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Thesis Reviewer : Prof. Dr.-Ing. Gerhard Fettweis (TU Dresden)
Thesis Reviewer : Prof. Dr. Gernot Heiser (UNSW Sydney)



All trademarks are hereby acknowledged. Copyright c© 2002, Sebastian Schönberg

Page ii



Acknowledgments

I would like to thank my supervisor, Prof. Hermann Härtig, for his continuous support and
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1. Introduction

In classical hard real-time environments, buses have never been a problematic resource. To
guarantee bandwidth and latency, either dedicated (bus) hardware with real-time support is
used or the available bus bandwidth is higher than the bandwidth required by applications.
More recently, an increasing number of applications processing a high volume of data such as
audio and video have appeared. These modern applications would run well in classical real-
time environments, however, they are targeted to run on standard commodity PC hardware.
A problem arises since PC hardware is less predictable than dedicated hardware and does
not provide support for bus-bandwidth reservation. The goal of this thesis is to explore and
describe possibilities and limitations of the buses deployed in such systems and the impact
on the processor caused by transfers of data over these buses.

In PC systems, processors and the main memory are tightly coupled via the memory
bus, sometimes also referred to as local bus. To prevent the memory bus from becoming the
critical performance bottleneck of the system, this bus should and usually does provide the
highest bandwidth in the system. Memory-bus bandwidth is shared among all processors
and devices accessing main memory. If the system does not provide mechanisms to assign a
certain bandwidth to a device, the device’s bandwidth always depends on the actual behavior
of all other devices. Since this also holds for processors, one can conclude that the execution
times of processor instructions accessing main memory also depend on the behavior of other
devices. Hence, the execution time of an entire application can vary and is influenced by
other devices.

Peripheral devices, such as adapter cards, are connected via the system’s I/O bus. An
example of such an I/O bus is the Peripheral Component Interconnect (PCI) bus [6]. This bus
is widely used in consumer systems, as well as in workstations or low-end servers, and applied
in a variety of platforms; among them we can find IA-32 (also referred to as x86), Itanium,
Alpha and MIPS based computers. Since its introduction and definition in 1992, PCI has
been an open industry standard, supervised by the PCI Special-Interest Group (PCISIG).
The standard for the PCI architecture specifies all electronic and logical requirements but
allows the designer of a system to adapt it to the requirements of the operating field.

To allow devices attached to the I/O bus to exchange data with main memory, a bus
adapter is responsible for converting the signals on the I/O bus into signals on the memory bus.
To connect the PCI bus with the memory bus, a PCI host bridge is used. In almost all systems,
PCI host bridge and memory bus (controller) are integrated into one chipset and targeted to
achieve high performance with a good price-performance ratio. As in many other cases, high
performance is considered to be high long-term bandwidth and low average latency but does
not imply bandwidth or latency guarantees. However, for real-time systems, bandwidth and
latency guarantees are more important than peak and average values. Although the PCI bus
specification allows free configurability of the bus system in terms of bus arbitration, very
little work has been done on scheduling real-time streams over the PCI bus [7].
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The PCI standard has been extended or enhanced to fill the gap between a universal
application and a specialization for certain areas. CompactPCI is an extension to the PCI 2.2
standard to make better use of the PCI bus in embedded devices. It covers different form
factors to suit rack-mounted devices and connectors better and provides support for additional
application-defined side buses such as time-division-multiplex buses for telecommunication
systems. The logical and electronic behavior of CompactPCI is identical to the standard PCI.
To meet the growing requirements of bandwidth by faster I/O technologies such as Gigabit
Ethernet, Fibre Channel, and Ultra3 SCSI, an addendum to the PCI 2.2 specification has been
made, called PCI-X. This addendum provides bus bandwidth beyond 1GB/s, and extended
information is passed along with each transaction to make host buffer management more
efficient [8]. A smooth migration to the new technology is provided by backward compatibility
to PCI. Devices can be designed to operate in PCI-X environments as well as in conventional
PCI systems.

The availability of powerful commodity PCI-bus-based PC systems, the wide variety of
PCI-bus devices, and the moderate price make such systems an interesting research plat-
form. However, many performance-improving features such as caches make PC hardware less
predictable than hardware especially designed for real-time systems. This fact requires new
schemes to cope with the problems of this hardware.

This Ph.D. thesis is embedded in the context of the Dresden Real-time Operating System
(Drops [3, 4]) that provides support for execution of real-time and non-real-time applications
at the same time on a single machine. Major research goals of Drops are to discover the
possibilities and limitations of commodity PC hardware and a systematic construction of a
mixed real-time/time-sharing systems.

1.1. Motivation and Main Objective

A characteristic of all real-time systems is that tasks must be completed within a certain time
or no later than a given point in time, called the deadline. Depending on the importance of the
requirements in meeting the deadline, we distinguish between hard and soft real-time. Missing
a deadline in a hard real-time system can have drastic impacts on the system’s environment.
In hard real-time systems, the task has no value if it is completed after the deadline. In
contrast, a missed deadline in a soft real-time system results only in reduced value, and the
system can gracefully adapt to the new situation. Often, these results are an unpleasant
interaction with the user such as a flaky video or audio stream.

Both types of real-time systems require appropriate schemes for allocating and assigning
resources. To decide whether enough resources are available for an application to deliver
the expected results, an admission test must be performed. Since the successful admission
must reserve and assign the necessary resources to the application, admission and resource
allocation are often combined. Resource reservation is distinguished in a manner similar
to real-time applications. If a resource with a hard reservation cannot be allocated, the
application cannot proceed. However, a soft reservation can fail under some circumstance
such as overload and the application must be able to cope with this situation.

As already mentioned in the introduction, the execution times of processor instructions
accessing main memory depend on the behavior of all other devices. Early measurements
showed that the impact on the execution time of applications is relevant and cannot be
neglected when large amounts of data are transferred [5]. Hence, the näıve assumption that
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the execution time of an application is not influenced by other devices (as often seen in
real-time systems) may result in violations of the given guarantees. To deal with that effect,
resource reservations based on the execution time of an application must be adapted to handle
the impact caused by bus traffic. However, this is only possible if the operating system handles
bus bandwidth as another resource.

It is obvious that, for commodity hardware as used in Drops, bus bandwidth is a key
resource and we would expect to see a wide variety of hardware and software solutions to
request, reserve, and assign bus bandwidth on such systems. However, existing real-time
operating systems pay attention to various resource types, such as processors, main memory,
hard disks, and the second-level cache, but disregard bus bandwidth as a resource. To our
knowledge, currently no real-time operating system on such hardware (neither in the com-
mercial area nor in the research community) supports any kind of bandwidth guarantees for
buses or considers bus bandwidth as a resource that may influence other resources. Some
support for buses is offered where these buses already support reservation. An example is the
Universal Serial Bus (USB). Bandwidth is guaranteed (by the USB bus) between USB devices
and the USB adapter card, but not between the USB adapter card and the main memory.

The purpose of this Ph.D. thesis is to analyze and predict the affect of load generated by
the PCI bus on the execution times of applications, to determine the real-time capabilities
of the PCI bus by analyzing the limitations of commercially available PCI-bus systems, and
finally, to provide a mechanism to use the PCI bus in a predictable fashion with support for
hard and soft reservations and bandwidth and latency guarantees.

1.2. Environment

This section gives a short overview of the hardware and software typically used in the Dres-
den Real-Time Operating System (Drops) and describes the properties of the measurement
environment.

1.2.1. Hardware

Figure 1.1 shows the structure of a typical PCI-bus-based commercial off-the-shelf system
that we use for Drops. Points with data contention are the memory bus (I) and the PCI bus
(II). Both contention points are addressed in this thesis.

To determine whether different processor architectures also have an impact on the relation
between I/O load and the execution time of an application, we chose two different platforms:
systems based on Intel IA-32 (Pentium Pro, Pentium II) [10] and on DEC Alpha 21164
(EV5) [11] based systems. While Intel IA-32 is a 32-bit CISC instruction-set architecture,
Alpha is a 64-bit RISC load–store architecture. For non-intrusive performance measurements,
both architectures provide software accessible hardware performance counters to count various
hardware events such as TLB-misses, cache misses, retired instructions, and so on. For time
measurements, they also provide a time-stamp counter.

Initial tests and measurements showed that IA-32 and Alpha systems behave similarly [5].
Hence, we focused on IA-32 systems for later tests. Comparisons of hardware specifications
and experiments indicate that all results and solutions can be applied to both systems.

To generate different PCI-bus loads, we used an adapter card with a programmable PCI
interface chip, 2MB memory, and an Intel i960 processor (FORE PCA200e ATM card [12,
13, 14]). PCI bursts of variable length and frequency were created by our own firmware,
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Figure 1.1.: PC hardware architecture used in Drops

downloaded onto the card using the Drops framework [15]. To study the impact of a highly
utilized PCI bus, we performed measurements with up to five cards in parallel.

For additional PCI-bus operations, we used a DEC Pamette board [16, 17]. This board
contains five freely programmable gate array (FPGA) chips. The complete PCI-bus access is
controlled by one preinitialized FPGA. The other four FPGA chips are ordered in a two-by-
two matrix and provide access to on-board memory (32kB SRAM and 16MB DRAM). An
important feature is the Pamette’s extended DMA machine which can generate PCI bursts of
variable length. The Pamette was also used to capture continuous PCI-bus traffic to validate
our model with real PCI-bus traffic.

All measurements on the IA-32 platform were performed on a single system with a 400MHz
Pentium II CPU, 64MB SDRAM100 main memory (10ns), and 256kB second-level cache. The
system uses an Intel 440BX PCI host bridge. The Alpha platform is a 433MHz 21164 based
system with 64MB EDO RAM, 2MB of L3 cache and a PCI bus with the 21171 core logic
chipset1. All measurements either use the internal CPU timestamp or performance counters
for accurate results with minimal perturbance to the system. The 21171 core logic chipset
provides additional performance counters to count bus events such as the number of PCI
transactions, target or initiator aborts, bus stalls, etc.

1.2.2. Dresden Real-Time Operating System

The Dresden Real-time Operating System is based on the L4 microkernel [2, 18] as processor
abstraction layer. L4 is a microkernel of the second generation and is available on several
platforms, such as IA-32, Alpha, MIPS, and StrongARM. The L4 kernel provides multiple
address spaces, threads, a fast and flexible inter-process communication (IPC), and support for

1The 21171 also contains the PCI host bridge.
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user-level memory management. On top of the kernel, several cooperating resource managers
and applications form the Drops system architecture. A main feature of this framework is the
support of time-sharing and real-time applications on a single system. Figure 1.2 illustrates
the typical components of the Drops system architecture.

RT Protocol

Net Driver

File System

Disk Driver(L4Linux)

Basic Resource Management

(CPU, Memory, Buses, Caches)

Display

Display Driver

Non Real−Time Environment Real−Time−Environment

gcc

xemacs

Component
Time−Sharing

Video Display MPEG Decoder

make

L4 Microkernel

Figure 1.2.: Drops system architecture with an MPEG player

Cooperating resource managers are the fundamental part of resource management in the
Drops system. They are responsible for handling, controlling, and distributing the hardware
and system resources such as memory or L2 caches, and also for enforcing given guarantees.
Managers for high-level resources map these resources to low-level resources. The general
design principles for such managers are described elsewhere [19].

The time-sharing part of Drops (L4Linux [2]) receives unreserved resources or reserved
but unused revocable resources. To guarantee basic functionality, it also reserves a certain
amount of resources at startup. L4Linux manages all received resources and handles the
requests of its applications by its own policies. The standard Linux system-call interface does
not need to be changed, and we can support the execution of native Linux applications without
modifications. All real-time components have a separate management interface to reserve and
request resources either directly from the resource managers or from other components.

Resource managers in the initial version of Drops used deterministic reservation strategies
with adaptation methods for overload. Reservations based on deterministic schemes require
an explicit consideration of the worst case which leads to overreservation. It became apparent
that especially modern hardware architectures exhibit a widening gap between normal and
worst-case behavior and hence behave poorly with respect to absolute timing guarantees.
To address these issues, we extended the deterministic admission schemes by a probabilistic
approach [1]. Applications are now able to specify a value for importance of their tasks and
a value for quality. By trading a known reduction of quality for a noticeable reduction of
resources to be reserved, this scheme allows us to handle situations of temporary overload in
soft real-time system far more effectively than deterministic reservation schemes. As a result,
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resources can be better utilized and a higher number of tasks admitted. Managers with
support for probabilistic reservations exist for the processor and SCSI disks. An application
that strongly benefits from this approach is our MPEG video player. Since reservations are
not based on the worst case but on distributions of the actual resource usage, probabilistic
schemes cannot be applied for resource management in hard real-time systems.

1.3. Contributions

This thesis makes several research contributions:

1. We introduce the slowdown factor to describe the influence of external bus load on
applications executed by the main processor. Maximizing the external load leads to
the application’s worst-case slowdown factor. If we choose an application that is most
sensitive to external load, we can determine the upper-bound worst-case slowdown factor
(Section 3.1).

2. The slowdown factor of an application can be determined based on the instruction mix
and the upper-bound worst-case slowdown factor (Section 3.3.1).

3. By means of a quadratic function, the impact of arbitrary load on processor read or
write operations can be approximated. We derive a set of formulas to determine the
slowdown factor from the instruction mix of an application and the current external bus
load (Section 3.3.2).

4. To describe the behavior of devices in an off-the-shelf PCI system, we derived a set of
formulas to determine worst-case latency and bandwidth. The formulas are based on a
simplified model of the phases of PCI-bus transactions (Section 4.3).

5. We develop a fast proportional-share algorithm to assign arbitrary shares of the PCI
bus bandwidth to individual devices (Section 4.5.1). This allows us to use the PCI bus
in a predictable fashion and to reserve bandwidth for individual devices (Section 4.5.2).

6. We design a hardware implementation of the fast proportional-share algorithm. By
parallelizing the algorithm, we can reduce its complexity for n devices from O(n) to
O(1) (Section 4.5.5).

7. An extension to the design supports both hard and soft reservation of PCI-bus band-
width (Section 4.5.6).

8. We give a set of equations to calculate the shares of each device in relation to the
bandwidth the device requests and estimate worst-case latencies (Section 4.5.7).

The following, additional contributions were made:

1. To use the Digital Pamette PCI board under Linux, we developed and implemented a
device driver for Linux.

2. To model various bus arbitration schemes and to verify our proportional-share PCI-bus
arbiter, we developed and implemented a PCI-bus simulator “PCItrace.”
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1.4. Synopsis

The thesis is structured as follows. The next chapter describes the most important standard
bus systems and their use in real-time systems, and gives an overview of related work. It
analyzes scheduling algorithms that are suitable for resource scheduling and considers deter-
ministic and probabilistic schemes for admission control. Chapter 3 describes the impact on
applications running on the host processor due to memory-bus load generated by external
sources, e.g., devices on the PCI bus. Chapter 4 analyses the PCI bus system. We present a
model to describe the bus characteristics and behavior of PCI devices. A new arbitration al-
gorithm is presented to use the standard PCI bus in a predictable manner. Finally, Chapter 5
summarizes the results, gives an outlook for future research, and concludes this thesis.
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2. Current Bus Systems and Related Work

In the past, the need for scheduling of buses has been handled in various ways. In real-
time operating systems for embedded environments, designed to control dedicated hardware
such as actuators and sensors, the amount of data handled and the required bandwidth is
relatively low. Only a few control messages and some measurement data have to be exchanged
between peripheral devices and the main unit. In this case, it is sufficient to use a bus system
with support for a guaranteed transmission latency; bandwidth scheduling is not an issue
here. Systems with a demand for higher bandwidth such as aerospace and avionics control,
robotics, medical image processing, or video-on-demand servers use bus systems with explicit
real-time support such as the VMEbus.

In the recent past, off-the-shelf PC systems for the consumer market—in general with
the PCI bus— have become so powerful that “real-time processing” is an often-heard buz-
zword. Many applications, especially in the scope of audio and video processing, are available.
However, such applications often only claim real-time capabilities but do not even run on a
real-time operating system. If real-time systems are used, bus bandwidth is completely dis-
regarded as a resource. One reason for this is the assumption that, merely by using powerful
hardware, bus bandwidth is always available in the requested amount and is limited only
by the hardware-given maximum bandwidth, and that there is never any shortage of this
resource. Another reason why bus bandwidth is not seen as an “operating-system manage-
able” resource is the large difference in the timing base. While buses operate in ranges of
nano- to microseconds, the time base of CPU scheduling is in the range of tens to hundreds
of milliseconds.

To our knowledge, no real-time operating system for standard hardware, neither in the
research community nor in the commercial arena, deals with bus bandwidth as a resource to be
managed. Some support is given for external bus systems that provide bandwidth guarantees.
However, support is restricted to the directly provided capabilities of the hardware. For
example, drivers for the Universal Serial Bus (USB) support bandwidth guarantees for data
transfer between USB devices and the USB host adapter (since this is supported by the
physical USB hardware), but do not guaranteed that enough bandwidth is also available and
reserved on the system’s local bus to finally transfer the data into main memory. Small
operating systems on predictable hardware adapter cards handle bandwidth to guarantee
given commitments for this hardware, but not to manage the local buses of the card. Related
work in terms of bus scheduling, especially for the common bus systems considered in this
work, is very rare [20, 21].

