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Abstract

Any data exchanged between the processor and main
memory uses the memory bus, sharing it with data ex-
changed between I/O devices and main memory. If the pro-
cessor and a device try to transfer data at the same time, an
impact can be seen on the processor as well as on the de-
vice. As a result, the execution time of an application on the
processor may increase due to the memory-bus load gener-
ated by I/O devices. In real-time environments, this impact
can result in missed deadlines and a behavior that is differ-
ent to that intended by the designer of the system.

This paper gives a method for describing and quantify-
ing the impact of such load on applications executed by the
processor.

1. Motivation

In classical hard real-time environments, buses have
never been a problematic resource. To guarantee bandwidth
and latency, either dedicated (bus) hardware with real-time
support is used or the available bus bandwidth is higher than
the bandwidth required by applications. More recently, an
increasing number of applications processing a high vol-
ume of data such as audio and video have appeared. These
modern applications would run well in classical real-time
environments, however, they are targeted to run on standard
commodity PC hardware. A problem arises since PC hard-
ware is less predictable than dedicated hardware and does
not provide support for bus-bandwidth reservation.

In PC systems, processors and the main memory are
tightly coupled via the memory bus, sometimes also referred
to as local bus. To prevent the memory bus from becom-
ing the critical performance bottleneck of the system, this
bus should and usually does provide the highest bandwidth
in the system. Memory-bus bandwidth is shared among all
processors and devices accessing main memory. If the sys-
tem does not provide mechanisms to assign a certain band-
width to a device, the device’s bandwidth always depends
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on the actual behavior of all other devices. Since this also
holds for processors, one can conclude that the execution
times of processor instructions accessing main memory also
depend on the behavior of other devices. Hence, the execu-
tion time of an entire application can vary and is in¤uenced
by other devices.

Early measurements showed that the impact on the ex-
ecution time of applications is relevant and cannot be ne-
glected when large amounts of data are transferred [16].
Hence, the na΅ve assumption that the execution time of
an application is not in¤uenced by other devices (as often
seen in real-time systems) may result in violations of the
given guarantees. To deal with that effect, resource reserva-
tions based on the execution time of an application must be
adapted to handle the impact caused by bus traf£c.

In this paper we describe a method for quantifying the
impact of load generated by PCI-devices on the execution
time of applications.

2. Overview

To characterize bus loads on the system, we follow the
terminology of Pentium processor’s performance-counter
speci£cation, the internal load of a speci£c processor refers
to the memory-bus load generated by this processor, and the
external load refers to the memory-bus load generated by
all other possible sources. In the uniprocessor case, external
load is always generated by the PCI host bridge. An inter-
nal transaction of a speci£c processor refers to a transaction
on the memory bus generated by this processor, and an ex-
ternal transaction refers to a memory-bus transaction from
any other possible sources, respectively. In the uniproces-
sor case all external transactions are generated by the PCI
host bridge.

Since external load reduces the capacity of the memory
bus available to the processor, we can assume also that it in-
crease the execution time of an application. In real-time sys-
tems, the correct amount of processor resource must be re-
served to successfully execute an application. To consider
the impact of external bus load on applications requiring re-
source reservations, we need a metric to express the strength
of the impact. We call the ratio between the execution time



under external load and the execution time under no exter-
nal load the slowdown factor.

The slowdown factor is always greater than or equal to
one. The slowdown factor of an application A under exter-
nal load L is denoted by F(A,L). Depending whether the
applicationA or the loadL remain £xed, the notation can be
abbreviated by FA(L) or FL(A). The external load can be
expressed by the bandwidth or the number of memory-bus
transactions per time unit.

For reservation schemes that consider worst-case exe-
cution times—as for hard real-time systems—the worst-
case impact is of interest. To determine this worst-case im-
pact, all possible factors such as buffer and queue states in
the host bridge, the access pattern of the physical RAM
chips, and processor features such as the Pentium’s sys-
tem management mode1 must be considered in addition
to the application itself. A detailed analysis here is be-
yond the scope of this paper. For simplicity, we con-
sider increasing the external load to a maximum possi-
ble value as an acceptable approximation of the worst
case: F(A,L→ max) = FLmax(A). We call this value the
worst-case slowdown factor of an application (WCSF).

