding of cache lines and to thereby re-
duce worst-case memory-access times, cache partitioning
can be used to guarantee tasks a fixed set of 2nd-level cache
entries. This technique uses knowledge of the wiring of
physical-memory addresses to 2nd-level–cache lines and
assigns partitions of the cache to address spaces by reserv-
ing memory pages that map to specific cache lines for that
address space [13, 26]. This approach has the drawback
that if an application reserves a certain percentage of cache
lines, then the same percentage of main memory needs to
be wasted on it.

5 Caveats

Different scheduling behavior of RTLinux and L4Linux.
L4Linux uses a different scheduling algorithm than
RTLinux because it uses the scheduler of the underlaying
microkernel. Therefore we cannot guarantee that the sys-
tem load generated by the Linux tasks is exactly the same
on both systems.

System Management Mode. There is one source of de-
lay that we could neither measure nor filter out: All In-
tel Pentium processors implement a System Management
Mode (SMM)—a special mode mainly used for emulating
devices, to monitor and manage system resources for en-
ergy consumption, and to control system hardware [10].
The SMM is entered by the System Management Interrupt
(SMI) which is a non-maskable interrupt that preempts and
disables all other interrupts. The SMI is handled completely
by the hardware and is invisible to the operating system and
applications. We carefully tried to avoid actions that trigger
an SMI.

DMA virtualization. Currently, we have not virtualized
the direct memory access (DMA) controllers so that it is
possible for the Linux server to destroy physical memory.
This has no influence on our measurement results, but it
does affect the system’s robustness.

6 Conclusion and future work

In this paper, we have compared two Linux-based real-
time operating systems: RTLinux, a shared-space system,
and L4RTL, a separate-space system.

We learned that address spaces, when provided by a
small real-time executive and used to protect critical real-
time tasks from a shaky time-sharing subsystem, do not
come for free. They increase worst-case response times,
adding delays and jitter. Furthermore in non-worst-case sit-
uations, they consume more cycles than solutions without
address space separation, stealing them from time-sharing
applications.

However, the good news is that the additional overhead
in worst-case situations is comparable to costs introduced
by blocked interrupts and by common hardware features of
modern CPUs, such as caches. These costs seem to be well-
accepted by designers.

Hence, systems with real-time and time-sharing subsys-
tems should be built with address spaces as a basic separa-
tion technique.

So far, we have only claimed that separate address spaces
are effective means to isolate the real-time section from
faulty time-sharing subsystems. As future work, we plan
to test this claim by injecting faults, for example arbitrary
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memory accesses, to the Linux section in kernel and user
space and to add a rebooting facility for the time-sharing
subsystem.

To improve worst-case execution times, we plan to ex-
tend the Fiasco microkernel with a facility for emulating
tagged TLBs (“small address spaces”) and to apply a user-
level memory-management server that provides cache par-
titioning. Further we plan to use static program analysis
for important execution paths of both systems to determine
more precise costs and to find potential performance flaws.

In this work, we have investigated the effect of address
spaces on the guarantees that can be made to real-time ap-
plications. Another area of future work is determining the
effects on the performance of microkernel services such as
IPC and of time-sharing applications that run on the same
system.

References

[1] A. B. Brown and M. I. Seltzer. Operating system bench-
marking in the wake of lmbench: A case study of the per-
formance of NetBSD on the Intel x86 architecture. In ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 214–224, Seattle, WA, June 1997.

[2] R. Butenuth. Managing big physical mem-
ory areas in linux. Available from URL:
http://www.uni-paderborn.de/cs/heiss/
linux/bigphysarea.html.

[3] A. Colin and I. Puaut. Worst-Case Execution Time Analysis
of the RTEMS Real-Time Operating System. In Proceed-
ings of the 2nd Workshop on Worst Case Execution Time
Analysis, Vienna, Portugal, June 2001.

[4] F. B. des Places, N. Stephen, and F. D. Reynolds. Linux
on the OSF Mach3 microkernel. In Conference on Freely
Distributable Software, Boston, MA, Feb. 1996. Free Soft-
ware Foundation, 59 Temple Place, Suite 330, Boston, MA
02111.
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