The remainder of this chapter is structured as follows. In Section 2.1, we describe a variety
of alternative bus systems such as Industry Standard Architecture, VersaModule Eurocard
Bus, FutureBus and FutureBus+, InfiniBand, Controller Area Network, the Cambridge Desk
Area Network, Universal Serial Bus, IEEE-1394 or Firewire, and Accelerated Graphics Port to
connect internal and external devices to the CPU and the main memory. We give information
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about general resource management and resource-scheduling algorithms in Sections 2.2 and
2.3, focusing on algorithms that are potentially adaptable to bus scheduling. In Section 2.4,
we describe some bus systems and scheduling schemes used in hard real-time environments.
Section 2.5 describes several techniques for admission, including static admission schemes,
where all decisions are done before the system is started, and dynamic admission schemes,
which allow us to dynamically add and remove tasks. Dynamic admission schemes include
deterministic and probabilistic admission schemes. Section 2.6 describes mechanisms to es-
timate the execution time of applications and how other systems handle the impact of I/O
load on the execution time of applications.

2.1. Bus Systems

In this section we give a short overview of various bus systems and their behavior regarding
arbitration and timing constraints. These buses are listed in this section because they are
either used in real-time systems, provide capabilities for bandwidth reservation, or have influ-
enced design decisions of the PCI bus. Table 2.1 summarizes the bus width, clock frequency,
and maximum bandwidth of common bus systems.

Table 2.1.: Parameter comparison of common bus systems

Bus Name Width (bits) Frequency (MHz) Max. Bandwidth (MB/s)

8-bit ISA 8 8.3 8.3
16-bit ISA 16 8.3 16.6
EISA 32 8.3 33.2
VLB 32 33 132
32-bit PCI 32 33 132
64-bit PCI 2.1 64 66 528
AGP 32 66 264
AGP (x2 mode) 32 66x2 528
AGP (x4 mode) 32 66x4 1,056
USB 1 1 (serial) N/A 0.1875 (sync) 1.5 (async)
USB 2 1 (serial) N/A 60
FireWire / IEEE-1394 1 (serial) N/A 400
FutureBus 32 100 400
FutureBus+ 256 100 3,200
VMEbus 64 10 (100ns cycle time) 80
CAN bus 1 (serial) variable length > 100m : 7.5

bus length(m)

2.1.1. Industry Standard Architecture Bus

The Industry Standard Architecture (ISA) bus is the oldest bus system for IBM PC systems.
Originally, it was an 8-bit data bus with 16-bit addresses. Extensions of the data path to
16-bit (and partially to 32-bit) were made. The maximum transfer rate of the original version
is 8.3MB/s at a clock speed of 8.3MHz. This provides reasonable throughput for devices with
low bandwidth requirements. All transactions are actively controlled either by the CPU or
a single DMA controller. The CPU and the DMA controller synchronize their bus accesses
using a direct wire. All devices are “passive,” that is, they cannot actively request the bus and
transfer data to main memory autonomously. Hence, an arbitration process is not required.
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However, devices can be programmed to announce available data to the DMA controller which
then performs the transfer without further CPU interactions. Since the DMA controller is
only programmed by the CPU, no uncontrolled data transfer between a device and the main
memory can occur. This makes the bus very predictable but does not provide the performance
required for multimedia applications. In current systems, the ISA bus is usually connected
via a PCI-to-ISA bridge and is present only to support legacy devices. The ISA bus will be
removed from systems at some point in the future.

2.1.2. VersaModule Eurocard Bus

The VersaModule Eurocard (VME) bus is an asynchronous, master-slave, parallel bus. The
original bus [22] is 32 bits wide and supports transfer rates up to 40MB/s, current systems
are 64 bits wide and provide a bandwidth of 80MB/s. Recent versions (2eSST) of VMEbus
achieve a sustained backplane performance of 1GB/s. VMEbus is mainly used in embedded
systems, such as factory automation, avionics, in-flight video servers, cellular-phone base
stations, and many others.

Every VMEbus must have a system controller, which performs the arbitration. The VME-
bus system controller must reside in slot one and provides its functionality independent of the
card plugged into that slot. Hence, a master or a slave may coexist with the system controller
in the same slot.

Three arbitration modes are available: priority mode (PRI), round robin (RR), and single
level (SGL). Selecting the arbitration mode is part of the system initialization process; the
arbitration mode cannot be changed while the system is runing. Priority mode provides four
bus request levels (BRL) and gives highest priority to bus request level three, then two, one
and finally zero. For devices at the same request level, proximity to slot one determines which
device gets the bus next. Round-robin mode grants the bus in sequential order, i.e., BRL 3,
2, 1, 0, 3, 2, 1, etc. Single-level arbitration honors only BRL 3, other levels are ignored. A
mix of PRI and RR mode is also allowed by the VMEbus specification. Here, BRL 3 works
in PRI mode, BRL 2, 1, and 0 in RR mode. Alternatively, the bus allows using PRI mode
for BRL 3 and 2, but RR mode for BRL 1 and 0.

While PRI mode is suitable for systems or devices with real-time requirements, RR mode
is designed to support applications where fair sharing of the bus is required. SGL mode is
provided for simple systems that do not require a sophisticated arbitration scheme.

The basic support for priorities makes VMEbus especially suitable for real-time environ-
ments. Since the main target are embedded systems with a relatively static design, priorities
can easily be calculated up front (e.g., by using RMS [23]).

2.1.3. FutureBus / FutureBus+

FutureBus+ [24, 25] is an asynchronous high-performance bus and an improvement of the old
FutureBus. It is architecture and processor independent. The current standard supports bus
widths up to 256 bits. The bus supports both centralized and decentralized arbitration. Each
module has a unique 8-bit arbitration number. The module that supplies the highest number
is granted bus access by the arbitration logic. Data transfer is burst-oriented—after sending
a target address, the entire data burst is sent. Currently, FutureBus and FutureBus+ are
rarely used, but they have strongly influenced the development of current state-of-the-art bus
systems.

Page 11



An approach for real-time traffic over FutureBus+ based on rate-monotonic theory is
given by Sha et al. [26]. This is also the recommended approach in the FutureBus+ System
Configuration Manual (IEEE 896.3) [27].

2.1.4. InfiniBand Architecture

The InfiniBand Architecture [28] specifies a “first-order interconnect technology,” i.e., a sys-
tem for connecting processors and I/O nodes to build a system area network. The architecture
is independent of the host operating system and the processor platform. The InfiniBand archi-
tecture is based on a point-to-point, switched I/O fabric. All end-node devices are connected
via switch devices. InfiniBand is designed to become the backbone for server systems with
support for bandwidth and latency guarantees. Similar to ATM networks, a certain amount of
bandwidth is reserved per connection, and the switch fabrics are responsible for guaranteeing
and enforcing these reservations. These features make InfiniBand an interesting alternative
for future real-time systems. At this time, information is very preliminary and not publicly
available.

2.1.5. Controller Area Network Bus

The Controller Area Network [29] is a serial communication protocol that supports distributed
real-time control systems. Originally designed for connecting components in automotive sys-
tems, it has applications in many industrial automation and process-control systems because
it is a simple and low-cost system.

The CAN bus allows real-time and non-real-time applications to share the network. The
bus-access protocol is based on the carrier sense multiple access / non-destructive bitwise-
arbitration scheme (CSMA/NBA). After sending a preamble to indicate the start of a trans-
mission, a priority identifier is sent. Each node continuously senses the bus and checks its
state. Each node compares the scanned state on the bus with the state it has put on the bus
itself. In case of a mismatch, the device drops out of connection. Finally, the sender transmit-
ting the highest identifier hereafter gains exclusive access to the bus. To avoid performance
degradation, this mechanism requires an efficient control mechanism to provide guaranteed
access for real-time applications.

Bus scheduling based on earliest-deadline-first (EDF) techniques has been described else-
where [30, 31]. Compared to static-priority scheduling such as rate-monotonic scheduling
or deadline-monotonic scheduling, the proposed approach allows an increase of up to 20%
in the feasible network workload. An approach that combines both EDF and fixed-priority
scheduling is given by Zuberi and Shin [32].

2.1.6. Cambridge Desk Area Network

The Cambridge Desk Area Network (DAN) [33] uses ATM techniques to build a multiprocessor
multimedia station around an ATM switch. Various intelligent autonomous components (also
called nodes) such as CPU, frame grabber, network cards or independent memory/storage
nodes are connected via the DAN. Due to its switching technology, this system scales very
well by connecting multiple DANs with each other. The computing nodes, input/output
nodes and even the integrated parts of a typical desktop station can be separated. Since it
also serves as a local area network, personalized I/O nodes can travel along with the user
while the computation nodes always stay connected and online.
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By design, the cell-based technology of ATM supports bandwidth reservation; hence ad-
ditional technologies are not required. Once a “channel” between source and destination
has been established under a given quality-of-service parameter set, the switches enforce this
service quality.

2.1.7. Universal Serial Bus

Universal Serial Bus (USB) [34] is a serial bus designed to overcome known problems of
low- to mid-speed buses, such as inflexibility, limited scalability and extensibility, or missing
plug-and-play capabilities. With USB-1, a well-defined interface for hardware and software
interconnection allows an easy integration of new devices into current systems. The first
version supports bandwidths up to 12Mbps for asynchronous or 1.5Mbps for synchronous
data transmission. The increasingly higher performance and capability to process huge data
streams in end systems also results in a need for higher speed and bandwidth in the inter-
connect and bus systems. This is the motivation for USB-2 [35], which now supports transfer
rates of up to 480Mbps. USB devices are distinguished based on their bandwidth consump-
tion in low-speed (10–100kbps), full-speed (500kbps–10Mbps), and high-speed (25-480Mbps)
devices.

All devices are connected point-to-point to a hub device. The hub device itself can be
connected to another hub, building a hierarchy as illustrated in Figure 2.1.

HUB

HUB Device

HUB Device Device

Device

HOST

Figure 2.1.: USB device hierarchy

All transfers are based on pipes, a point-to-point association between two endpoints, the
USB host and the USB device. Each pipe holds information about the transfer type and
the requirements of the stream. To support various requirements of devices, USB provides
the following transfer types: control transfer, interrupt-data transfer, bulk-data transfer, and
isochronous-data transfer. Control transfers are mainly used to configure a device at the time
it is attached to the bus but can also be used for other device-specific purposes. The bulk-
data transfers have a wide dynamic latitude in transmission constraints and are generated or

Page 13



consumed by devices in relatively large and bursty quantities. Interrupt-data transfers are
used for timely critical (low latency) and reliable delivery of data, such as keyboard or mouse
events. Isochronous data transfers are targeted to transfer real-time data with constant bit
rate. They occupy a prenegotiated amount of USB bandwidth with a prenegotiated delivery
latency; bandwidth and latency are guaranteed by the bus.

Time on the bus is divided either into 1ms frames for full-speed or 125µs micro-frames for
high-speed segments. Isochronous and interrupt endpoints are given opportunities to access
the bus every N (micro)frames. Isochronous transmissions are guaranteed to occur within a
prenegotiated frame but may occur anywhere within the frame.

2.1.8. IEEE-1394 Serial Bus / FireWire

The standard described in IEEE-1394 and IEEE-1394A, also known as FireWire or iLink, is a
high-performance serial bus targeting high-speed computer peripherals such as video cameras,
audio devices, network interfaces, etc.; it also supports low-speed, non-time-critical devices
such as printers and hand-held devices. The design and application area of IEEE-1394 is
similar to that of USB.

Data rates up to 400Mbps are currently supported. Future plans to support data rates of
3,200Mbps would allow using IEEE-1394 buses as the common backplane within hosts. The
main focus of the IEEE-1394 serial bus is an easy connection of external devices to a host.
Similar to USB, easy hot-plug-and-play technology provides the ability to add or remove
devices at any time.

Devices are addressed by a 64-bit ID that is partitioned into 10 bits for the network ID,
6 bits for the node ID, and 48 bits for memory addressing within each node. Hence, this
topology can support up to 1023 networks or buses of 63 devices per bus (node). The address
space each individual device can address is 281 terabytes. This direct addressing mode of
IEEE-1394 is the major advantage over USB. Devices can be directly connected “back-to-
back” without additional hardware. From a device’s perspective, data connectivity is a true
peer-to-peer connection since each device’s memory is addressable from every point in the
topology.

125µs125µs
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Figure 2.2.: IEEE-1394 bus cycle with isochronous and asynchronous data

In contrast to PCI, where only the electrical mechanism and timing constraints for arbi-
tration are defined, IEEE-1394 also defines the arbitration scheme. In their technical con-
struction, IEEE-1394 and USB are very similar. Time on the bus is divided into 125 µs
frames. Figure 2.2 illustrates a typical cycle on the bus. To ensure bandwidth guarantees, up
to 80 % of the total bandwidth can be reserved for isochronous (real-time) data streams. The
rest is available for non-real-time data transfers, called asynchronous data. A variable-length
gap between data packets is an essential part of the arbitration algorithm and indicates the
maximum propagation delay. This is required since IEEE-1934 packets are not equally sized
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within a cycle and bus participants recognize a packet end by means of such a gap. Gaps
between isochronous packets are shorter than those between asynchronous packets.

2.1.9. Accelerated Graphics Port

The Accelerated Graphics Port [36] (AGP) is a point-to-point connection between the graphics
controller and the main memory. It is used exclusively to connect display adaptors and
graphics devices; the primary intention was to improve graphics performance.

By providing a real bandwidth improvement between the graphics accelerator and main
memory, some of the data structures used for 3D graphics may be moved to main memory.
This effectively reduces the costs for accelerated graphics adaptors. Texture data are espe-
cially suited to a shift to main memory, since they are generally read-only and therefore do
not have special access ordering or coherency problems.

AGP is, in general, based on and derived from the 66MHz PCI-bus specification but pro-
vides significant performance extensions such as deeply pipelined memory and demultiplexing
of address and data on the bus. Since data transfers are possible at both falling and rising
edge of a clock cycle, the transfer rate is twice as high as for the PCI bus.

Given its typical point-to-point connection topology, bandwidth guarantees exist auto-
matically and no contention or conflicts on the AGP can arise. Contention is possible in
the host bridge where AGP and the PCI bus are connected to the memory bus. From the
bridge point of view, an AGP device has the same properties as an entire PCI-bus subsystem
connected to the bridge.

2.2. Resource-Scheduling Schemes

In the following sections, we give an overview of scheduling schemes that can be applied to
various types of system resources and that provide features to be considered for bus scheduling.
At first, we describe classical schemes for static and dynamic scheduling. Thereafter, we
describe schemes based on a proportional sharing of the resource.

2.2.1. Rate-Monotonic and Deadline-Monotonic Scheduling

One of the classical deterministic scheduling strategies is rate-monotonic scheduling
(RMS) [23]. All tasks are periodic and have a determined runtime per period. RMS is
based on hard priorities and tasks receive priorities inversely to the length of their period:
the shorter the period the higher the priority.

Another well-known periodic scheme is deadline-monotonic scheduling (DMS). Priorities
are assigned to tasks according to their relative deadlines: the shorter the relative deadline,
the higher the priority. If the relative deadline of every task is proportional to the task’s
period, DMS is identical to RMS. If the relative deadlines are arbitrary, DMS can sometimes
produce a feasible schedule while RMS fails. However, if DMS fails to produce a feasible
schedule, RMS will also fail.

Rate-monotonic scheduling is well suited for scheduling tasks with small variations. How-
ever, tasks with a high variation in their resource requirements are difficult to handle. To
guarantee the successful completion of all jobs, enough resources must be reserved to cover
the worst case, independent how often the worst-case occurs. The result is an overreservation
resulting in a waste of resources most of the time. This is mainly caused by the high variance
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between average and worst-case execution times of a resource. Rate-monotonic scheduling
has been used for bus scheduling [7, 26]. In combination with bus scheduling, the missing
support for non-periodic tasks (as required for non-real-time streams) is the major drawback
of RMS and DMS.

2.2.2. Statistical Rate-Monotonic Scheduling

Statistical rate-monotonic scheduling (SRMS) [37] by Atlas and Bestavros is a probabilistically
extended version of RMS. In terms of scheduling, SRMS is identical to RMS: hard priorities
are assigned inversely proportional to the period length of a task. The basic requirements
of RMS, such as periodic tasks with deterministic deadlines, persist, but the deterministic
worst-case execution time of a task is replaced by a probabilistic execution time. This allows
SRMS to better schedule periodic tasks with highly variable execution times and statistical
quality-of-service requirements.

An RMS schedule is always successful if it can be calculated and the resource consumption
of a task is less than or equal to the reserved amount. In contrast, SRMS guarantees only a
percentage of tasks to be successful; other tasks may fail to meet their deadline.

In contrast to soft real-time, where, in case of overload, no prediction can be made of
which resource allocation will fail, SRMS allows calculation of the percentage of tasks that
will meet their deadline under the given available resources. However, this calculation cannot
be inverted to calculate the amount of resources required to achieve a given percentage of
successful tasks. This amount can be determined only by approximation schemes.