Alternatively to the worst-case load, we can iden-
tify an application that is most sensitive to external
load (worst-case application). In this case, we denote
F(A→ max, L) = FAmax

(L). The combination of worst-
case load and worst-case application leads to an upper-
bound worst-case slowdown factor for a machine. We de-
scribe this value by F(A→ max, L→ max) = FLmax

Amax
. To

determine the con£dence level of these worst-case approx-
imations, analytical and statistical techniques such as those
proposed by Edgar et al. [7] can be used.

The slowdown factor and the worst-case slowdown fac-
tor are metrics that describe the strength of the impact
caused by external bus load. For example, an application
A characterized by FLmax(A) = 1.8 takes, under worst-
case load, 80 percent more time to complete. However,
F(A, 20MB/s) = 1.2 means that the application runs 20
percent longer under the given load of 20MB/s. The upper-
bound worst-case slowdown factor gives a maximum value
by which the most sensitive application can be in¤uenced.

In the following sections, we describe three approaches
for obtaining the different slowdown factors of an applica-
tion.

3. Empirical Approach

The £rst approach to determining the WCSF of an appli-
cation is purely empirical. In uniprocessor systems, the PCI
bus is the only source for external load not generated by the
processor(AGP cards can be considered as a PCI-bus ex-
tension). We obtain the WCSF by saturating the PCI bus

1 For instance, Pentium’s system management mode (SMM) is used for
the emulation of legacy devices or to work around bugs of the moth-
erboard or in the chipset.

and measuring the execution time of the application in con-
trast to the application’s execution time under no external
load. To generate such PCI-bus load, we used £ve identical
bus-master-capable FORE PCA200e ATM network cards,
each with a programmable PCI-bus interface.2 The proces-
sor on the network card was used to initiate PCI-bus read
or write transactions of variable burst length. We achieved a
maximum write data transfer rate of up to 118MB/s, which
is also given by the manual as the maximum value of the
host bridge [10].

To obtain some representative results, we chose three dif-
ferent applications: The data encryption standard (DES), for
an application with low internal load; a sorting algorithm
(Quicksort), for an application with medium internal load;
and raw-data transfers, for an application with high internal
load. The classi£cation into low, medium and high inter-
nal load is based on the number of CPU cycles required for
precessing one 32-bit word as shown in Table 2. All appli-
cations were implemented to process data (in 32-bit words)
from a 2MB source buffer and write the results to an adja-
cent 2MB target buffer. They were designed to touch source
and target buffers exactly once per 32-bit word

We disabled any caching for the source and target-buffer
region but not for any other memory area.3 As a result, any
data word of the source buffer must be individually fetched
from main memory and any data word written to the tar-
get buffer is forced to main memory. This makes the ac-
cess to the source and target buffer predictable. The same
effect can be achieved by processing only one 32-bit word
out of every cache line with a read-allocated, write-through
cache. To determine the impact of external load in conjunc-
tion with caching, we performed the same tests with caching
enabled for both source and target buffer.

The number of transactions on the memory bus was mea-
sured using the processor’s internal performance counters.
IA-32 processors provide performance counters for inter-
nally generated (tint) and all (ttot) memory-bus transac-
tions but not for externally generated memory-bus transac-
tions (text). On a uniprocessor system, where only one pro-
cessor and the host bridge can generate memory bus load,
the number of external transaction is:

text = ttot − tint. (1)

Characterizing the type of external transaction leads to
the distinction between external read transactions (trext) and
external write transactions (twext).

2 The ATM card uses a 50MHz embedded version of the Intel i960
processor, 2MB application memory, and a proprietary PCI-bus in-
terface [5].

3 Caching policies can be de£ned for “power of 2” multiples of 4KB
memory frames (2(2+n)KB) aligned to their size in the physical ad-
dress space by use of the processor’s memory-type range registers
(MTRRs).



