
Using SATF Scheduling in Real-Time Systems

Lars Reuther Martin Pohlack
Dresden University of Technology�
reuther,mp26 � @os.inf.tu-dresden.de

1 Introduction

Disk scheduling algorithms based on the rotational posi-
tion of the disk head (Shortest Access Time First scheduler,
SATF) are known to be a good approximation of an opti-
mal disk scheduling algorithm [3]. However, because of
the required knowledge of the disk they are also believed
to be difficult to implement outside of the disks firmware
at driver level [2].

Unfortunately, scheduling cannot always be done in the
disk drive. With queueing a large number of requests in
the disk drive, the driver resp. the operating system loses
the ability to control the point in time a single request is
executed. But this control is essential for certain systems,
e.g. if a system must meet deadlines of disk requests. An-
other drawback is the limited number of requests a disk
can queue (we experienced 32 to 64 requests with cur-
rent disks), however scheduling algorithms work better the
larger the number of requests they can choose from.

The aim of our work is to

(a) show the feasibility of an SATF scheduler at driver
level and

(b) use that scheduler to build a disk driver which can give
Quality-of-Service guarantees

2 SATF scheduler

SATF scheduler require the ability to estimate the time a
disk needs between two requests. We use the following
function to calculate that time:

��� ��������	�
��������������������� ��!�"#���%$���&#�'�
���%!�()&%(*�+!,�-
.��&#�0/%�1�02,��!�"#���%$���&#�32���������	4
�������1�1���������,�

��������	
is the time the disk head needs to move from its

current position (i.e. the sector behind the last request) to
the cylinder of the next request, it depends on the distance� ���������������

to the target cylinder.
� !,"#���%$5��&#�

denotes a fixed
command overhead.

� �6!�()&%(*�+!��
is the time which must be

waited until the target sector arrives at the disk head. It
depends not only on the angle

�5&��0/%�1�
between the current

position and the next request but also on the time already
elapsed due to the seek and command overhead.

We developed a set of automated benchmarks to gather
the required information about a disk. The information in-

clude the geometry mapping, rotational speed, seek curve
and command overhead.

Figure 1 shows the performance of our SATF scheduler
compared to the internal disk scheduler and a SSTF (Short-
est Seek Time First) scheduler implementation at driver
level.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

yt
e

/ s
)

Queue Size [log.]

Software SATF (IBM)
Software SSTF (IBM)

Hardware (IBM)
Software SATF (Seagate)
Software SSTF (Seagate)

Hardware (Seagate)

Figure 1: Disk scheduler performance, random workload, 64KB
blocksize, disks IBM Ultrastar 36Z15 with 15,000 rpm,
Seagate Barracuda 36ES2 with 7,200 rpm

The results show a 12% performance loss of our SATF
implementation for the IBM disk at the maximum queue
size the disk can handle, but also that the performance of
the driver-level scheduler increases further for queue sizes
the disk cannot handle. For the slower Seagate disk our
scheduler outperforms the internal scheduler entirely.

3 QoS-aware disk scheduler

The measurements we just presented show that the
scheduling of disk requests at driver level instead in the
disk drive is still feasible even with current high perfor-
mance disks. In our current work we want to use this result
to build a disk scheduler which can give QoS guarantees.

In a QoS-aware system, the disk scheduler must ensure
that deadlines of individual disk requests are met. This
raises restrictions on the set of requests the scheduler can
choose from. However, to still enable the scheduler to opti-
mize the disk throughput, on each scheduling decision we
determine the maximal subset out of the available requests
so that the deadlines of all requests can be met even if a
request is not executed in the current round.

1

We want to integrate this idea in the Quality Assur-
ing Scheduling Framework presented in [1]. Using data
streams where not all disk requests have to be executed will
give the scheduler more options to maximize the utilization
of the disk.

References
[1] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter,

and H. Härtig. Quality Assuring Scheduling - Deploying
Stochastic Behavior to Improve Resource Utilization. In
22nd IEEE Real-Time Systems Symposium (RTSS), London,
UK, December 2001.

[2] Lan Huang and Tzi-Cker Chiueh. Experiences in Building
a Software-Based SATF Scheduler. Technical report, State
University of New York at Stony Brook, July 2002.

[3] David M. Jacobson and John Wilkes. Disk scheduling al-
gorithms based on rotational position. Technical report, HP
Laboratories, 1991.

2