The major drawback of SRMS is that the importance of an application is not considered
and the user cannot specify a preference between tasks with regard to deadline importance.
If distributions of I/O load are known, SRMS provides an applicable scheme to improve bus
utilization.

2.2.3. Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling assigns priorities dynamically to individual jobs in a
task according to their absolute deadlines; the job whose deadline is next is executed first. It
has been shown that successful execution can be guaranteed for a resource utilization of up
to 100% [23]. The major drawback of EDF is the difficulty of predicting which tasks will miss
their deadline during an overload. A job that has already missed its deadline has a higher
priority than a job with a future deadline, hence, if the execution of a late job is permitted, it
may cause other jobs to be late. This unstable behavior makes EDF unsuitable for systems
in which overload can occur.

EDF has been proposed and successfully implemented for bus scheduling of the CAN
bus [30, 31]. Access to the bus is priority-based and controlled by a CSMA/NBA scheme (see
Section 2.1.5). The device with the highest priority gains access to the bus. Since deadlines
can be kept locally by the device and no central arbiter needs to be updated, EDF can be
efficiently implemented on the CAN bus.

On the PCI bus, the central arbitration scheme makes EDF unsuitable for scheduling. The
major problem are the frequently required updates of deadlines in the arbiter. An alternative
is using EDF with periodic deadlines where the arbiter can autonomously determine the next
deadline of a device. However, this leads to problems similar to those of RMS and DMS, that
tasks with high variation in their resource requirements are difficult to handle.
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2.2.4. Stride Scheduling

Stride scheduling [38] is a proportional-share resource-scheduling scheme suitable for a wide
diversity of resource types. Resource rights are represented by tickets that a client acquires
when it requests access to a resource. The number of tickets each client receives is proportional
to the amount of the resource given to the client. Consequently, the latency is inversely
proportional to the number of tickets a client holds. The scheduling mechanism is based on
a deterministic rate-based flow-control algorithm for networks. Stride scheduling is suitable
for hard real-time systems.

Based on the client’s share of the resource, the stride is calculated. The stride determines
the time a client must wait at least between two successive allocations. Consequently, the
client with the smallest stride will be scheduled most frequently. Stride scheduling is an
approximation of an ideal system known as “fluid-flow.” While resources in an ideal system
can be allocated in arbitrarily small units, resources in a real system can be allocated only in
multiples of the smallest allocation unit. This problem was investigated by Stoica et al. [39].

The difference between the resource share a client should receive and what it actually
receives is called service-time lag. The service-time lag quantifies the allocation accuracy; the
smaller the service-time lag, the higher the accuracy of the allocation. Hence, a goal is to
minimize the service-time lag. This is done by tracking and accumulating the service-time lags
of clients. At the end of each resource quantum, only those clients with a positive service-time
lag are considered. A positive service-time lag means that the client is behind schedule and
has received fewer resources compared to the perfect fluid-flow system. A negative service-
time lag shows that the client has received more resources than it should. All clients that
are behind schedule are eligible to receive resources and will be scheduled using an earliest-
deadline-first rule. This allows scheduling of a set of clients such that their service-time lag
is bounded by a constant. Bounding the service-time lag is especially important for real-time
systems to avoid missing of deadlines due to inexact scheduling.

Since stride scheduling was designed to schedule arbitrary types of resources, it is also
possible to apply this scheme to bus scheduling. The basic implementation does not consider
the service-time lag. This can lead to an unacceptable high variation between calculated and
assigned bandwidth. The modified version considers the service-time lag but requires complex
operations. The scheduling of clients that are behind schedule using an earliest-deadline-first
scheme makes this variant unsuitable for an implementation in hardware.

2.2.5. Charge-Based Proportional Scheduling

Charge-based proportional scheduling [40] by Maheshwari is a deterministic approach similar to
stride scheduling (see Section 2.2.4). It assign resources to clients in a round-robin order. Each
time a client receives a quantum, the scheduler deducts a charge from the client’s account.
During scheduling, every client with a negative account is skipped. When no client has a
positive account, the scheduler refunds all clients their initial number of shares. The major
drawback is the possibility of long starvation. This can happen when clients have a very
different number of shares. Here, over time, fewer and fewer clients have a positive account.
Finally, only one client receives all resources until this client has a negative account, and
then each client receives its initial number of shares. Starvation leads to high latency for
clients with a small share, which is not acceptable for bus scheduling. The starvation can be
avoided by evenly distributing the scheduling events over the period. This distribution can
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be achieved by a scheme we propose in this work.

2.3. Resource-Reservation Policies

Scheduling algorithms are responsible for making ad-hoc decisions to grant access to a single
resource based on actual requests. Classical resource schedulers attempt to assign a resource
to applications such that given guarantees hold. Classical resource schedulers do not consider
the human user of a system. By starting many applications, one user can monopolize resources
and gain unfair advantage over other users. They also do not consider long-term results of the
system. Allowing access to an available resource to satisfy one request can result in overall
performance worse than denying the access. To solve this problem, long-term considerations
of resources have to be made.

The following resource-reservation policies are additions on top of basic resource-
scheduling schemes. They can be used to consider bus bandwidth in concert with other
resources.

2.3.1. Fair-Share Scheduler

Fair-share schedulers [41, 42] attempt to solve user-based monopolization by allocating re-
sources to a user or a group of users proportional to the share they have been assigned. The
main goal is to achieve a fair share of the entire computer over a longer period of time, rather
than fulfilling a short-time scheduling decision for one single resource. Hence, a main dis-
tinction between proportional-share-based schedulers and fair-share schedulers is the different
time base. While proportional-share-based schedulers provide instantaneous information ac-
cording to the shares of the application, fair-share schedulers attempt to influence the system
to provide a timed-averaged fair share to the user.

Fair-share schedulers often deploy complex algorithms with a statistical analysis of the
usage and utilization of a special resource or the entire machine. They are implemented on
top of the conventional, priority-based scheduling system and adjust the priorities determined
by the underlying priority scheduler to achieve long-term fairness.

2.3.2. Earliest-Eligible Virtual-Deadline First

Earliest-eligible virtual-deadline first (EEVDF) [43] unifies and extends the proportional share
and resource-reservation policies. Instead of characterizing a client exclusively by its weight,
as in proportional-share schemes, or by its share as in reservation schemes, this approach uses
both characterizations simultaneously. Each client is associated with a tuple, containing the
weight value and the share value. The tuple describes how much and at which rate a client
has to “pay” for using a fraction of the full resource.

By setting the weight to a fixed value, the costs of using an unknown amount of the
resource are predictable. At any time, the fraction of the resource may change depending on
the level of competition for the resource. The client cannot predict how much of the resource
it will actually receive. On the other hand, by fixing the share, the client receives a predictable
share of the resource, but it cannot predict the costs.
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2.3.3. Imprecise Computations

Imprecise computations (IC) [44] were introduced as a way to handle transient overload and
enhance the fault tolerance of soft real-time systems. Unlike schemes that calculate priorities
only from a task’s share or execution time, IC also considers the importance of an application.

Imprecise computations handle periodic tasks that consist of one mandatory part and one
optional part. While mandatory parts of all tasks are guaranteed to complete successfully, no
statement is made about optional parts. Each application can thus generate, in the mandatory
part, a guaranteed approximated basic result that can be used whenever failure or system
overload prevents the application from refining this result and producing, in the optional part,
a result with better quality.

The relative improvement often decreases with the calculation time of the task. If the
improvement can be described depending on the calculation time by a value-time-function,
the ratio between performance gain and execution time can be used to further improve the
scheme. Many tasks can come closer to an optimal result rather than only a few actually
reaching it.

In the original version, scheduling of mandatory parts is done using RMS. But all other
deterministic scheduling schemes are possible. IC is tailored to the processor resource, but
can also be used for other resources. In such cases, the mandatory part gives the share of a
resource a client needs to deliver the minimal required result; the optional part improves this
result.

2.3.4. Quality-Assuring Scheduling

SRMS and imprecise computations, both achieve an improvement in resource utilization over
pure, deterministic scheduling and admission schemes. However, in the soft real-time environ-
ment of Drops, both have distinguished drawbacks. While SRMS cannot handle user-given
importance of applications, imprecise computations lack the probabilistic part to handle vari-
able execution times.

Our earlier work [1] presented an approach, part of the Drops system and called quality-
assuring scheduling (QAS), that combines the advantages of both SRMS and IC. Similar
to imprecise computations, an application is split into one mandatory and in one or more
optional parts.

To admit the mandatory parts, we use their worst-case execution time and an RMS-based
admission scheme. Resource reservation for mandatory parts is always guaranteed. Since we
also want to assure a requested percentage of successful optional parts, we have to perform
an admission test for these parts as well. Reservation for optional parts can be assured by
the requested percentage.

Optional parts are started only after all mandatory parts have finished. It would be suf-
ficient to determine the time remaining for optional parts based on the worst-case execution
time of the mandatory parts. However, due to the high differences between worst-case and
average-case execution time of the mandatory parts, the actual execution times of the manda-
tory parts is likely to be far less than their worst case used for their admission. Hence, we
determine the time available to optional parts by the expected execution time of the manda-
tory parts. Optional parts are admitted based on their own expected execution time and on
the expected execution time of all mandatory parts. The higher the difference between worst
case and average case of the mandatory parts, the more time is available to optional parts
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and the more optional parts can be admitted.
QAS can be applied to various types of resources. Considering bus bandwidth as yet

another resource to be managed in such a way, an appropriate bus-scheduling scheme must
also support soft and hard reservations.

The concept of quality-assuring scheduling can also be used to reduce the influence of
I/O load on applications. While mandatory parts of an application are executed, external
load is restricted to a certain threshold thus limiting the impact on application. During the
execution of optional parts, external load is not restricted.

2.4. Bus Scheduling

Task scheduling is an operating-system term, if multiple tasks are ready to run, that describes
the calculation of scheduling parameters, such as priorities or deadlines, and the decision of
which task runs next. When discussing buses, arbitration describes the selection of the device
that gets access to the bus. It does not include the calculation of parameters to achieve a
certain bandwidth or guarantee a worst-case latency. In the following, we use the term bus
scheduling to describe a behavior identical to operating systems. It includes the determination
of parameters as well as the bus arbitration.

The time to perform an arbitration is short, usually only one or a couple of bus cycles.
Therefore, it is implemented in hardware and is often static and unmodifiable. From the
hardware point of view, bus arbitration plays a very critical rule regarding performance and
system stability; modifications to an existing system are expensive and should be avoided
whenever possible. For general-purpose systems, simple and reliable schemes such as round
robin or static priorities are used. If more complex arbitration schemes are required in embed-
ded environments, e.g., the first device must have the lowest latency, systems will be tailored
to solve exactly this problem and are not generally applicable. These systems are often niche
products and designed, developed, and deployed by the same commercial vendor; publication
of the technical details of such systems is very rare, implying a very small number of related
research publications.

2.4.1. Formal Analysis of Bus Scheduling

Lehoczky and Sha [45] evaluate several scheduling algorithms and address problems of hard
real-time bus scheduling with fixed priorities. Their paper is one of the few that explicitly
points out the similarities between bus and processor scheduling. Transfers and their lengths
(i.e., the times for which they need the bus) are similar to tasks and their execution times.
Every transfer has a deadline by which it must be completed. Three important issues are
described by which bus scheduling is distinguished from processor scheduling: preemption,
priority-level granularity, and buffering.

For the PCI bus, preemption at an arbitrary time is not feasible, since abortion of a
transaction is an expensive operation. However, since the maximum time a device can use
the bus is limited, the bus can still be considered as a preemptible resource.

Some bus systems provide mechanisms to prioritize devices, transaction types, or indi-
vidual transactions. For the device case, this can either be a static assignment based on the
position on the bus or a dynamic assignment. Transaction types are groups such as control,
data, or interrupt signalling transactions. The finest granularity possible involves schemes by
which each transaction can be individually prioritized. The PCI-bus specification defines the
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format of transactions but not the arbitration scheme. Hence, assigning individual priorities
to devices is possible but to transactions or transaction types is not.

While buffering large amounts of data is a standard technique for the processor, it is not
done on bus systems. Low-latency transfers prohibit the use of extensive buffering. A trade-
off between bandwidth and latency to improve bandwidth has been made by introducing
small buffers in the PCI host bridge.

A set of formal scheduling models for several common system bus architectures were
developed and described by Kettler et al. [21]. The paper analyzes various schemes such as
fixed priority, round-robin and time-division-multiplexed algorithms. It is of special interest
for all commodity PCI systems that use a round-robin-based arbitration algorithm.

2.4.2. Slot-Based Scheduling

Slot-based scheduling is used to control access to a shared medium. The time on the bus
is divided into slots of identical and fixed length, which are assigned to individual devices.
A device can access the bus only during the time of its slots, hence all bandwidth must be
reserved to obtain an adequate amount of slots. The share of bandwidth a device receives is
proportional to its number of slots, allowing us to determine bandwidth and latency precisely.
Due to the fixed division into slots, bandwidth must be traded for latency or vice versa. For
example, smaller slots mean lower latency, but also lower bandwidth. To support non-real-
time data transfers, a device must also reserve a certain share of the bus explicitly for these
transfers. This is the major drawback of slot-based schemes. If one device cannot fill its
slots with non-real-time data, the slots cannot be used by other devices and remain unused.
To overcome this drawback, techniques such as carrier-sense multiple access with collision
detection (CSMA/CD) for non-real-time slots could be used.

Using the PCI bus with slot-based access control is possible, but doing so gives up the
advantages of high bandwidth utilization and low latency of the access-based PCI bus. The
slot-based version is still fully compliant with the PCI specification, and all adapter cards
can be used without modifications. The latency timer on all devices must be set to the same
value. This limits the access time of each device on the bus to the same value and determines
the maximum length of the slots. If devices do not make use of the entire slot, bandwidth is
wasted since bus requests of devices are only honored by the arbiter when a new slot starts.
The slotted scheme automatically provides guaranteed bandwidth and latency.

2.4.3. Cell-Based Scheduling

Cell-based schemes are used in switched networks with point-to-point connections. Devices
can access the medium at any time to send data cells, i.e., packets of identical size. If a
direct point-to-point connection does not exist between two devices, switches are responsible
for forwarding the data cells. To guarantee bandwidth for constant-bit-rate (CBR) streams
across switches, a reservation must be made on each switch along the path by which the
stream is routed. This reservation assigns a fixed number of cells-per-time to the stream. In
contrast to slot-based schemes, cell-based schemes automatically provide support for streams
with variable bit rate (VBR). If no data from CBR streams is available, cells can be filled
with data from VBR streams. Hence, all bandwidth that is not reserved or not used by CBR
streams can be given to best-effort services. To ensure some progress of the VBR streams,
some bandwidth is usually kept back for VBR streams. As with slot-based schemes, latency
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and bandwidth depend on the size of the cell.

A switched implementation of the PCI interface was proposed by Wilson [46]. A central
switching fabric has multiple PCI-bus outlets, each for a single device. If the switching
fabric provides also bandwidth reservations, this is an elegant scheme to support guaranteed
bandwidth.

2.4.4. Enhanced PCI Bus to support Real-Time Streams

Scottis et al. [7] presented an arbitration scheme, called enhanced peripheral interconnect
bus (EPCI). It is based on rate-monotonic scheduling for CBR real-time streams and VBR
time-sharing streams over the PCI bus.

A modified arbitration logic is proposed in which hard priorities can be assigned to each
pair of PCI-bus request/grant lines. Priorities can be modified at any time by the schedule
manager, which is part of the operating system. Priorities are assigned according to the
rate-monotonic scheduling algorithm and remain constant until an existing real-time stream
is ended or a new one is created.

Applying rate-monotonic scheduling schemes to give bandwidth guarantees on buses was
proposed earlier for the FutureBus by Sha et al. [26]. The proposed scheme has the same
drawback common to all RMS-based schemes. It may be impossible to schedule despite the
fact that the bus is not completely utilized. The performance of RMS for resources with
a high variation is poor, hence this scheme cannot be efficiently applied to such streams.
Additionally, Scottis et al. claim that the EPCI provides support for VBR streams. Since it
is not possible to support multiple non-periodic tasks with unmodified RMS, it remains open
how EPCI supports multiple VBR streams and how bandwidth is distributed among multiple
VBR streams.

2.4.5. Memory-Bus Scheduling

Preliminary thoughts about memory-bus scheduling for multiprocessor environments were
published by Liedtke et al. [20]. This paper analyzes why bandwidth generated by processors
on the memory bus cannot be simply summed. In an example, it shows that two processors
access the bus in regular patterns, the first for one out of three time units (33%), the second
for one out of two time units (50%), do not generate the expected bandwidth consumption
of 83%. Due to access conflicts, the bandwidth achieved is only 66%. If all processors access
memory during a system-global ∆-window only once and also through dense sequences of
memory operations, i.e., through bursts, the problem of interleaving requests disappears and
bandwidth can be summed. However, it remains open whether applications can be written
such that memory accesses always occur in bursts and what hardware support is required.