3.1. DES Algorithm

DES [19] is a well-known symmetric cryptographic sys-
tem. It uses a 56-bit key to encrypt and decrypt data. In six-
teen iteration steps, the input data is permuted and written to
the target buffer. The C-code implementation of this permu-
tation uses local variables to store temporary results. Since
IA-32 processors have a small number of available regis-
ters, these variables are stored on the stack frame of the
procedure in memory. Recall that only source and target-
buffer accesses are uncached; stack and local-data accesses
are cached. Due to the large number of temporary local vari-
ables, DES has strong data locality, which leads to a high
cache-hit rate. It is very likely that temporary results are
held completely in the £rst- or second-level caches and are
never actually written to main memory. We measured an
FLmax = 1.05 for the encode and FLmax = 1.03 for the
decode operation.

With caching enabled for the buffer, the application was
about 26% faster and generated only 9% of the memory-bus
load (430,000 versus 4,560,000 transactions per second).
However, in relation to the 265 million external transactions
generated by the PCI cards at the same time, the increase
from 430,000 to 4,560,000 internal transactions (0.16% to
1.7% in relation to the number of total transactions) is neg-
ligible and the FLmax values are identical.

3.2. Sorting algorithm (Quicksort)

Quicksort is a fast sorting algorithm based on divide-
and-conquer. An array is repeatedly divided into two halves
until two adjacent items can be directly compared against
each other, and exchanged if necessary. We implemented
an iterative version described by Sedgewick [17, 18] that
sorts the 2MB source buffer into the 2MB target buffer. The
measured worst-case slowdown factor without caching is
FLmax = 1.09.

3.3. Raw-Data Transfer

In the two applications described above, memory ac-
cesses were only a small or medium fraction of all executed
instructions. Under these circumstance, the WCSF values
range between 3% and 10%.4

Figure 1 shows the maximally possible number of CPU-
generated internal transactions in relation to the number of
external transactions. Figure 2 shows the derived slowdown

4 Earlier measurements [16] on an older machine (Pentium 90MHz)
showed slightly higher slowdown factors. DES: FLmax =1.03;
Quicksort: FLmax =1.1. Additionally, we measured decoding
an “IPP-coded” MPEG-1 video (384x288 pixel, 24 bit color,
compression factor 1:60 for 33 I-frames, 1:169 for 66 P-
frames) with FLmax =1.36 and data transfer: read FLmax =2.15,
write FLmax =1.18, copy FLmax =1.21.
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Figure 1. Impact of external transactions
on processor-generated (internal) memory
transactions
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Figure 2. Resulting slowdown factors, calcu-
lated from Figure 1

factors. Each graph in both diagrams represents a measure-
ment with a different combination of external and inter-
nal transaction types, e.g., a combination of read and write
transactions. For example, read–write means that the PCI-
bus devices execute main-memory read operations while the
processor executes main-memory write operations. Table 1
summarizes the worst-case slowdown factors.

3.4. Summarizing Measurement Results

Table 2 gives a detailed overview of the number of pro-
cessor cycles, the number of transactions on the memory



CPU Cycles Bus transactionsOperation
per 32-bit word per 32-bit word

FLmax

memory read 55.5 1 1.49
memory write 35.1 1 1.26
memory copy 99.4 2 1.35
Quicksort 457.7 2 1.09
DES encode 701.3 2 1.05
DES decode 699.2 2 1.03

Table 2. CPU cycles to process one 32-bit input word, bus transactions per 32-bit word

FLmax CPU read CPU write
PCI read 1.49 1.26
PCI write 1.38 1.21

Table 1. WCSF for processor-issued memory
operations, derived from Figures 1 and 2

bus to process one 32-bit word, and the resulting worst-case
slowdown factors.

Obviously, code executed on the host processor that per-
forms only memory read operations to generate internal
memory-bus load is the most sensitive to write operations
as external bus load. We consider the slowdown of this
application accessing as the upper-bound WCSF (FLmax

Amax
)

for this system. For our machine, we determined an upper-
bound value of 1.49.

Knowledge of this value allows for a very simple test
for admission that considers the impact of PCI-bus load.
If an application can be scheduled even with the upper-
bound WCSF, the application can be scheduled under any
load possible on that machine. If it cannot be scheduled un-
der the upper-bound WCSF but under no external load, the
application-speci£c WCSF must be considered.

4. Algorithmic Approach

The advantage of an empirical approach is its
simplicity—once the measurement environment has been
built, only a simple test must be performed. However, the
WCSF depends on many factors of the system used and in-
dividual measurements must be taken on every system.

For schemes based on the slowdown factor, not only one
but a series of measurements under various external-load
values must be taken. This makes the empirical approach
expensive. To overcome this disadvantage, we consider an
algorithmic approach and strive to calculate the slowdown
factor based on characteristic values of both the algorithm
and the hardware.

4.1. Calculation of Application Worst-Case Slow-
down Factor

In the previous sections, we showed that only memory
operations are affected by external bus load, and we have
described the maximally possible in¤uence by the upper-
bound WCSF on the execution time of applications. In this
section, we strive to determine an application’s worst-case
slowdown factor as a combination of separate characteris-
tics of the application and of the machine. The major ad-
vantage of such a separation is that an application can be de-
scribed independent of the underlying machine. In combi-
nation with the characteristics for the machine, the machine-
speci£c slowdown factor is determined. However, it will be-
come clear later that we can achieve this separation only
with certain limits.

From related work described in Section 5.2, we know
that the execution time of an application is the linear com-
bination of the number of times each abstract operation of
the instruction mix is executed (Ci), multiplied by the time
it takes to execute each operation (Pi). The execution time
(T ) of an application using an instruction mix with n indi-
vidual abstract operation can be determined by the follow-
ing:

T =

n
∑

i=1

CiPi. (2)

In terms of bus-induced impacts on applications, it is
suf£cient to describe an application by an instruction mix
that divides the operations into three abstract operations:
memory read-sensitive (Cr), memory write-sensitive (Cw)
and non-memory-sensitive (Co) operations. Given the total
number of executed operations by Ctot = Cw + Cr + Co,
we can extend Equation 2 to:

T = CrPr + CwPw + CoPo

= Ctot

( Cr

Ctot

Pr +
Cw

Ctot

Pw +
Co

Ctot

Po

)

. (3)

The time for an operation (P ) is determined by the CPU
frequency (f ) and the number of CPU cycles this instruc-
tion takes (cyc). We can substitute Px with cycx

f
, and rewrite

Cx

Ctot
as Sx, the share each instruction has on the amount of



total instructions, and obtain:

T =
Ctot

f

(

Srcycr + Swcycw + Socyco

)

. (4)

A coarse estimation of an application’s WCSF is based
on the assumption that read and write instructions are
slowed down by the upper-bound WCSF (FLmax

Amax
). The ap-

plication under maximum external load is now executed in
the time TLmax :

T
Lmax =

Ctot

f

(

SrcycrF
Lmax
Amax

+ SwcycwF
Lmax
Amax

+ Socyco

)

.

(5)
The WCSF for the application can be determined from

Equations 4 and 5:

F
Lmax

A =
TLmax

T
(6)

=
SrcycrF

Lmax

Amax
+ SwcycwF

Lmax

Amax
+ Socyco

Srcycr + Swcycw + Socyco
.(7)

We can infer from Equation 6 that it is suf£cient to de-
scribe the instruction mix as a triple IM that contains the
shares of read, write, and all other operations. All other val-
ues are machine dependent and can be denoted by a ma-
chine descriptor MD:

IM = (Sr, Sw, So) MD = (cycr, cycw, cyco). (8)

Ideally, the parameters of the machine descriptor de-
pend only on the structure and capabilities of the proces-
sor. However, due to performance-improving features such
as pipelining and parallel execution of instructions, which
make the processor less predictable, these values can vary
and are also in¤uenced by the application.

In a more accurate formula, we consider the difference
between read worst-case slowdown factor (FLmax

r ) and
write worst-case slowdown factor (FLmax

w ). Both values can
be taken from measurements of the system. For our mea-
surement system, they are shown in Table 2. The modi£ed
formula can be derived from Equation 6:

F
Lmax
A =

SrcycrF
Lmax
r + SwcycwF

Lmax
w + Socyco

Srcycr + Swcycw + Socyco

. (9)

To verify these results, we applied the measurement
results of simple read and write operations (cycr =
55.5, cycw = 35.1) as given in Table 2 to calculate the
worst-case slowdown factor of the memory-copy applica-
tion. The source code in assembly language of the memory-
copy application is shown in Figure 3. The integer opera-
tions of lines 2, and 4, and the branch operation of line 6
are paired by the processor with the instructions in lines 1,
3, and 5, respectively. Since the code allows pairing of all
instructions, the cycle value of integer operations (cyco) is
0.5. To avoid in¤uence by the number and order by which
memory modules are plugged into the system, the code is

(1) l1: mov eax, dword ptr [esi]
(2) add esi, 8
(3) mov dword ptr [edi], eax
(4) add edi, 8
(5) dec ecx
(6) jnz l1

Figure 3. Machine code in assembly language
for “copy” application

written so that no two 32-bit words can be merged into one
single 64-bit memory-bus transaction. The same holds for
the read and the write test.