The same problem exists on the PCI bus. However, an implementation of this idea would
require modifications the PCI bus as well as to devices. Since this also implies a change of
the specification, this scheme does not seem very practical.

2.5. Admission-Control Schemes

Admission control is part of a real-time operating system that accepts or denies new tasks.
The result of an admission is a single yes–no decision, not a set of scheduling parameters.
A task can be accepted only if (a) all other tasks that have already been accepted will still
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be able to deliver the guaranteed results, and (b) the new task receives all requested (i.e.,
necessary) resources to deliver the desired functionality.

A major objective is achievement the highest possible utilization of all available resources
under some user-defined optimization criterion. Hard real-time systems require a strict and
exact resource reservation scheme based on worst-case assumptions to allow tasks to com-
plete successfully under any circumstance. If average and worst-case resource usage is very
different, only a fraction of the reserved resource will usually be used. This is a high cost for
guaranteeing the requested quality. Reserved but currently unused resources cannot be used
to fulfill requests of other reservations, since they must be available to the real-time task for
immediate use at any time. This is acceptable for mission-critical, hard real-time systems,
but not for soft real-time systems. In this case, a much higher utilization is traded for some
“acceptable loss of quality.”

The optimization criterion for admitting tasks depends on the usage of the system. For
instance, in a commercial video-on-demand environment, where requests for new streams are
queued until the system can admit them, an option for optimization might be to minimize this
queue waiting time. Other options are to prefer shorter over longer videos, frequent customers
over sporadic, or expensive over cheap videos. An admission for sequentially arriving tasks
is simple and straightforward. Every new arriving task will be individually tested. As long
as enough resources are available, the task will be instantaneously admitted. However, it is
not possible to define a multi-task-spanning goal with this scheme. A solution is to base the
admission decision on the properties of a group of several tasks. This increases the admission
latency, but allows the system to better fulfill the optimization criterion.

Admission schemes can be divided into two general groups: static and dynamic. With a
static admission scheme, all calculations are done before the system is started. Once started,
no new tasks can be added to the system. Static admission schemes are mainly used for
embedded systems with dedicated functionality. An example for a static system is a controller
for antilock brakes in automobiles. In contrast, dynamic admission schemes allow addition
and removal of tasks during runtime.

Both schemes can be extended by a probabilistic approach. Resource requirements are
described by a distribution function, and resource allocation can be guaranteed with a certain
probability. While deterministic schemes try to determine the worst-case resource consump-
tion exactly, probabilistic admission schemes consider variations in resource demand and
guarantee results with a certain probability.

In the following, we describe some of the most important admission schemes. Since Drops

is targeted to support interactive systems, static admission schemes are not applicable and
we focus only on dynamic admission schemes.

2.5.1. Deterministic Admission Control

Rate-monotonic scheduling defines how priorities must be assigned to periodic tasks. It also
provides an admission test to check whether a set of tasks can be scheduled with RMS. The
advantage of RMS over other, static schemes is the existence of a simple feasibility criterion.
To perform an admission cycle, it is sufficient to check this criterion instead of trying to
calculate and test a complete schedule.

With time-demand analysis, Lehocky et al. [47] provide a formula to calculate whether a
task set of n tasks is schedulable. Let ei be the worst-case execution time and ti the period
of task i. There must exist a t such that:
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The utilization U(n) of a resource with n task can be calculated by the following:

U(n) =
n∑

i=1

ei
ti
. (2.2)

A simplified but sufficient criterion is given by Liu and Layland [23]. A task set of n tasks
is called feasible, if Equation 2.3 holds:

U(n) ≤ n(
n
√
2− 1). (2.3)

This equation (2.3) can be further simplified for large numbers of tasks:

lim
n→∞

U(n) ≤ ln 2. (2.4)

A task set is always schedulable if the utilization of the resource is less than ln 2, or 0.693.
This admission test also holds for small n, since Equation 2.4 approximates ln 2 from the
upper bound. In RMS-based real-time, the test for a utilization less then is the most often
used criterion for task admission.

If the utilization is higher than the value given by Equation 2.3, time-demand analysis
must be used to individually test the given task set. This test can fail even if the resource is
not fully utilized, which is one of the major disadvantages of RMS.

2.5.2. Probabilistic Admission Control

Probabilistic admission and scheduling strategies are a class of solutions that attempt to
reduce the amount of resources reserved based on worst-case assumptions. They were intro-
duced to overcome the resource-utilization problems and poor performance that are typical
for deterministic admission schemes. By extending conventional schemes with a probabilis-
tic approach, systems are better able to deal with the increasingly high unpredictability of
processing times.

Execution times of resources are not given as worst-case values, but instead as probability-
distribution functions. Figure 2.3 is an example of such a distribution.

In this example, the worst-case execution time is 100ms, however about 96% of all exe-
cutions complete within 78ms. Hence, if we make reservations based on an execution time
of 78ms, we can calculate that about 4% of all tasks will miss their deadline. The required
execution time can also be calculated based on the requested ratio of successful tasks. Using
the quantile Q(0.96) of the distribution function, we get an execution time of 78ms. This
also illustrates that a probabilistic approach leads to a better resource utilization and reduces
the probability of overbooking resources. Accepting 4% of missed deadlines results in a 22%
lower resource reservation.

Statistical approaches require from applications and operating systems the ability to cope
with missing data. For streaming audio or video applications that use an unreliable network
as transport media, this is a typical case and these applications can handle this problem very
well. This encourages us to apply probabilistic strategies to various types of resources. It
makes no difference whether data is missed due to a network problem, a hard-disk request
that missed its deadline, or unavailable buffer space in main memory.
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Figure 2.3.: Distribution of a resource’s execution times

2.6. Applications and Input/Output Load

This section describes related work that influenced the direction of this thesis. Only two
papers known to us describe the impact of input/output load (I/O-load) on the execution
time of an application. However, they do not provide a general solution for dealing with this
impact and do not exactly quantify it. The techniques described in Section 2.6.2 (Prediction
of Execution Times) are used in Section 3.3 to derive an algorithmic approach to determine
the impact of I/O load on the execution time of applications.

2.6.1. Impact on Application

Bellosa [48] discusses a simple approach for reducing the influence of time-sharing applications
on real-time applications on different processors in a multiprocessor system. If the frequency
of non-bandwidth-bound memory accesses of a time-sharing application exceeds a certain
threshold, the application is throttled by performing additional no-operation cycles. This
reduces the load on the memory bus caused by this application, leading to a smaller impact
on the applications executed on other processors.

An analytical approach to describe the impact of I/O load generated by VMEbus devices
on real-time applications is described by Huang et al. [49]. They observed that all programs
are composed of three basic structures: straight-line, conditions, and loops. Each block of a
program is individually analyzed with regard to how its execution time is influenced by I/O
load. To bound the worst-case execution time of an entire program, the worst-case execution
time of each basic block that may access I/O needs to be bounded. Since the bus controller
uses a protocol based on the VMEbus specification, which supports hard priorities to regulate
the bus contention between the processor and the devices, the model cannot be used without
modifications on commodity PC systems.
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2.6.2. Prediction of Execution Times

To compare performance of software, processors, or whole computer systems, various tech-
niques such as benchmark programs are available [50, 51, 52]. Since benchmark programs
are designed to cover a wide range of application types, the results of one benchmark pro-
gram are used to compare different machines. However, exact prediction of execution times
of individual programs is not possible.

Several approaches for estimating and predicting the performance of applications on the
same or other processors have been published [53, 54]. Saveedra and Smith [55] describe an
approach by which the performance of an application is predicted based on abstract operations.
The execution time of an application is the linear combination of the number of times each
abstract operation is executed (Ci), multiplied by the time it takes to execute each operation
(Pi). The instruction mix (C) gives the amount of each individual abstract operation. In
an extension [56], they also consider effects of the memory hierarchy, such as caches and
translation look-aside buffers (TLB) on the execution time. The execution time (T ) of an
application using an instruction mix with n individual abstract operation can be determined
by:

T =
n∑

i=1

CiPi. (2.5)

This methodology allows one to analyze the behavior and to characterize individual ma-
chines. Applications can be analyzed, and their execution time can be predicted on the
characterized machines. Prediction accuracy is very good; often the difference between real
and predicted execution time is less than 10%.

To characterize applications regarding their bus-load affinity, we do not need to consider
each individual operation. It is sufficient to group instructions into memory and non-memory
operations.

2.7. Summary

In this chapter, we gave an overview of bus systems and their capabilities for real-time environ-
ments and analyzed schemes and techniques for real-time bus scheduling. We described some
proportional-share algorithms, since they seem to be most applicable for a PCI-bus arbiter
with support for bandwidth reservations. Additionally, we analyzed two fair-share resource-
management schemes. These schemes are not necessary for basic real-time bus scheduling but
would allow us to consider a fair sharing of bandwidth among users. We also gave an overview
of deterministic and probabilistic admission schemes. For bus-bandwidth reservation in the
Drops environment, a scheme supporting hard and soft reservations such as quality-assuring
scheduling should be considered. Finally, we described schemes to compare and predict exe-
cution times or the impact of external load on applications. To our knowledge, a combination
of both (prediction of an execution time under a certain external load) does not exist.
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3. Impact of Bus Traffic on Applications

Any data exchanged between the processor and main memory uses the memory bus, sharing
it with data exchanged between I/O devices and main memory. If the processor and a device
try to transfer data at the same time, an impact can be seen on the processor as well as on the
device. As a result, the execution time of an application on the processor may increase due to
the memory-bus load generated by I/O devices. This chapter gives a method for describing
and quantifying the impact of such load on applications executed by the processor.

Following the terminology of Pentium processor’s performance-counter specification, the
internal load of a specific processor refers to the memory-bus load generated by this processor,
and the external load refers to the memory-bus load generated by all other possible sources. In
the uniprocessor case, external load is always generated by the PCI host bridge. An internal
transaction of a specific processor refers to a transaction on the memory bus generated by
this processor, and an external transaction refers to a memory-bus transaction from any other
possible sources, respectively. In the uniprocessor case all external transactions are generated
by the PCI host bridge.

3.1. Slowdown Factor

Since external load reduces the capacity of the memory bus available to the processor, we can
assume also that it increase the execution time of an application. In real-time systems, the
correct amount of processor resource must be reserved to successfully execute an application.
To consider the impact of external bus load on applications requiring resource reservations, we
need a metric to express the strength of the impact. We call the ratio between the execution
time under external load and the execution time under no external load the slowdown factor.
The slowdown factor is always greater than or equal to one. The slowdown factor of an ap-
plication A under external load L is denoted by F(A,L). Depending whether the application
A or the load L remain fixed, the notation can be abbreviated by FA(L) or FL(A). The
external load can be expressed by the bandwidth or the number of memory-bus transactions
per time.

For reservation schemes that consider worst-case execution times—as for hard real-time
systems—the worst-case impact is of interest. To determine this worst-case impact, all possi-
ble factors such as buffer and queue states in the host bridge, the access pattern of the physical
RAM chips, and processor features such as the Pentium’s system management mode1 must be
considered in addition to the application itself. A detailed analysis here is beyond the scope
of this thesis. For simplicity, we consider increasing the external load to a maximum possible
value as an acceptable approximation of the worst case: F(A,L→ max) = FLmax(A). We
call this value the worst-case slowdown factor of an application (WCSF).

1For instance, Pentium’s system management mode (SMM) is used for the emulation of legacy devices or to
work around bugs of the motherboard or in the chipset.
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Alternatively to the worst-case load, we can identify an application that is
most sensitive to external load (worst-case application). In this case, we denote
F(A→ max, L) = FAmax(L). The combination of worst-case load and worst-case applica-
tion leads to an upper-bound worst-case slowdown factor for a machine. We describe this
value by F(A→ max, L→ max) = FLmax

Amax
. To determine the confidence level of these worst-

case approximations, analytical and statistical techniques such as those proposed by Edgar
et al. [57] can be used.

The slowdown factor and the worst-case slowdown factor are metrics that describe the
strength of the impact caused by external bus load. For example, an application A charac-
terized by FLmax(A) = 1.8 takes, under worst-case load, 80 percent more time to complete.
However, F(A, 20MB/s) = 1.2 means that the application runs 20 percent longer under the
given load of 20MB/s. The upper-bound worst-case slowdown factor gives a maximum value
by which the most sensitive application can be influenced.

In the following sections, we describe three approaches for obtaining the different slowdown
factors of an application.

3.2. Empirical Approach

The first approach to determining the WCSF of an application is purely empirical. In unipro-
cessor systems, the PCI bus is the only source for external load not generated by the pro-
cessor(AGP cards can be considered as a PCI-bus extension). We obtain the WCSF by
saturating the PCI bus and measuring the execution time of the application in contrast to
the application’s execution time under no external load. To generate such PCI-bus load,
we used five identical bus-master-capable FORE PCA200e ATM network cards, each with a
programmable PCI-bus interface.2 The processor on the network card was used to initiate
PCI-bus read or write transactions of variable burst length. We achieved a maximum write
data transfer rate of up to 118MB/s, which is also given by the manual as the maximum value
of the host bridge [58].

To obtain some representative results, we chose three different applications: The data
encryption standard (DES), for an application with low internal load; a sorting algorithm
(Quicksort), for an application with medium internal load; and raw-data transfers, for an
application with high internal load. The classification into low, medium and high internal
load is based on the number of CPU cycles required for precessing one 32-bit word as shown
in Table 3.2. All applications were implemented to process data (in 32-bit words) from a 2MB
source buffer and write the results to an adjacent 2MB target buffer. They were designed to
touch source and target buffers exactly once per 32-bit word

We disabled any caching for the source and target-buffer region but not for any other
memory area.3 As a result, any data word of the source buffer must be individually fetched
from main memory and any data word written to the target buffer is forced to main memory.
This makes the access to the source and target buffer predictable. The same effect can be
achieved by processing only one 32-bit word out of every cache line with a read-allocated,
write-through cache. To determine the impact of external load in conjunction with caching,

2The ATM card uses a 50MHz embedded version of the Intel i960 processor, 2MB application memory, and
a proprietary PCI-bus interface [13].

3Caching policies can be defined for “power of 2” multiples of 4KB memory frames (2(2+n)KB) aligned to
their size in the physical address space by use of the processor’s memory-type range registers (MTRRs).
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we performed the same tests with caching enabled for both source and target buffer.
The number of transactions on the memory bus was measured using the processor’s inter-

nal performance counters. IA-32 processors provide performance counters for internally gener-
ated (tint) and all (ttot) memory-bus transactions but not for externally generated memory-bus
transactions (text). On a uniprocessor system, where only one processor and the host bridge
can generate memory bus load, the number of external transaction is:

text = ttot − tint. (3.1)

Characterizing the type of external transaction leads to the distinction between external
read transactions (trext) and external write transactions (twext).

DES Algorithm
DES [59] is a well-known symmetric cryptographic system. It uses a 56-bit key to encrypt

and decrypt data. In sixteen iteration steps, the input data is permuted and written to the
target buffer. The C-code implementation of this permutation uses local variables to store
temporary results. Since IA-32 processors have a small number of available registers, these
variables are stored on the stack frame of the procedure in memory. Recall that only source
and target-buffer accesses are uncached; stack and local-data accesses are cached. Due to
the large number of temporary local variables, DES has strong data locality, which leads
to a high cache-hit rate. It is very likely that temporary results are held completely in the
first- or second-level caches and are never actually written to main memory. We measured an
FLmax = 1.05 for the encode and FLmax = 1.03 for the decode operation.

With caching enabled for the buffer, the application was about 26% faster and generated
only 9% of the memory-bus load (430,000 versus 4,560,000 transactions per second). However,
in relation to the 265 million external transactions generated by the PCI cards at the same
time, the increase from 430,000 to 4,560,000 internal transactions (0.16% to 1.7% in relation
to the number of total transactions) is negligible and the FLmax values are identical.

Sorting algorithm (Quicksort)
Quicksort is a fast sorting algorithm based on divide-and-conquer. An array is repeatedly

divided into two halves until two adjacent items can be directly compared against each other,
and exchanged if necessary. We implemented an iterative version described by Sedgewick [60,
61] that sorts the 2MB source buffer into the 2MB target buffer. The measured worst-case
slowdown factor without caching is FLmax = 1.09.

Raw-Data Transfer
In the two applications described above, memory accesses were only a small or medium

fraction of all executed instructions. Under these circumstance, the WCSF values range
between 3% and 10%.4

Figure 3.1 shows the maximally possible number of CPU-generated internal transactions
in relation to the number of external transactions. Figure 3.2 shows the derived slowdown
factors. Each graph in both diagrams represents a measurement with a different combination

4Earlier measurements [5] on an older machine (Pentium 90MHz) showed slightly higher slowdown factors.
DES: FLmax=1.03; Quicksort: FLmax=1.1. Additionally, we measured decoding an “IPP-coded” MPEG-1
video (384x288 pixel, 24 bit color, compression factor 1:60 for 33 I-frames, 1:169 for 66 P-frames) with
F

Lmax=1.36 and data transfer: read FLmax=2.15, write FLmax=1.18, copy FLmax=1.21.
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Figure 3.1.: Impact of external transactions on processor-generated (internal) memory trans-
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Figure 3.2.: Resulting slowdown factors, calculated from Figure 3.1

of external and internal transaction types, e.g., a combination of read and write transactions.
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For example, read–write means that the PCI-bus devices execute main-memory read opera-
tions while the processor executes main-memory write operations. Table 3.1 summarizes the
worst-case slowdown factors.