The shares for read and write are each 1/6, the share
for other (non-memory-accessing) operations is 4/6. Ap-
plying these values to Equation 6 results in a calculated
slowdown factor FLmax = 1.392. This compares favorably
to the measured slowdown factor for the memory-copy ap-
plication of 1.35.

We performed the same calculation for the DES appli-
cation. In this case, instructions cannot be paired so nicely,
since we have many data dependencies. We have measured
an average value of 0.9 cycle for executing a non-memory
operation. We have seen one memory read and one mem-
ory write bus request per 750 executed instructions. These
values are identical for encode and decode operations. Ap-
plying the previously given equations results in the param-
eters given in 10.

IM =
( 1

750
,

1

750
, 1−

2

750

)

(10)

MD =
(

55.5, 35.1, 0.9
)

F
Lmax = 1.047. (11)

This measured slowdown factor is FLmax = 1.05 for
DES encode and FLmax = 1.03 for DES decode. These re-
sults show that the proposed solution is also applicable to
relatively complex operations and not only to trivial opera-
tions such as memory copy.

4.2. Calculation of Application Slowdown Factor

All previous considerations were based on the worst-case
slowdown factor for combinations of read and write opera-
tions, or in the worst case on the upper-bound WCSF of
the system. As common to all worst-case-based reservation
schemes, they also lead to an over-reservation and a waste
of resources.

If reservations can be based on the real PCI-bus load,
available resources can be utilized better. To determine
the PCI-bus load in advance, all devices must announce
their future bandwidth consumption at a central instance of
the operating system. With cooperating resource managers,
DROPS [8, 3] already provides an applicable scheme where



PCI-bus bandwidth reservations can be made. Legacy de-
vice drivers, which cannot give exact information about
the generated PCI-bus load, can give worst-case approxi-
mations based on information about the card. The PCI-bus
interface chip used often provides information adequate to
determine the maximum possible PCI-bus load of a card.
Even more trivial, the type of the card can be considered. A
100Mbit network card is barely capable of generating more
than 12.5MB/s of sustainable PCI-bus load. If the driver de-
tects that the card is only connected to a 10Mbit network, it
is suf£cient to assume a maximum bandwidth of 1.25MB/s.

In the next step, we determine the slowdown factor in re-
lation to a given bus load. All previous considerations were
based on transactions. Hence, we have to convert a load
given in MB/s into a load given in memory-bus transac-
tions per second. If caching is enabled, the processor always
reads and writes an entire cache line, instead of each indi-
vidual memory cell and we see only one bus transaction per
cache line. Hence, the number of CPU-generated memory-
bus transactions does not depend only on the number of
memory instructions, but also on the caching behavior of
the application. The number of bus transactions caused by
a certain PCI-bus load is easier to determine. The memory-
bus interface of the host bridge has only a few read-buffer
or write-buffer entries. Since all relevant transfers to or from
main memory are bursts, the bridge combines multiple data
words into one single memory-bus transaction. The result
is an almost linear relation between PCI-bus bandwidth and
the number of transactions on the memory bus.

The in¤uence of external transactions on the maximal
possible number of internal transactions on accessing mem-
ory has already been shown in Figure 1. We see one trans-
action on the memory bus for a 32-byte write access or a
16-byte read access. These two values are host-bridge de-
pendent. In the test-bed with £ve PCI cards, the maximum
achieved PCI-bus bandwidth is about 102MB/s (6.1M trans-
actions) for read and 118MB/s (3.5M transactions) for write
operations.

The calculation of the slowdown factor is based on Equa-
tion 6. We replace the upper-bound worst-case slowdown
factor by the slowdown factors for read and write under
a certain load. To determine Fr(text) and Fw(text) from
the number of external transactions, we consider two meth-
ods. The simpler method to get the slowdown factor uses a
lookup-table £lled with slowdown-factor values taken from
the tests described in Sub-section 3.3. If an exact value is
not available, an approximated value is used. A drawback is
the required amount of data that must be available for the ta-
ble.

A more elegant version approximates the slowdown fac-
tor by a monotonically increasing function. At a glance, one
might expect a linear dependency between the slowdown
factor of an application and the external bus load. However,
analyzing Figure 2 shows that a polynomial function of or-
der two (k=2) (i.e., a quadratic function) approximates the
relation more accurately. The reason for a non-linear depen-

dency is that contention on the bus increases with the square
of the bus utilization. If memory-bus speed is high and the
length of each memory-bus transaction is short, contention
reduces and the resulting almost linear relation can be de-
scribed with a β2 coef£cient of zero.

The quadratic function of order two is given by
f(x) = β2x

2 + β1x+ β0, with x as the number of exter-
nal transactions per second. To calculate the actual value
for FA(text), we obtain:

FA(text) = β2

(

text

)2

+ β1

(

text

)

+ β0. (12)

The β coef£cients are machine dependent and must be
determined for each machine individually. In order to £nd
the best approximation, we consider the biased variance σ2

of the pairs (xi, yi) of all measured samples:

σ
2 =

1

n

n
∑

i=1

(

yi − (β2x
2
i + β1xi + β0)

)2

(13)

must be minimized using the non-linear least-squares-
£tting method. We can derive the Equation system 14 for
the polynomial function of order two:5

β0[x
0] + β1[x

1] + β2[x
2] = [y]

β0[x
1] + β1[x

2] + β2[x
3] = [yx]

β0[x
2] + β1[x

3] + β2[x
4] = [yx2].

(14)

Solving the Equation system 14 with our measured val-
ues leads to the tuples of coef£cients as given in Table 3.
Since the slowdown factor of an application running on a
system without external bus load (F(0)) is one, the β0-
coef£cient must be 1 as well. This holds for all our calcu-
lated coef£cients.

Figure 4 shows measured values identical to Figure 2 but
also shows the approximated polynomial functions.6 One
external write transaction transfers 32 bytes from the host
bridge to main memory, but one external read transaction
transfers only 16 bytes. Hence, the impact on applications
of write transactions is increases quicker than the impact of
read transactions.

Figure 5 shows that the weighted absolute errors ei, as
given in Equation 15, are less than 6%. This indicates that
a quadratic function approximates the behavior of the real
machine very well.

ei =

∣

∣

∣

∣

∣

yi − f(x)

f(x)

∣

∣

∣

∣

∣

. (15)

Another parameter that describes the exactness of an ap-
proximated function is the mean error σy which can be cal-

5 Notation as de£ned by Gauss: [x] =
∑n

i=1
(xi).

6 For a better visibility, we have split up Figure 4 into four graphs shown
on Page 12. The original color graphs are available on request.



CPU operation(β2, β1, β0)
read write

PCI read (0.7345e-15, 88.191e-9, 1.004) (0.9191e-15, 50.924e-9, 0.995)
PCI write (17.737e-15, 40.461e-9, 0.969) (7.2877e-15, 44.633e-9, 0.996)

Table 3. Coef£cients for the polynomial function to calculate the slowdown factor for combinations
of external and internal, read and write operations, derived by the least-square-£tting method from
Figure 2

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  1  2  3  4  5  6  7

S
lo

w
do

w
n 

F
ac

to
r

million external transactions [per second]

External Transactions and Slowdown Factor

Ext. Write, Int. Write
Ext. Read, Int. Write
Ext. Write, Int. Read
Ext. Read, Int. Read

Approx: Ext. Write, Int. Write
Approx: Ext. Read, Int. Write
Approx: Ext. Write, Int. Read
Approx: Ext. Read, Int. Read

Figure 4. Approximation of resulting slow-
down factors using polynomial functions and
coef£cients from Table 3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6  7

ab
s(

f(
x)

 -
 y

)/
f(

x)

million external transactions [per second]

Exactness of approximated square function

Ext. Write, Int. Write
Ext. Read, Int. Write
Ext. Write, Int. Read
Ext. Read, Int. Read

Figure 5. Exactness of the approximated
square functions for the calculated slow-
down factors

culated by

σy =

√

√

√

√

1

n− k − 1

n
∑

i=1

(

yi − f(x)
)2

. (16)

The smaller the mean error, the better the approx-
imation. In our case, we calculated σww = 0.003865,
σwr = 0.013028, σrr = 0.007934, and σrw = 0.002696.
This also demonstrates the quality of our results.