Table 3.1.: WCSF for processor-issued memory operations, derived from Figures 3.1 and 3.2

FLmax CPU read CPU write

PCI read 1.49 1.26
PCI write 1.38 1.21

Summarizing Measurement Results

Table 3.2 gives a detailed overview of the number of processor cycles, the number of
transactions on the memory bus to process one 32-bit word, and the resulting worst-case
slowdown factors.

Table 3.2.: CPU cycles to process one 32-bit input word, bus transactions per 32-bit word

CPU Cycles Bus transactions
Operation

per 32-bit word per 32-bit word
FLmax

memory read 55.5 1 1.49
memory write 35.1 1 1.26

memory copy 99.4 2 1.35
Quicksort 457.7 2 1.09
DES encode 701.3 2 1.05
DES decode 699.2 2 1.03

Obviously, code executed on the host processor that performs only memory read operations
to generate internal memory-bus load is the most sensitive to write operations as external
bus load. We consider the slowdown of this application accessing as the upper-bound WCSF
(FLmax

Amax
) for this system. For our machine, we determined an upper-bound value of 1.49.

Knowledge of this value allows for a very simple test for admission that considers the
impact of PCI-bus load. If an application can be scheduled even with the upper-bound WCSF,
the application can be scheduled under any load possible on that machine. If it cannot be
scheduled under the upper-bound WCSF but under no external load, the application-specific
WCSF must be considered.

3.3. Algorithmic Approach

The advantage of an empirical approach is its simplicity—once the measurement environment
has been built, only a simple test must be performed. However, the WCSF depends on many
factors of the system used and individual measurements must be taken on every system.

For schemes based on the slowdown factor, not only one but a series of measurements under
various external-load values must be taken. This makes the empirical approach expensive.
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To overcome this disadvantage, we consider an algorithmic approach and strive to calculate
the slowdown factor based on characteristic values of both the algorithm and the hardware.

3.3.1. Calculation of Application Worst-Case Slowdown Factor

In the previous sections, we showed that only memory operations are effected by external bus
load, and we have described the maximally possible influence by the upper-bound WCSF on
the execution time of applications. In this section, we strive to determine an application’s
worst-case slowdown factor as a combination of separate characteristics of the application
and of the machine. The major advantage of such a separation is that an application can be
described independent of the underlying machine. In combination with the characteristics for
the machine, the machine-specific slowdown factor is determined. However, it will become
clear later that we can achieve this separation only with certain limits.

From related work described in Section 2.6.2, we know that the execution time of an
application is the linear combination of the number of times each abstract operation of the
instruction mix is executed (Ci), multiplied by the time it takes to execute each operation
(Pi). The execution time (T ) of an application using an instruction mix with n individual
abstract operation can be determined by the following:

T =
n∑

i=1

CiPi. (3.2)

In terms of bus-induced impacts on applications, it is sufficient to describe an application
by an instruction mix that divides the operations into three abstract operations: memory
read-sensitive (Cr), memory write-sensitive (Cw) and non-memory-sensitive (Co) operations.
Given the total number of executed operations by Ctot = Cw + Cr + Co, we can extend
Equation 3.2 to:

T = CrPr + CwPw + CoPo

= Ctot

( Cr

Ctot
Pr +

Cw

Ctot
Pw +

Co

Ctot
Po

)
. (3.3)

The time for an operation (P ) is determined by the CPU frequency (f) and the number
of CPU cycles this instruction takes (cyc). We can substitute Px with cycx

f
, and rewrite Cx

Ctot

as Sx, the share each instruction has on the amount of total instructions, and obtain:

T =
Ctot

f

(
Srcycr + Swcycw + Socyco

)
. (3.4)

A coarse estimation of an application’s WCSF is based on the assumption that read and
write instructions are slowed down by the upper-bound WCSF (FLmax

Amax
). The application

under maximum external load is now executed in the time T Lmax :

TLmax =
Ctot

f

(
SrcycrFLmax

Amax
+ SwcycwFLmax

Amax
+ Socyco

)
. (3.5)

The WCSF for the application can be determined from Equations 3.4 and 3.5:

FLmax

A =
TLmax

T
=

SrcycrFLmax

Amax
+ SwcycwFLmax

Amax
+ Socyco

Srcycr + Swcycw + Socyco
. (3.6)
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We can infer from Equation 3.6 that it is sufficient to describe the instruction mix as a
triple IM that contains the shares of read, write, and all other operations. All other values
are machine dependent and can be denoted by a machine descriptor MD:

IM = (Sr, Sw, So) MD = (cycr, cycw, cyco). (3.7)

Ideally, the parameters of the machine descriptor depend only on the structure and capa-
bilities of the processor. However, due to performance-improving features such as pipelining
and parallel execution of instructions, which make the processor less predictable, these values
can vary and are also influenced by the application.

In a more accurate formula, we consider the difference between read worst-case slowdown
factor (FLmax

r ) and write worst-case slowdown factor (FLmax
w ). Both values can be taken from

measurements of the system. For our measurement system, they are shown in Table 3.2. The
modified formula can be derived from Equation 3.6:

FLmax

A =
SrcycrFLmax

r + SwcycwFLmax
w + Socyco

Srcycr + Swcycw + Socyco
. (3.8)

To verify these results, we applied the measurement results of simple read and write op-
erations (cycr = 55.5, cycw = 35.1) as given in Table 3.2 to calculate the worst-case slowdown
factor of the memory-copy application. The source code in assembly language of the memory-
copy application is shown in Figure 3.3. The integer operations of lines 2, and 4, and the
branch operation of line 6 are paired by the processor with the instructions in lines 1, 3, and
5, respectively. Since the code allows pairing of all instructions, the cycle value of integer op-
erations (cyco) is 0.5. To avoid influence by the number and order by which memory modules
are plugged into the system, the code is written so that no two 32-bit words can be merged
into one single 64-bit memory-bus transaction. The same holds for the read and the write
test.

(1) l1: mov eax, dword ptr [esi]
(2) add esi, 8
(3) mov dword ptr [edi], eax
(4) add edi, 8
(5) dec ecx
(6) jnz l1

Figure 3.3.: Machine code in assembly language for “copy” application

The shares for read and write are each 1/6, the share for other (non-memory-accessing)
operations is 4/6. Applying these values to Equation 3.6 results in a calculated slowdown
factor FLmax = 1.392. This compares favorably to the measured slowdown factor for the
memory-copy application of 1.35.

We performed the same calculation for the DES application. In this case, instructions
cannot be paired so nicely, since we have many data dependencies. We have measured an
average value of 0.9 cycle for executing a non-memory operation. We have seen one memory
read and one memory write bus request per 750 executed instructions. These values are
identical for encode and decode operations. Applying the previously given equations results
in the parameters given in 3.9.

IM =
( 1

750
,

1

750
, 1− 2

750

)
MD =

(
55.5, 35.1, 0.9

)

Page 33



FLmax = 1.047. (3.9)

This measured slowdown factor is FLmax = 1.05 for DES encode and FLmax = 1.03 for
DES decode. These results show that the proposed solution is also applicable to relatively
complex operations and not only to trivial operations such as memory copy.

3.3.2. Calculation of Application Slowdown Factor

All previous considerations were based on the worst-case slowdown factor for combinations
of read and write operations, or in the worst case on the upper-bound WCSF of the system.
As common to all worst-case-based reservation schemes, they also lead to an over-reservation
and a waste of resources.

If reservations can be based on the real PCI-bus load, available resources can be utilized
better. To determine the PCI-bus load in advance, all devices must announce their future
bandwidth consumption at a central instance of the operating system. With cooperating
resource managers, Drops already provides an applicable scheme where PCI-bus bandwidth
reservations can be made. Legacy device drivers, which cannot give exact information about
the generated PCI-bus load, can give worst-case approximations based on information about
the card. The PCI-bus interface chip used often provides information adequate to determine
the maximum possible PCI-bus load of a card. Even more trivial, the type of the card can be
considered. A 100Mbit network card is barely capable of generating more than 12.5MB/s of
sustainable PCI-bus load. If the driver detects that the card is only connected to a 10Mbit
network, it is sufficient to assume a maximum bandwidth of 1.25MB/s.

In the next step, we determine the slowdown factor in relation to a given bus load. All
previous considerations were based on transactions. Hence, we have to convert a load given
in MB/s into a load given in memory-bus transactions per second. If caching is enabled, the
processor always reads and writes an entire cache line, instead of each individual memory cell
and we see only one bus transaction per cache line. Hence, the number of CPU-generated
memory-bus transactions does not depend only on the number of memory instructions, but
also on the caching behavior of the application. The number of bus transactions caused by
a certain PCI-bus load is easier to determine. The memory-bus interface of the host bridge
has only a few read-buffer or write-buffer entries. Since all relevant transfers to or from main
memory are bursts, the bridge combines multiple data words into one single memory-bus
transaction. The result is an almost linear relation between PCI-bus bandwidth and the
number of transactions on the memory bus.

The influence of external transactions on the maximal possible number of internal trans-
actions on accessing memory has already been shown in Figure 3.1. We see one transaction
on the memory bus for a 32-byte write access or a 16-byte read access. These two values are
host-bridge dependent. In the test-bed with five PCI cards, the maximum achieved PCI-bus
bandwidth is about 102MB/s (6.1M transactions) for read and 118MB/s (3.5M transactions)
for write operations.

The calculation of the slowdown factor is based on Equation 3.6. We replace the upper-
bound worst-case slowdown factor by the slowdown factors for read and write under a certain
load. To determine Fr(text) and Fw(text) from the number of external transactions, we
consider two methods. The simpler method to get the slowdown factor uses a lookup-table
filled with slowdown-factor values taken from the tests described in the paragraph “Raw-Data
Transfer.” If an exact value is not available, an approximated value is used. A drawback is
the required amount of data that must be available for the table.
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A more elegant version approximates the slowdown factor by a monotonically increasing
function. At a glance, one might expect a linear dependency between the slowdown factor
of an application and the external bus load. However, analyzing Figure 3.2 shows that a
polynomial function of order two (k=2) (i.e., a quadratic function) approximates the relation
more accurately. The reason for a non-linear dependency is that contention on the bus
increases with the square of the bus utilization. If memory-bus speed is high and the length
of each memory-bus transaction is short, contention reduces and the resulting almost linear
relation can be described with a β2 coefficient of zero.

The quadratic function of order two is given by f(x) = β2x
2 + β1x+ β0, with x as the

number of external transactions per second. To calculate the actual value for FA(text), we
obtain:

FA(text) = β2

(
text

)2
+ β1

(
text

)
+ β0. (3.10)

The β coefficients are machine dependent and must be determined for each machine indi-
vidually. In order to find the best approximation, we consider the biased variance σ2 of the
pairs (xi, yi) of all measured samples:

σ2 =
1

n

n∑

i=1

(
yi − (β2x

2
i + β1xi + β0)

)2
(3.11)

must be minimized using the non-linear least-squares-fitting method. We can derive the
Equation system 3.12 for the polynomial function of order two:5

β0[x
0] + β1[x

1] + β2[x
2] = [y]

β0[x
1] + β1[x

2] + β2[x
3] = [yx]

β0[x
2] + β1[x

3] + β2[x
4] = [yx2].

(3.12)

Solving the Equation system 3.12 with our measured values leads to the tuples of coeffi-
cients as given in Table 3.3. Since the slowdown factor of an application running on a system
without external bus load (F(0)) is one, the β0-coefficient must be 1 as well. This holds for
all our calculated coefficients.

Table 3.3.: Coefficients for the polynomial function to calculate the slowdown factor for com-
binations of external and internal, read and write operations, derived by the least-
square-fitting method from Figure 3.2

CPU operation
(β2, β1, β0)

read write

PCI read (0.7345e-15, 88.191e-9, 1.004) (0.9191e-15, 50.924e-9, 0.995)
PCI write (17.737e-15, 40.461e-9, 0.969) (7.2877e-15, 44.633e-9, 0.996)

Figure 3.4 shows measured values identical to Figure 3.2 but also shows the approximated
polynomial functions.6 One external write transaction transfers 32 bytes from the host bridge
to main memory, but one external read transaction transfers only 16 bytes. Hence, the impact
on applications of write transactions is increases quicker than the impact of read transactions.

5Notation as defined by Gauss: [x] =
∑n

i=1
(xi).

6For a better visibility, we have split up Figure 3.4 into four graphs in Appendix B.
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efficients from Table 3.3

Figure 3.5 shows that the weighted absolute errors ei, as given in Equation 3.13, are less
than 6%. This indicates that a quadratic function approximates the behavior of the real
machine very well.

ei =

∣∣∣∣∣
yi − f(x)

f(x)

∣∣∣∣∣. (3.13)

Another parameter that describes the exactness of an approximated function is the mean
error σy which can be calculated by

σy =

√√√√ 1

n− k − 1

n∑

i=1

(
yi − f(x)

)2
. (3.14)

The smaller the mean error, the better the approximation. In our case, we calculated
σww = 0.003865, σwr = 0.013028, σrr = 0.007934, and σrw = 0.002696. This also demon-
strates the quality of our results.

Analyzing the graphs of Figure 3.2, we can also see that the impact on CPU read oper-
ations is different than on CPU write operations and also depends on the type (i.e., read or
write) of the external transaction. To further improve the method to calculate the applica-
tion’s WCSF presented in the previous section, we determine a weighted slowdown factor for
an application based on the ratio of its read and write transactions. The ratio of external
read transactions on the total number of transactions is

ρr =
trext

trext + twext
, (3.15)
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and the ratio for write transactions is

ρw =
twext

trext + twext
. (3.16)

To calculate the weighted slowdown factor for internal read transactions, we add the
slowdown factor for external read transactions (Frr) weighted by the read ratio (ρr) and the
slowdown factor for external write transactions (Fwr) weighted by the write ratio (ρr). We
obtain the following:

Fr(text) = Frr(t
r
ext)ρr + Fwr(t

w
ext)ρw (3.17)

for processor read operations. The same method is applied to obtain the weighted slowdown
factor for write operations:

Fw(text) = Fww(t
w
ext)ρw + Frw(t

r
ext)ρr. (3.18)

We can determine the weighted slowdown factor of an application by replacing FLmax
r and

FLmax
w in Equation 3.8 with Fr(text) and Fw(text), respectively. We receive:

FA(text) =
SrcycrFr(text) + SwcycwFw(text) + Socyco

Srcycr + Swcycw + Socyco
. (3.19)

In the following section, we demonstrate how to apply these formulas to obtain the slow-
down factor of an application under specific external load and compare it to measurement
results.
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3.3.3. An Example Calculation

Applying Equation 3.19 to the DES application with a very small worst-case slowdown factor
gives a result almost equal to 1. This result can also be confirmed by measurements which
showed that DES is virtually uninfluenced by any external load. Additionally, we performed
a test of the memory-copy application with two PCI cards. While the first card generated
25MB/s PCI-bus read load (trext = 1, 562, 500 transactions per second), the second card
generated 30MB/s PCI-bus write load (twext = 937, 500 transactions per second). The memory-
copy performance was about 23MB/s.7 We measured the number of CPU read and CPU write
transactions 6,029,312 for each transaction type.

We can calculate ρr = 0.625 and ρw = 0.375. Based on Equation 3.10, we can further
calculate the individual slowdown factors as a combination of read and write operations by
Fww = 1.044, Frw = 1.081, Fwr = 1.022, and Frr = 1.139. Applying Equations 3.17 and 3.18
we obtain Fr = 1.095 and Fw = 1.067. Finally, the weighted slowdown factor is calculated
by applying Equation 3.19: FA(rd = 25MB/s + wr = 30MB/s) = 1.082. This confirms our
measured slowdown factor of 1.08.

Instruction fetches from main memory are handled as read transactions, and therefore are
automatically considered. If the size of the executed code is small enough to fit in the L2
cache, the contribution of instruction-fetch-based read transactions is very small. This is the
typical case for most of the real-time application with a short path of periodically executed
code. To prevent cache flushing due to context switches, techniques such as cache coloring [62]
can be used.

3.4. Summary

In this chapter we introduced the slowdown factor to express the impact of external bus
load to the execution time of an application. The slowdown factor can be used to adjust a
scheduler reservation to external load.

A quick, but coarse, estimation of whether an application can be scheduled on a system
under any possible external load is based on the system’s upper-bound worst-case slowdown
factor. As is common for all worst-case estimations, the difference between actual and cal-
culated (or estimated) value can be very high. An alternative uses the instruction mix, a
description of an application, and the system’s upper-bound worst-case slowdown factor. In
contrast to the first method, the actual share of read and write instruction of an application
is considered to determine an application-specific worst-case slowdown factor.

In the third method, the system’s upper-bound worst-case slowdown factor is replaced by
the worst-case slowdown factors for read and write operations. The fourth approach replaces
these worst-case slowdown factors by the weighted slowdown factors under a certain load. The
weighted slowdown factors are calculated by means of a polynomial approximation function.
The result is an application-specific slowdown factor under a certain load.

On current PCI-based systems, the slowdown factors are very small and not very relevant.
However, with the advent of new high-speed bus systems the impact of external load on the
execution time of applications will become relevant again. The described technique is a
promising method to handle this impact and needs further investigation.

% Id : bussys.tex, v2.42003/05/2604 : 26 : 29schoenbgExp

7Remember that we still operate over uncached memory.
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4. Peripheral Component Interconnect Bus

In this chapter, we focus on use of the Peripheral Component Interconnect (PCI) bus in real-
time systems. Based on its most relevant features, we develop a model to analyze and describe
the behavior of PCI devices. We derive formulas to calculate worst-case access latency and
worst-case bandwidth of PCI hardware used in off-the-shelf PC systems.

The main contribution, however, is a novel PCI-bus arbiter that allows assigning variable
shares of the PCI-bus bandwidth to individual devices. The arbiter combines guaranteed
bandwidth reservation with the characteristics of commodity systems such as high bus uti-
lization and low guaranteed arbitration latency. By chaining two such arbiters, the scheme
also supports a combination of hard and soft reservation.

4.1. Bus Characteristics

The PCI bus is a multiplexed bus architecture; address and data signals share the same
physical wires. Data transfers are always initiated by an initiator device, the receiver of
the data is called the target device. Every device that can act as an initiator device is called
master. To coordinate bus accesses among devices connected to the bus, an arbiter is required
to grant the right of using the bus for a certain time to one device. After the bus has been
granted to a device, the data exchange takes place. The basic transfer mechanism is the burst.
A burst is composed of an address and one or more data words. The address is automatically
incremented for each consecutive data word. In cases where main memory is addressed by a
PCI device, the PCI host bridge is responsible for routing data between the PCI bus and the
main memory. This allows us to consider main memory as a PCI device. Since main memory
cannot initiate transfers, main memory is not a master.

A write operation transfers data from the initiator device to the target device. After the
initiator device has received access to the bus, it puts the physical target address on the bus
and immediately starts sending the data stream. To perform a read operation, the initiator
put the source address on the bus. Hereafter, the target device handling this address responds
to the request by delivering data. It is important to note that the CPU is not involved in
transferring the data, neither between devices nor between a device and the main memory.

To allow interaction with PCI devices, the PCI bus provides three types of addressing
targeting three different types of address spaces. The configuration space is a per-device
area of 256 bytes which allows the configuration of the device. It contains protocol-specific
information such as a latency timer, addresses and sizes of the other spaces, the interrupt line,
but also an identifier of the vendor, the name, and the type of the device. To each vendor a
unique 16-bit number is assigned by the PCI Special-Interest Group (PCISIG). The device
name is also a 16-bit number which can be freely chosen by the vendor. The combination of
vendor and device number forms a unique identifier for any device. The configuration space
is addressed by configuration cycles generated by the host bridge.
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The memory space and the I/O space are relevant to the exchange of data with the device.
The memory space of all PCI devices and the main memory belong to one single physical
address space. Hence, the physical address is sufficient to select a device. While memory space
can be used by any bus master, the I/O space can be accessed only using special I/O cycles.
Processors of the IA-32 architecture provide various in and out instructions to operate on the
I/O space. In other systems, such as Alpha or MIPS-based machines, where the CPU does
not provide such instructions, the host bridge transforms memory-read/write cycles targeting
a certain area in the physical address space into I/O cycles on the PCI bus. I/O transactions
are, in general, not used to transfer large amounts of data because of their poor performance
in comparison to transactions with memory space. The PCI specification highly recommends
preference of memory space over I/O space.

4.1.1. Important Properties and Used Terms

To build a common basis for the following sections, we use these terms: Basic measurement
unit is the PCI-bus clock cycle. A single PCI-bus clock cycle takes 30ns on a standard 33MHz
PCI bus. The bus is 32 bits wide, resulting in a theoretical bandwidth of 132MB/s.

Arbitration: Arbitration is the mechanism that selects one device among those trying to
gain access to the bus and then grants ownership of the bus to the selected device.
Arbitration is mandatory and takes place every time a device wants access to the bus.

Burst Transfer: The burst is the basic transfer mechanism. It is composed of an address
and one or multiple data words with contiguously increasing addresses. The length of
the burst is variable and can change for each transaction; the maximum burst length is
limited by the PCI bus specification.

Latency: Latency is the number of bus clock cycles it takes between a master’s request of
the bus and when the arbiter grants the bus to that master. In general, the reason for
latency is an occupied bus. To achieve a low latency, initiators and targets are limited
(by the PCI-bus standard) as to the time they can occupy the bus. This considers the
length of the burst as well as the number of wait states they can add to a transaction.

Latency Timer: Each master capable of bursting more than two data words in one trans-
action must support a latency timer, accessible by the host processor in the device’s
configuration space. This programmable timer limits the time a device can occupy the
bus during one transaction. When a transaction starts, the latency timer value is auto-
matically loaded by the device into an internal register which is decremented with each
PCI-bus cycle. If the latency timer of the device expires, the device must terminate the
transaction within three cycles.

Stalling Cycle: If during a transaction the initiator is not able to send or the target is not
able to accept data, a stalling cycle is inserted. No data is transferred, but the bus is
still occupied. A device can insert up to three contiguous stalling cycles. If more than
three stalling cycles are required, the device must terminate the transaction.

4.1.2. PCI-Bus Arbitration

The PCI bus uses a central arbitration scheme. By granting the bus to a master, control is
handed over and the master can initiate the transaction. Figure 4.1 illustrates the central
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arbitration scheme. Each device has an individual pair of request/grant lines connected to
the arbiter. To reduce arbitration costs, arbitration can be performed while another transac-
tion is still in progress (hidden arbitration). The selected master must wait until the active
transaction has been completed before it can start its transaction.

GNTREQ REQ REQGNT GNT

PCI Arbiter PCI Device PCI Device PCI Device

ADDR/DATA BUS

Figure 4.1.: PCI-bus central arbitration scheme

In order to minimize the average access latency, the arbitration scheme is access based,
rather than time-slot based. While fixed time slots allow high predictability, an access-based
scheme increases performance, but makes prediction more difficult. The arbitration algorithm
is not part of the specification and can be adapted to the platform requirements.

“However, since the arbitration algorithm is fundamentally not part of the bus
specification, system designers may elect to modify it. [...] An arbiter can imple-
ment any scheme as long as it is fair [...]. The arbiter is required to implement a
fairness algorithm [...]” (PCI Local Bus Specification [6], p. 55)

Fairness is defined so that each potential master must be granted access to the bus in-
dependent of other requests. However, this does not mean that all devices must have an
equal share of the bus. The fairness argument is important for time-sharing systems to assure
progress of all components, but conflicts with the requirements of real-time systems with hard
priorities, where a high-priority device must be able to prevent a low-priority device from ac-
cessing the bus. This means that an accepted reservation must be enforced independent of
“fairness” regarding to other devices. The ideal algorithm for a mixed real-time/time-sharing
system such as Drops supports reservation for transfers of real-time data as well as fairness
among time-sharing devices.

4.1.3. Bandwidth and Latency Considerations

As stated in previous sections, the PCI specification defines only the electrical and physical
properties of the bus. The standard PCI bus is 32 bits wide and operates at a frequency of
33MHz, which allows a theoretical maximum bandwidth (bwpci) of 132MB/s if data could be
sent in one infinite burst. However, the size of every burst is limited, which leads to a lower
available bandwidth. The length of the burst also determines the latency of other devices.
The longer a burst, the higher the resulting bandwidth for a device, and the higher the latency
for other devices.

To estimate the bandwidth available to devices, we assume that the overhead ov(d) is
proportional to the transaction’s burst size d. We can make this assumption, since the number
of wait-state cycles depend directly on the size of the burst. The maximum bandwidth of one
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device in relation to the burst length, without considering the behavior of other devices, can
be calculated by

bwmax =
d

d+ ov(d)
∗ bwpci. (4.1)

As we show later, round-robin arbitration is common in standard host bridges. To calcu-
late the worst-case bus-access latency with such an arbitration scheme, we initially assume
all other devices receive the bus. The worst-case latency τlat for n devices can be given by

τlat = (n− 1)(d+ ov(d)). (4.2)

Figure 4.2 illustrates the relation between burst size and maximum bandwidth available
to transfer data. This bandwidth is shared among all devices. It also shows the relation
between burst size and worst-case latency to access the bus when five devices are connected.
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Figure 4.2.: Relation between burst size and both maximum bandwidth and latency.

To verify Equation 4.1, we measured the maximum bandwidth on our test system1. The
result of 118MB/s is also confirmed by the specification of the host bridge [63], where a
maximum memory-access bandwidth of 120MB/s by use of read-prefetch and write-posting
buffers is given.

4.1.4. PCI-Bus Conclusion

Neither the specification nor the basic functionality of the PCI bus prevent its application for
real-time systems. However, access latencies and bandwidth can only be guaranteed if the
arbitration algorithm used supports bandwidth reservation.

Various publications claim the possibility of using the standard PCI bus in real-time en-
vironments [64, 65]. However, they all lack substantial proof and do not describe existing

1For a detailed description of the test system see also Section 1.2.1.
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limitations of hardware such as numbers for worst-case latency and bandwidth. To deter-
mine these limitations, we investigate the behavior of commercially available standard PCI
hardware in the Section 4.3.

4.2. Simplified PCI-Bus Model

To analyze the behavior of the PCI bus and to perform worst-case calculations of bandwidth
and latency, we need a model of the bus. A model that includes all features of the PCI-bus
protocol would allow us to describe the exact behavior. It would also contain many features
which are not necessary to determine bandwidth and latency bounds, making it unnecessarily
complex and not suitable for a fast online admission test. However, such a test is required
to estimate the real behavior in combination with the probabilistic techniques described in
Section 2.5.2.

The simplified model is based on the characteristics of PCI-bus transactions and subsumes
the original state machines given by the specification. These state machines describe the
transitions from one bus state to another and give information about the possible states of
the bus. Regardless of the characteristics and type of a transaction, the bus is always in one
of the following bus states:

Idle: The bus is not used by any device and no data is being transferred. A device that
requests the bus in the idle phase is immediately granted access to the bus. A bus
arbitration cannot be hidden behind any other transaction and at least two cycles are
required before the address can be transmitted.

Busy: The bus is currently granted to one device, either addresses or data may be transferred.
If the initiator or the target cannot deliver or accept data, wait-state cycles are added.
The busy state indicates only that the bus is in use, but not how the bus is used.

Busy/Data: The bus is in the busy state and it is known that data is transferred.

Busy/Non-data: The bus is in the busy state and it is known that no data is transferred.
The reason can be sending the address or a stalling cycle.

Based on the two types of busy phases, our model consists of two phases to describe
the behavior of devices: a non-data phase (s)2 and a data phase (d). The two-phase model
is sufficient to describe all devices that can start their next transaction immediately after
finishing one transaction.

However, many devices are not capable of such a behavior and require a certain time
between two transactions. To consider this behavior, we introduce the recovery phase (r).
The recovery phase is not a bus phase and does not specify whether the bus is idle or busy.
It is guaranteed only that devices do not access the bus during their recovery phase. In our
model, a device is henceforth described by a triple called device descriptor D:

D = (s, d, r). (4.3)

The distinction between s and d phase must be made since the device does not transfer
data during the entire time it has occupied the bus.

2Initially named to indicate the stalling phase, but has been extended later to comprise all non-data cycles
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In addition to the device descriptor and the bus states, we introduce the term contention.
Contention is a situation in which the bus has been granted to one device (bus busy) and at
least one other device is requesting the bus. The higher the bus contention rate, the more
often devices must wait to receive access to the bus, which automatically increases the latency
of devices.

Our model does not consider special types of transactions such as I/O transactions, delayed
transactions, or interrupt-acknowledgment cycles. These transactions are either infrequent
or can be mapped to our model. For instance, delayed transactions can be seen as two
independent transactions. Interrupt-acknowledgment cycles are short (usually 4 cycles) and
can be mapped to our model by a device descriptor Dirq = (3, 1, δ), where δ is the number
of cycles between two interrupts.

4.2.1. Consistency with State Machines

To check consistency of our model with the state machines given by the PCI-bus specification,
we reduce the original target and master state machine as illustrated in Figure 4.3 and combine
the states of the state machine according to the bus states they represent.

Data TransferBus Busy, no data Bus Idle

BACKOFF

S_DATA

TURN_AR TURN_AR

M_DATA
S_TAR

ADDR

IDLE

DR_BUS

B_BUSYIDLE

Figure 4.3.: State machines for PCI target (left) and PCI master (right) (A detailed explana-
tion of the states can be found in [6])

The resulting simplified state machine is shown in Figure 4.4. The components of the
device descriptor D describe, how many cycle the bus is in each state during a transaction.

Since the recovery phase of a device is not part of the specification and cannot be seen on
the bus, we cannot derive the recovery phase from the state machine.

4.2.2. Consistency with Timing Diagrams

Additionally, we check the consistency of our model with timing diagrams. Timing diagrams
show the state of individual bus lines for every bus cycle during a transaction. In the following
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Data TransferBus Busy, no data Bus Idle

IDLE

DATA

STALL

RECOVER

Figure 4.4.: Simplified PCI state machine

example, we explain such a timing diagram for a PCI-bus read transaction where a master
reads a three-word data burst from main memory. The control flow is as follows: After the
bus has been granted to the master (i.e., now the initiator), the master sends the address to
the target and expects one or more data words as result. Since the target is the main memory
and not a physical PCI device, the host bridge acts on behalf of the memory and provides
the data.

Figure 4.5 illustrates the most important electrical signals on the PCI bus. The GNT line
indicates that the arbiter has granted bus access to the master. In the first bus cycle, the
FRAME line is driven by the initiator and indicates the beginning and duration of a trans-
action. The initiator drives the start address and the transaction type onto the address/data
bus (AD bus). In cycle two, the initiator ceases driving the AD bus. An additional so-called
turn-around cycle is required to avoid collision of signals which can be driven by more than
one device. The turn-around cycle is used to transfer ownership of the bus from the initiator
to the addressed target—in our case the host bridge—which takes control over the AD bus.
Additionally, the initiator asserts IRDY to indicate that it is ready to receive the first data
word from the target. In cycle three, the target deasserts DEVSEL to indicate that it has
recognized its address and will be the target of the transaction. In the following cycles, TRDY
indicates that data is available on the AD bus. If TRDY is deasserted, as illustrated in cycle
five, the target indicates a wait-state cycle: In our example, the main memory cannot send
data fast enough. In case of a hidden arbitration, the arbiter would grant the bus to the next
device immediately in cycle seven, otherwise the bus returns to the idle state as shown in
cycle eight. A very detailed description of various transaction types and their diagrams can
be found in [6, 66]. Every PCI-bus transaction consists of the parts listed in Table 4.1.

While caddress appears exactly once within a transaction, carb and cturn can occur at most
once. The data transaction is described by the three cycles cdata, cwait,i, and cwait,t. We can
assign each cycle either to s or to d by:

s = carb + caddress + cturn + cwait,i + cwait,t (4.4)

d = cdata (4.5)
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Figure 4.5.: Timing diagram of a read transaction with a three-word data burst and one
wait-state cycle

Table 4.1.: Parts of a PCI-bus transaction

Cycle Phase Name Number

carb non-data Arbitration cycle 0 or 1
caddress non-data Address cycle 1
cturn non-data Turn around cycle 0 or 1

cdata data (Burst) data cycle 1 – 255
cwait,i non-data Wait states due to initiator wi

cwait,t non-data Wait states due to target wt

The value of the latency timer (L) is considered as follows: upon expiration of the master’s
timer, a data transaction must be terminated by the master to free the bus within three cycles
(s+ d ≤ L+ 3).

Since the recovery phase of a device cannot be seen on the bus, we cannot derive the value
for the recovery phase r from timing diagrams.

4.2.3. Model Verification

To verify our assumptions and the model, we performed measurements with the Pamette
board and a software performance tool for the Pamette described in [17]. The software tool
programs the board such that it records approximately 32,000 PCI-bus cycles. The DMA
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engine of the Pamette board is programmed to generate bursts of variable length with variable
gaps in between. As shown in Appendix C on page 83, we can match the measurements taken
by the Pamette board and our model. In the given case, the non-data phase (s) is 3, the burst
length (d) is 16. The tool allows us to freely define the number of PCI cycles between two
bus requests of the card. In our case, the recovery phase (r) has been set to 31; the resulting
device descriptor is D = (3, 16, 31). Sometimes, we have seen slight jitter of the burst length
and the number of stalls before a transaction starts. Some devices behave differently on
reading or writing data. This problem can be solved by considering one physical device as
two logical devices. The first logical device is responsible for read operations, the second
device for write operations. This results in two device descriptors, one for read and another
for write operations. Since no device can read and write data within the same transaction,
this is an acceptable and correct solution.