Analyzing the graphs of Figure 2, we can also see that
the impact on CPU read operations is different than on CPU
write operations and also depends on the type (i.e., read or
write) of the external transaction. To further improve the
method to calculate the application’s WCSF presented in
the previous section, we determine a weighted slowdown
factor for an application based on the ratio of its read and
write transactions. The ratio of external read transactions on
the total number of transactions is

ρr =
trext

trext + twext

, (17)

and the ratio for write transactions is

ρw =
twext

trext + twext

. (18)

To calculate the weighted slowdown factor for internal
read transactions, we add the slowdown factor for external
read transactions (Frr) weighted by the read ratio (ρr) and
the slowdown factor for external write transactions (Fwr)
weighted by the write ratio (ρr). We obtain the following:

Fr(text) = Frr(t
r
ext)ρr + Fwr(t

w
ext)ρw (19)

for processor read operations. The same method is applied
to obtain the weighted slowdown factor for write opera-
tions:

Fw(text) = Fww(twext)ρw + Frw(trext)ρr. (20)

We can determine the weighted slowdown factor of an ap-
plication by replacing FLmax

r and FLmax
w in Equation 9

with Fr(text) and Fw(text), respectively. We receive:

FA(text) =
SrcycrFr(text) + SwcycwFw(text) + Socyco

Srcycr + Swcycw + Socyco

.

(21)



In the following section, we demonstrate how to apply
these formulas to obtain the slowdown factor of an applica-
tion under speci£c external load and compare it to measure-
ment results.

4.3. An Example Calculation

Applying Equation 21 to the DES application with a
very small worst-case slowdown factor gives a result al-
most equal to 1. This result can also be con£rmed by mea-
surements which showed that DES is virtually unin¤uenced
by any external load. Additionally, we performed a test of
the memory-copy application with two PCI cards. While
the £rst card generated 25MB/s PCI-bus read load (tr

ext =
1, 562, 500 transactions per second), the second card gener-
ated 30MB/s PCI-bus write load (twext = 937, 500 trans-
actions per second). The memory-copy performance was
about 23MB/s.7 We measured the number of CPU read and
CPU write transactions 6,029,312 for each transaction type.

We can calculate ρr = 0.625 and ρw = 0.375. Based on
Equation 12, we can further calculate the individual slow-
down factors as a combination of read and write opera-
tions by Fww = 1.044, Frw = 1.081, Fwr = 1.022,
and Frr = 1.139. Applying Equations 19 and 20 we ob-
tain Fr = 1.095 and Fw = 1.067. Finally, the weighted
slowdown factor is calculated by applying Equation 21:
FA(rd = 25MB/s + wr = 30MB/s) = 1.082. This con-
£rms our measured slowdown factor of 1.08.

Instruction fetches from main memory are handled as
read transactions, and therefore are automatically consid-
ered. If the size of the executed code is small enough to £t
in the L2 cache, the contribution of instruction-fetch-based
read transactions is very small. This is the typical case for
most of the real-time application with a short path of period-
ically executed code. To prevent cache ¤ushing due to con-
text switches, techniques such as cache coloring [11] can be
used.

5. Related Work

We believe that this topic has a relevance for the real-
time community, only two papers known to us describe the
impact of input/output load (I/O-load) on the execution time
of an application. However, both do not provide a general
solution for dealing with this impact and do not exactly
quantify it. The techniques described in Section 5.2 (Pre-
diction of Execution Times) are used in Section 4 to derive
an algorithmic approach to determine the impact of I/O load
on the execution time of applications.

7 Remember that we still operate over uncached memory.

5.1. Impact on Application

Bellosa [4] discusses a simple approach for reducing the
in¤uence of time-sharing applications on real-time appli-
cations on different processors in a multiprocessor system.
If the frequency of non-bandwidth-bound memory accesses
of a time-sharing application exceeds a certain threshold,
the application is throttled by performing additional no-
operation cycles. This reduces the load on the memory bus
caused by this application, leading to a smaller impact on
the applications executed on other processors.

An analytical approach to describe the impact of I/O load
generated by VMEbus devices on real-time applications is
described by Huang et al. [9]. They observed that all pro-
grams are composed of three basic structures: straight-line,
conditions, and loops. Each block of a program is individ-
ually analyzed with regard to how its execution time is in-
¤uenced by I/O load. To bound the worst-case execution
time of an entire program, the worst-case execution time of
each basic block that may access I/O needs to be bounded.
Since the bus controller uses a protocol based on the VME-
bus speci£cation, which supports hard priorities to regulate
the bus contention between the processor and the devices,
the model cannot be used without modi£cations on com-
modity PC systems.

5.2. Prediction of Execution Times

To compare performance of software, processors, or
whole computer systems, various techniques such as bench-
mark programs are available [2, 6, 1]. Since benchmark pro-
grams are designed to cover a wide range of application
types, the results of one benchmark program are used to
compare different machines. However, exact prediction of
execution times of individual programs is not possible.

Several approaches for estimating and predicting the per-
formance of applications on the same or other processors
have been published [13, 12]. Saveedra and Smith [14] de-
scribe an approach by which the performance of an applica-
tion is predicted based on abstract operations. The execu-
tion time of an application is the linear combination of the
number of times each abstract operation is executed (Ci),
multiplied by the time it takes to execute each operation
(Pi). The instruction mix (C) gives the amount of each in-
dividual abstract operation. In an extension [15], they also
consider effects of the memory hierarchy, such as caches
and translation look-aside buffers (TLB) on the execution
time. The execution time (T ) of an application using an in-
struction mix with n individual abstract operation can be
determined by:

T =

n
∑

i=1

CiPi. (22)

This methodology allows one to analyze the behavior
and to characterize individual machines. Applications can



be analyzed, and their execution time can be predicted
on the characterized machines. Prediction accuracy is very
good; often the difference between real and predicted exe-
cution time is less than 10%.

To characterize applications regarding their bus-load
af£nity, we do not need to consider each individual oper-
ation. It is suf£cient to group instructions into memory and
non-memory operations.

6. Summary & Future Work

In this paper we introduced the slowdown factor to ex-
press the impact of external bus load to the execution time
of an application. The slowdown factor can be used to ad-
just a scheduler reservation to external load.

A quick, but coarse, estimation of whether an applica-
tion can be scheduled on a system under any possible exter-
nal load is based on the system’s upper-bound worst-case
slowdown factor. As is common for all worst-case estima-
tions, the difference between actual and calculated (or esti-
mated) value can be very high. An alternative uses the in-
struction mix, a description of an application, and the sys-
tem’s upper-bound worst-case slowdown factor. In contrast
to the £rst method, the actual share of read and write in-
struction of an application is considered to determine an
application-speci£c worst-case slowdown factor.

In the third method, the system’s upper-bound worst-
case slowdown factor is replaced by the worst-case slow-
down factors for read and write operations. The fourth
approach replaces these worst-case slowdown factors by
the weighted slowdown factors under a certain load. The
weighted slowdown factors are calculated by means of
a polynomial approximation function. The result is an
application-speci£c slowdown factor under a certain load.

On current PCI-based systems, the slowdown factors are
small. However, with the advent of new high-speed bus
systems the impact of external load on the execution time
of applications will become relevant again. The described
technique is a promising method to handle this impact and
needs further investigation. Describing the memory behav-
ior of an application based on its instruction mix has been
veri£ed on modern processors. Extensions were made to
cover unpredictabilities such as multi-level caches, trans-
lation look-aside buffers, branch predictions, and so on. It
remains open how future architectures such as Intel’s IA64
family with explicit parallel instruction coding (EPIC) and a
variety of speculative execution techniques, or systems with
hyper-threading (HT) can be described by this technique.
Additionally, multiprocessor systems should be considered,
where multiple processors can generate memory-bus load.
In such systems, we expect a much higher impact on appli-
cations and a real relevance of this research.
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