In older systems, where main memory is relatively slow, we have seen typical burst lengths
of only eight 32-bit words, independent of the value specified in the device’s latency timer.
This behavior is caused by the host bridge which buffers exactly eight words in its internal
buffers. Thereafter, the host bridge must either force these data words out of the buffer and
write them into main memory for a write operation, or must fetch the next data from main
memory for a read operation. Due to the maximum allowed three contiguous stalling cycles,
this leads often to a termination of the transaction. As a result, the d and s values of device
descriptors in such systems are mainly determined by the host bridge and not by the latency
timer or the characteristics of a device. This fact must be considered when device parameters
are determined.

4.3. Analysis of Current Standard Hardware

We begin by focusing on standard hardware as used by the Drops system. To analyze the
behavior of commodity PCI hardware, we looked into the following commercial host bridges:
Intel 430TX, 440FX, 440BX, and i810 [58, 67, 63, 68]. For analysis of the impact of the
PCI bus on real-time systems, the arbitration scheme is of special interest. We observed
that all these host bridges use only a simple, non-prioritized round-robin scheme. The device
selected next is based on the currently active device. Figure 4.6 illustrates the used PCI-bus
arbitration scheme and how access to main memory is shared between the processor and the
host bridge.

3

2
1

0
Host

4

Bridge

CPU

Memory
Host

PCI Bus

Figure 4.6.: Round-robin PCI-bus arbitration scheme and access to main memory of com-
modity bridges
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To estimate bandwidth and latency of a PCI device, the formulas given in Section 4.1.3
can be used. However, these simple formulas are not sufficient to determine upper bounds
for bandwidth and latency resulting from the interaction of arbitrary devices.

4.3.1. Model for Identical Devices

The first step towards a description of the behavior of arbitrary PCI devices assumes n
identical devices. “Identical devices” means that all devices can be described by the same
device descriptor D and therefore generate the same bus-access pattern. The result can be
used to describe the behavior of PCI devices in a PC-based router or firewall, or in a fast file
caching server such as the “hit-and-miss server” [69] with multiple identical network cards.

The worst-case latency τlat that one device must wait until it is granted the bus occurs
when all other devices obtain access to the bus before that device. The result is similar to
that given by Formula 4.2 and can be calculated by:

τlat = (n− 1)(s+ d). (4.6)

In the worst case, every access is postponed by this latency. Hence, we receive a worst-case
bandwidth that can be calculated by:

bw = bwpci
d

(s+ d+ r) + ((n− 1)(s+ d)− 1)
. (4.7)

However, this requires gaps between the end of a recovery phase and the bus request of all
devices. Otherwise, the bus access can be interleaved. If we assume that all devices operate at
their maximum possible bandwidth, i.e., we have no gaps between two requests, the following
two cases must be considered:

1. If it holds that r ≥ (n− 1)(s+ d), a device can start immediately after it has finished its
recovery phase, since each of the n− 1 remaining devices has completed its transaction
before the end of the recovery phase of the first device. Figure 4.7 gives an example for
two devices.

s d r

Figure 4.7.: Two identical devices with D = (4, 3, 8)

The shortest time between the end of a transaction and the start of the next transaction
is determined only by the length of a device’s recovery phase. Since all devices have a
recovery phase of the same length, it is not possible for one device to perform multiple
transactions while another device recovers.

2. We consider r < (n− 1)(s+ d). Here, the device is ready before all other devices have
finished their transaction. In our case, where arbitration is based on a simple round-
robin scheme, the device scheduled next depends on which device is completing a trans-
action. Figure 4.8 illustrates the behavior of such two devices.
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s d r

Figure 4.8.: Two identical devices with D = (4, 3, 6)

From a combination of both case, we can calculate the bandwidth a device can achieve
by:

bw = bwpci
d

max((s+ d)n, (s+ d+ r))
(4.8)

This value is not of direct interest for hard real-time systems since it is not the worst-
case. However, it can be used to determine how far the achieved bandwidth differs from the
worst-case in the case that all devices generate their maximum bandwidth. The result can be
used to decide whether other reservation schemes, for instance schemes based on probabilistic
parameters, can provide better results [1].

Based on these two cases, we can calculate the bus utilization U(n) for n active devices.
It is the ratio between the number of cycles where the bus is occupied and the number of
elapsed cycles:

U(n) =
(s+ d)n

max((s+ d)n, (s+ d+ r))
. (4.9)

The denominator is the maximum of the number of cycles n devices can occupy the bus,
and the recovery time of one device. The bandwidth n devices can generate when each device
tries to send data with its maximum rate is given by:

bw(n) = bwpci
dn

max((s+ d)n, (s+ d+ r))
. (4.10)

The bandwidth of a system with only one device is determined by bw(1). Setting r to zero
and considering s as the overhead with s = ov(d) leads to the simplified maximum bandwidth
formula already given by Equation 4.1 on page 42. Under high bus load, the arbitration cycle
does not require an extra cycle (hidden arbitration). The minimum value of s for a write
operation is 1 (address cycle), and for a read operation is 2 (address and turn-around cycle).

The bus-access pattern of five network cards can be simulated by our “PCItrace” bus
simulator. Figure 4.9 illustrates the interleaving of the devices and the contention- and idle-
state of the bus.

The maximum number of devices we can connect to the bus, where each device can still
send with its maximum bandwidth, even though all other devices also request the bus and
send data at their maximum rate is nmax. We can derive this value from the first case, where
all s+ d phases of all other (n− 1) devices fit exactly in the recovery phase of a device, i.e.,
r = (n− 1)(s+ d):

nmax =

⌊
r

s+ d

⌋
+ 1. (4.11)

Page 49



Tulip Card (10MB/s)

Tulip Card (10MB/s)

Tulip Card (10MB/s)

Tulip Card (10MB/s)

Tulip Card (10MB/s)

Bus idle

Bus contention

 0  50  100  150  200  250  300

PCI time us

PCI BUS SIMULATION (5 Devices)

Figure 4.9.: Simulated bus-access pattern for five identical devices

In the next section, we extend the model to cover the interaction of devices with arbitrary
parameters.

4.3.2. Model for Arbitrary Devices

A typical system deploys PCI devices with various functionalities and different properties.
In contrast to the behavior of “identical devices” as described in the previous section, the
values for s, d and r may vary for each device and bus access cannot be interleaved as neatly
as for devices with an identical access pattern. This results in a lower bus utilization than
theoretically possible since the bus utilization is less than the sum of each device’s utilization.
This problem is identical to that described by Liedtke et al. [20] and could be solved by the
technique proposed in the paper. An example of the bus-access pattern of two devices is
shown in Figure 4.10.

s d r

Figure 4.10.: Two sample devices with D1 = (3, 5, 15) and D2 = (3, 4, 7)

As apparent from the figure, a new situation may arise with arbitrary devices: While
one device recovers, another device can perform multiple transactions. In the following para-
graphs, we develop the model for two arbitrary devices and attempt to generalize the model
for multiple devices.
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4.3.2.1. Two Devices

In this section, we extend the model to comprehend two arbitrary devices, including the case
in which one device performs multiple transactions while the other device recovers. A device
D2 must meet the following condition to perform multiple transaction cycles while another
device D1 recovers:

s2 + d2 + r2 < r1. (4.12)

This is sufficient, since D2 can start at least a second transaction while D1 has not com-
pleted its recovery phase. Without loss of generality, we assume s1 + d1 + r1 ≥ s2 + d2 + r2;
the displacement of s2 + d2 in relation to s1 + d1 is denoted by a:

a ∈ [0, r2
· (s1 + d1)] (4.13)

where · is the proper subtraction which returns zero in case of s1 + d1 > r2.

We define block time (b) as the distance between two starts of D1 at s1 + d1 depending
on the displacement (a) between the end of the transaction of device 1 and the start of the
transaction of device 2 by b = b(a). The number of transactions of length s2 +d2 that D2 can
perform during the interval [s1 + d1 + a, s1 + d1 + r1) is denoted by ν = ν(a).

Figures 4.11 and 4.12 illustrate two devices where the second device D2 can perform
multiple (at least two) transactions during the recovery phase of the first device D1. The
time where a device cannot transfer data since the bus is used by the other device is indicated
by ˜ .

r

s+d s+dr r s+d

s+ds+d

a

b

Device 1

Device 2

Figure 4.11.: Two devices, multiple transaction cycles, with delay

r

s+d s+dr r

s+ds+d

a

b

s+d

Device 1

Device 2

Figure 4.12.: Two devices, multiple transaction cycles, without delay

As the figures illustrate, two possible cases have to be considered:

1. Figure 4.11 illustrates the case where the last transaction of D2 has been started during
but exceeds the recovery phase of D1. Hence, D1 cannot start immediately after its
recovery phase and must wait until D2 has completed its transaction.

2. Figure 4.12 is easier to handle. The last work phase of D2 is shorter than the recovery
phase of D1. At this time, the first device is able access the bus, and is immediately
granted the bus since the second device is in the recovery phase.
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The number (ν) of transactions device D2 performs during the recovery phase of D1 can
be calculated by:

max{ν | r1 > (ν − 1)(s2 + d2 + r2) + ai}

ν − 1 <
r1 − ai

s2 + d2 + r2
with r1 > ai ≥ r2

ν =

⌈
r1

s2 + d2 + r2

⌉
. (4.14)

Starting with a0 = 0, the block time bi and the next displacement ai can be calculated
by:

bi = s1 + d1 +max(r1, (ν − 1)(s2 + d2 + r2) + ai−1 + (s2 + d2))

ai = ai−1 + ν ∗ (s2 + d2 + r2) · bi. (4.15)

Equation 4.15 allows the iterative calculation of when and how often a device is scheduled.
However, even for two devices, we cannot give one closed formula to determine the exact
bandwidth and latency. The worst-case latency for device D1 is τlat,1 = s2+d2 and for device
D2 is τlat,2 = s1 + d1.

4.3.2.2. Multiple Devices

While the number of access combinations of two devices is limited and can be described by
the formulas given in the previous section, the number of possible access patterns increases
polynomially for higher numbers of devices, since multiple devices can do multiple transactions
while other devices recover. As was the case with two devices, we cannot give a closed formula
to exactly determine which device accesses the bus at which time. A complex iterative scheme
can be developed similar to that of two devices; however this is identical to a full simulation
on a per-cycle basis. Figure 4.13 illustrates the simulated bus-access pattern of three different
devices.

In deterministic real-time systems it is sufficient to know worst-case bandwidth and worst-
case latency. To obtain average values or statistical data to perform admission in a proba-
bilistic system, the “PCItrace” simulation tool can be used.

To determine the worst-case latency, we must assume that exactly one cycle before the
recovery cycle of device x ends, all other devices have requested the bus, and the round-robin
scheduler picks all other devices first. All n devices receive the bus for si + di cycles. The
worst-case latency for device x can be given by

τlat,x =
n∑

i=1,i6=x

(si + di)− 1. (4.16)

The bandwidth a device can achieve can be derived from Equation 4.1 and is calculated
in Equation 4.17

bwx =
dxbwpci

sx + dx + rx + τlat,x
. (4.17)

To determine the worst-case bandwidth of device x we combine Equation 4.17 and Equa-
tion 4.16:

bwx =
dxbwpci

sx + dx + rx +
( n∑

i=1,i6=x
(si + di)− 1

) . (4.18)
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Figure 4.13.: Simulated bus-access pattern of three different devices

The maximum possible bandwidth a device can generate is determined by setting the
latency to zero, i.e., τlat,x = 0; the device will immediately receive the bus at every request.

We give the following example to illustrate the results of these equations. We assume
five identical devices on the bus. A device with a descriptor D = (8, 6, 12) can generate a
maximum bandwidth of 132 ∗ 8/(8+6+12) = 40.6MB/s. In combination with the other four
devices sending data, the calculated worst-case bandwidth of this device is only 132 ∗ 8/(5 ∗
(8 + 6) + (12− 1)) = 13.03MB/s. This makes the major drawback of a bus arbitration based
on a simple round-robin scheme obvious: guaranteed worst-case bandwidth per device is only
a fraction of the maximum bandwidth of the device acting alone. The the worst-case latency
is ((5− 1) ∗ (8 + 6)− 1) ∗ 30ns = 1.65µs.

4.3.3. Influence of Latency Timer

On the PCI system we investigated, the latency timer is the only available method by which
the behavior of individual devices can be influenced. As long as all devices have similar pa-
rameters, bandwidth is also distributed evenly among devices. However, if some devices can
generate a much higher bandwidth than other devices, the difference between average and
worst-case bandwidth of these devices is also high. For example, we consider the following
case: A Gigabit Ethernet adapter is able to transfer a sustained bandwidth of 80MB/s from
the network into main memory. However, the total bandwidth of all accepted network con-
nections by the system is only 10MB/s. If the network card does not provide a mechanism
to drop unsolicited packets already on the card instead of transferring all packets into main
memory and letting the processor to decide on them, another host can disrupt the correct
behavior of the system by generating network traffic. Since the host bridge does not provide
a mechanism to explicitly reserve and also enforce the bandwidth to 10MB/s, at a glance,
setting the latency timer seems an acceptable solution.

The specification recommends zero-wiring the lower three bits of the latency timer, allow-
ing it to be changed by multiples of eight. The smallest value of eight restricts the device
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to perform exactly three initial cycles (address, turn-around, and one stall cycle) plus eight
data cycles. Applying this fact to Equation 4.16 with s = 3 and d = 8, we cannot guarantee
a restriction of the bandwidth to less than 96MB/s. As a result, the latency timer cannot be
used to restrict bandwidth.

4.3.4. Conclusions on Current Standard Hardware

The model and formulas we gave in this section allow us to determine worst-case latency and
worst-case bandwidth for PCI devices in a system using one of the current host bridges. Since
the model considers cases in which devices send with their maximum possible bandwidth and
does not consider any jitter in the input data, it is designed for the overload situation, i.e.,
the sum of the bandwidth all devices request is higher than or equal to the maximum PCI-bus
bandwidth.

Assuming that bus utilization is less than 100% and that all devices behave well and
cooperate (i.e., devices do use more than their reserved bandwidth), the PCI bus can be used
in real-time environments. Here, our calculated worst-case values are very pessimistic, and
the model should be extended by parameters of the input stream as proposed in [70].

If devices can generate higher bus bandwidth and the resulting utilization would exceed
100%, regulation is mandatory to guarantee real-time capabilities and to enforce resource
reservation. With the current implementation, the latency timer is the only way to control
a device; however, as shown in Section 4.3.3 it cannot be used to effectively restricted the
bandwidth a device can generate. Hence, the problem can be solved only by an arbiter that
provides reservation of individual amounts of bandwidth for each device.

4.4. Alternative PCI-Bus Real-Time Solutions

Existing alternatives used by telecommunication applications deploy the cost-effective PCI
bus or CompactPCI bus only as a control bus. Real-time voice or video data is transferred
over a deterministic side bus, such as a time-division multiplexing bus [71].

The problem of any shared-medium bus is that contention can occur when multiple devices
try to access the bus at the same time. The switched implementation of the PCI interface as
proposed by Wilson [46] overcomes this problem. The major drawback of this solution is the
additional space required on the motherboard. Instead of sharing almost all wires among all
devices, a complete set of all wires must be connected to each device, which physically limits
the number of devices that can be used.

Another alternative to prevent contention on the bus is the following: Since almost all data
transfers take place between devices and main memory and transfers between PCI devices
are uncommon, the host bridge—on behalf of the main memory—is the only master-capable
device. To make this scheme efficient, the host bridge must provide an interface to transfer
larger quantities of data between main memory and devices without additional interaction
of the processor. The disadvantage is higher demand on the processor since all devices must
announce data to be transferred at the processor using an interrupt. The processor responds
to that interrupt and initiates the transfer at the host bridge. Since an exact coordination of
transfers between main memory, PCI devices, and the processor is possible and also actively
initiated by the processor, problems caused by PCI-bus load as described in Chapter 3 can
be minimized or avoided.
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The major drawback of all solution is that they either lead to major changes in the
operating system, or require a complete redesign of the system’s hardware. Additionally, no
support for a combination of soft and hard reservation is provided. Hence, we concentrate
on a solution based on a novel arbiter with support for bandwidth reservation. The changes
required to implement the algorithm in a current host bridge are low compared to the other
hardware solutions.

As described in Section 2.4.4, a combination of an arbiter with hard priorities and support
in the operating system can be used to give bandwidth guarantees. This encourages us that,
merely by implementing an arbiter with soft and hard reservations, the PCI bus can be well
deployed in the wide area of soft real-time systems.

4.5. Arbiter with Support for Bandwidth Reservation

The results presented in the previous sections can be used to calculate worst-case bandwidth
and latency of commercial off-the-shelf systems. However, these calculated worst-case results
are pessimistic and may diverge widely from the values achieved in a real-life situation. The
major drawback of the arbitration algorithm in commodity host bridges is that it does not
provide a method for reserving bandwidth or for limiting the bus access of a device. This is
essential for real-time systems where overload may occur. Since this is also the case in the
Drops system, we focus on designing an arbiter with support for bandwidth reservations.
The new arbiter must provide sharing of the PCI-bus bandwidth in arbitrary proportions
among devices. It must also maintain the advantages of the typically implemented round-
robin arbitration such as low latency and high bandwidth.

We must consider the following requirements to find an appropriate algorithm:

• throttling of high-bandwidth devices to prevent such devices from monopolizing the bus
and disrupting reservations of other devices;

• reserved bus bandwidth of one device that remains unused must be available to other
devices, for instance to devices providing best-effort services;

• low and guaranteed arbitration latency;

• low complexity; and

• finally, the algorithm must allow a simple and fast implementation in hardware.

These requirements lead us to the decision to focus on a proportional-share algorithm. All
the proportional-share algorithms presented in Section 2.2 are suitable of reservation of the
processor as well as for other resources. However, they have been designed to be executed by a
general purpose processor and require operations such as floating-point division, maintaining
multiple queues, or sorting of requests by their parameters.

In search of an adequate algorithm, we analyze the typical properties of a proportional-
share algorithm: Resources are assigned to clients in a certain ratio. For two clients, this
means that by knowing the ratio a and the amount x of a resource that one client has received,
it is possible to calculate the amount y the other client has received by y = ax. Geometrically
seen, this formula is exactly the description of a line, however with discrete steps, since a
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resource can be given out only in discrete quanta. Hence, we chose a line-drawing algorithm
as basis for the new arbitration algorithm.

The remainder of this chapter is organized as follows. At first, we describe the Bresenham
line-drawing algorithm and how to apply this algorithm to schedule an arbitrary number of
PCI devices. Then, we discuss how time-sharing devices can be handled and which extensions
are necessary to support a combination of hard and soft reservations. We propose an imple-
mentation that can be easily implemented in hardware. Finally, we give a set of formulas for
calculating bandwidth and latency values of our arbitration scheme and verify these values
by simulation.

4.5.1. Bresenham Line-Drawing Algorithm

The Bresenham line-drawing algorithm [72] is a fast algorithm to determine the points of
a line between two given points. It was invented by Bresenham to draw lines with a two-
dimensional, digital plotting machine, where the pen can be moved by stepping motors in
discrete steps only. Its main advantage is the simplicity of the calculation, since neither
floating-point operations nor any complex operations such as multiplication or division are
required. To implement the algorithm, simple add, subtract, and compare operations are
sufficient. All these operations can be easily implemented in hardware with simple logic
units. Many modern graphic cards with hardware acceleration implement Bresenham-based
line drawing. For all operations, it is sufficient to consider only lines between (0, 0) and
(xe, ye) that have a positive slope (δ) less than or equal to 1, i.e., 0 < ye ≤ xe. Lines with
a negative slope, a slope greater than 1, or an origin other than (0, 0) can be implemented
by changing the drawing direction, swapping x-axis and y-axis, or adding an offset if the line
does not start at (0, 0). Figure 4.14 illustrates the principle of the Bresenham algorithm.

ε
ε+δδ

x x+1 x+2x−1

y+0.5

y+1

y

Figure 4.14.: Bresenham line-drawing algorithm

The algorithm works as following: For each integer value in x-direction, an exactly corre-
sponding value on the y-axis is calculated. If, due to the discrete resolution, it is not possible
to draw a point at the calculated (x, y) location, the y-value is rounded off to the nearest
drawable location. An error ε with the right-side open interval of [−0.5, 0.5) describes the
error between the calculated and the drawn point. The line requires discrete x and y-values
for the origin. Therefore, it is always possible to draw a point at the location (x, y) and the
initial value for ε is 0.
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On incrementing the x-value by 1, the exact value for the new y-value is calculated from
the previous y-value by adding the line’s slope δ. The next point is drawn at the nearest
possible place and the error value ε is updated appropriately.

xnew = xold + 1

ynew = δxnew = δxold + δ = yold + δ

εnew = εold + δ (4.19)

The y-value of the plotted point is either identical to the y-value of the previous point or
this value plus 1. The central decision whether to extend in y-direction is based on the new
error value εnew. If it exceeds its valid interval, i.e., εnew > 0.5, the y-value is incremented
by 1 and the error variable εnew is decreased by 1.

ynew =

{
yold if (εold + δ < 0.5)
yold + 1 if (εold + δ ≥ 0.5).

εnew =

{
(εold + δ) if (εold + δ < 0.5)
(εold + δ)− 1 if (εold + δ ≥ 0.5)

(4.20)

To remove floating-point operations from Equation 4.20, we rewrite the equation and
replace the slope δ with ye/xe. Additionally, we multiply both sides of the equation by 2xe

and substitute 2εxe by ε′. It can be shown easily that ε′ is always an integer. As a result of
the substitution, we obtain the following:

ynew =

{
yold if (ε′

old + 2ye < xe)
yold + 1 if (ε′

old + 2ye ≥ xe)

ε′
new =

{
ε′
old + 2ye if (ε′

old + 2ye < xe)
ε′
old + 2ye − 2xe if (ε′

old + 2ye ≥ xe).
(4.21)

All expressions in Equation 4.21 are integer operations. These formulas can be transformed
into the algorithm shown in Figure 4.15. The error variable ε′ is represented by eps. We
additionally optimize the code by introducing dy = 2 ∗ ye − xe. We can now reduce the
if-statement expression from (eps+ 2 ∗ ye < xe) via (eps+ 2 ∗ ye− xe < 0), (eps+ dy < 0)
to (eps < −dy. Finally, we initialize eps = dy instead of zero which further reduces the
comparison to (eps < 0).

4.5.2. Application for Bus Scheduling

The algorithm described in Section 4.5.1 is used to draw a line with a given slope. In this
section we describe the transition from the basic line-drawing algorithm to an algorithm that
can be used for bus scheduling.

4.5.2.1. Scheduling of two Devices

For bus scheduling of two devices, A and B, we assign the x-axis to device A, and the y-axis
to device B. The arbitration is based on the following four rules:

Rule 1: The bus is granted to device B, if the y-value is incremented and device B has
requested the bus.
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x = y = 0;
eps = 2*ye - xe; // eps = dy
while (x < xe) {

plot (x, y);
if (eps < 0) {

// chose right
eps = eps + 2 * ye;

} else {
// chose up and right
y = y + 1;
eps = eps + 2 * ye - 2 * xe;

}
x = x + 1

}

Figure 4.15.: Code for an integer-only Bresenham algorithm to draw a line between (0,0) and
(xe, ye).

Rule 2: The bus is granted to device B, if the y-value is not incremented and device A has
not requested the bus, but device B has requested the bus.

Rule 3: The bus is granted to device A, if the y-value is not incremented and device A has
requested the bus.

Rule 4: The bus is granted to device A, if the y-value is incremented and device B has not
requested the bus, but device A has requested the bus.

Figure 4.16 illustrates scheduling of two devices with a ratio of 11 : 6 (the slope is 6/17),
where both devices are permanently requesting the bus. The left picture shows the result
from the line drawing algorithm. The right picture is a simplified representation, where each
device is represented by a direction. Here, an extension into a direction means granting bus
access to the device assigned to this direction.
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Figure 4.16.: Proportional PCI-bus arbitration based on the Bresenham algorithm.
Share ratio between devices A and B is 11:6. Scheduling order is
ABAABAABABAABAABA
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Contrary to drawing a line, where x and y-value can be modified at every time, granting
the bus to a device is only possible if the device has also requested the bus. This is similar to
an artificial barrier that prevents the line from extending into one direction. In the case where
we cannot extend into the calculated direction, the absolute error value ε increases and may
leave the initially given valid interval of [−0.5, 0.5). As soon as we can extend into the desired
direction, the algorithm corrects the error as quickly as possible to reach the ideal position.
In other words, if the device later issues frequent requests for the bus, it will receive the bus
more often to adjust its actually received share to its reserved proportion. During the time
a device receives the bus more frequently than actually planned, it affects the guaranteed
bandwidth of other devices. We discuss solutions to control this behavior in Section 4.5.3.

For the following, we assume that the bus is given to two devices with a ratio of n : m, i.e.,
assigning n shares to device A and m shares to device B. Since the x-value is incremented by
the algorithm on every iteration, we draw the line between (0, 0) and (n+m,m), instead of a
line between (0, 0) and (n,m). Since n and m are both non-negative, it holds that m

n+m
≤ 1.

Hence, considering a line with an origin of (0, 0) and a slope of less or equal to 1 is sufficient.

To show the operation of the algorithm, we consider a device ratio of 2 : 1. According to
the previous paragraph, the slope is δ = 1

3
. We consider the following three cases:

1. Both devices request the bus as often as possible. This is identical to the simple line
drawing algorithm.

2. Device A is always requesting the bus. Additionally, device B requests the bus in step
4 and 6.

3. Device B is always requesting the bus. Additionally, device A requests the bus in step
4 and 6.

Table 4.2 lists the arbitration order and the intermediate results of εold and εnew for the
three cases.3

Table 4.2.: Example of PCI-bus arbitration with the new arbiter

Case 1 Case 2 Case 3
Step REQ εold εnew Device REQ εold εnew Device REQ εold εnew Device

1 AB 0 1/3 A A 0 1/3 A B 0 -2/3 B
2 AB 1/3 -1/3 B A 1/3 2/3 A B -2/3 -4/3 B
3 AB -1/3 1/3 A A 2/3 1 A B -4/3 -6/3 B
4 AB 1/3 -1/3 A AB 1 1/3 B AB -6/3 -5/3 A
5 AB -1/3 1/3 B A 1/3 2/3 A B -5/3 -7/3 B
6 AB 1/3 -1/3 A AB 2/3 0 B AB -7/3 -3/3 A

Scheduling of two devices is simple and does not require changes of the algorithm. In the
next section, we describe how to adapt the algorithm to support more than two devices.

3For simplicity and better understanding, we show the intermediate values as a fraction and not as the integer
value used by the optimized algorithm.
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4.5.2.2. Scheduling of multiple Devices

To schedule more than two devices the algorithm must be extended to draw a line in multi-
dimensional space. For more than three devices this seems complex since figures in a di-
mension higher than three are (usually) beyond human imagination. However, the step from
an n-dimensional to an (n+1)-dimensional space is identical to the step from the two to the
three-dimensional space. According to the four rules how devices are assigned in the two-
dimensional space (see page 57), a decision is made between the first and the second device.
However, if the first device is not scheduled, we cannot automatically pick the second device
but have to decide, in the next step, between the second and the third device. This means
that, with exception of the last device, we always have to decide for one device and can-
not assume that a decision against a device automatically means a decision to pick the next
device.

Adapted to the multidimensional-space case this generalizes to a decision either being
made for one device, or left open and decided on the next decision level; the result is a
decision tree. Figure 4.17 shows an example of such a decision tree for five devices A–E,
where the decision is made on the third level granting the bus to device C.

Dev B

Dev D Dev E

Dev C

Level 1

Dev A
Level 2

Level 3

Level 4

Figure 4.17.: Decision tree for five devices A–E

To obtain a bandwidth ratio of m1 : m2 : ... : mn, the line must be drawn between
(0, 0, ..., 0) and (m1,m1 + m2, ...,m1 + m2 + · · · + mn). The single slope value δ of the two-
dimensional case now becomes an array too, where each δx for n devices can be determined
by:

δx =
mx

n∑
i=1

mi

. (4.22)

As a result, the algorithm generates a periodic schedule. The period P is equal to the
sum of all shares:

P =
n∑

i=1

mi. (4.23)

Similar to the two-dimensional case, we show the line and the arbitration for three devices
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in Figure 4.18. The left figure shows the line generated by the Bresenham algorithm, the right
figure shows which device gets the bus granted.
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Figure 4.18.: PCI-bus arbitration algorithm with modified Bresenham algorithm, sharing ra-
tio of the bus between three devices A (width), B (depth), and C (height) is
4:6:12

A line between (0, 0, ..., 0) and (m, 2m, ..., nm) provides a similar behavior as the actual
implementation of a simple round-robin arbitration scheme, since all devices receive the same
share of the bus. This allows us to keep all legacy systems relying on the current arbitration
scheme of a non-prioritized round-robin arbitration.

4.5.3. The Memory Effect

In the previous section, we have described that a device that does not request the bus as
often as allowed by its requested share will accumulate the assigned but unused share and
eventually receive the bus more frequently to adjust the received share to the requested share.
This behavior is caused by the absolute value of the error variable ε, which increases every
time the device would have been scheduled but did not request the bus. According to the
decision tree (Figure 4.17), a device will cut off all devices on a lower lever in the tree. For
example, device B has not requested the bus for a while and is now permanently requesting
the bus. Device A will still receive its correct share, but all remaining shares are given to
device B until it has adjusted its share. As a result, devices C–E are completely cut off the bus.
We call this behavior memory effect of a memorized device and the number of accumulated
but unused bus grants credit. There are two possibilities to control the impact of such a
memorized device: (1) by a window, which limits the time of the memory effect, and (2) by
a credit limit that describes the maximum value of the credit.

In the first case, the credit is limited only by the maximum value a device can build up
during the window, but will be reduced after the time determined by the window. If the
credit is always retained for the same time, we have a fixed-size window; otherwise, we have
a variable-size window. The simplest method of implementation is to completely cancel the
credit after the time of the window has gone by. However, other alternatives are possible such
as a timed reduction of the credit. In this case it is important that a credit cannot be built
up quicker than it is reduced. Otherwise, the credit must be limited or other devices can be
blocked for an unbounded time.
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In the second case, the credit limit determines exactly how long a device can cut off other
devices from the bus. Since the time during which the credit is valid is not time-bound, an
established credit will never be canceled. Since it is very likely that the device will request
access to the bus less often than the bus is reserved, the device will always keep a credit and
the credit must be considered for all other reservations.

Both cases allow devices to adjust their bus usage to a jitter of an incoming data stream.
The major advantage of the first case is that it also limits the resulting increased latency of
other devices. The advantage of the second case is the easy implementation. In this thesis,
we focus only on the second case.

4.5.4. Time-Sharing Devices

Until now, we have considered only devices with real-time requirements that have reserved
a certain share of the bus. One of the initial requirements was also to support time-sharing
devices that do not make reservations based on bandwidth requirements.

In the described technique, the bus is by default of the algorithm granted to the requesting
device with the highest number, if the scheduler would actually pick a device that has not
requested the bus. Therefore, devices should be sorted according to their requested share
in descending order. As a result, devices with a larger share that are not ready when the
scheduler would pick them give their shares to devices with smaller shares. Consequently, all
time-sharing devices must set their shares to small, but non-zero values, which means that
time-sharing devices with small shares will receive all bandwidth not used by real-time devices
with larger shares.

If a certain share should always be distributed among time-sharing devices, we need to add
an ‘artificial device,’ as placeholder between real-time and time-sharing devices that requests
the total fraction of all time-sharing devices but never requests the bus. Every time the
scheduler would select the artificial device, one of the time-sharing devices with lower share
is selected instead.

For example suppose, we have three real-time devices that should share the bus by 50%,
30%, and 20%; unused bandwidth should be distributed evenly among the time-sharing de-
vices. We set the values for the real-time devices to m1 = 500, m2 = 300, and m3 = 200. All
time-sharing devices receive values of 1. Strictly speaking, this assigns each time-sharing de-
vice a (negligible) bandwidth of 1 out of 1003 requests. The arbiter schedules the bandwidth
in the requested ratio among the real-time devices as long as they request the bus.

However, if none of them requests the bus, but the time-sharing devices do so, the band-
width is evenly distributed among the time-sharing devices. In contrast, assigning a share
of zero to the time-sharing devices would not result in such an even distribution. Instead,
the first time-sharing device would get always access to the bus when no real-time device
has requested the bus. The second time-sharing device would only get access to the bus, if
the first time-sharing device does not request the bus. Finally, the third time-sharing device
would only receive bus access when no other device tries to access the bus.

4.5.5. Arbiter Implementation

In the following sections we describe an implementation of our proposed real-time arbiter
in software as well as in hardware. The software solution is also used in the “PCItrace”
simulation environment.
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4.5.5.1. Software Implementation

An implementation of the algorithm for the n-dimensional space is shown in Figure 4.19.
The values for the line endpoint that describes the ratio among the devices are held in the
points[n] array. The eps error value, which was a scalar in the two-dimensional version is
now an (n-1)-dimensional array eps[n-1]. Its initial values are calculated from the points of
two adjacent dimensions, i.e., eps[i] is calculated by 2*points[i+1] - points[i]. This
calculation is done in the initialization part.

We have split the simple line drawing algorithm into two parts, a calculation and an update
part.

In the calculation part, new eps values for all devices are determined. If a device’s eps
value becomes negative, the device is due to be scheduled and the appropriate bit in the arb
variable is set. Since we scan through all devices, multiple bits in the arb variable may be
set.

In the update part, again we scan through all devices, beginning from the device with
the lowest number. We keep the device with the highest number that has requested the bus
in the grant variable, independent of the choice of the scheduler. This allows us to give the
bus to devices that have requested the bus, but that were not selected by the scheduler. The
first device that was selected by the scheduler and has also requested the bus is scheduled. A
device that was selected by the scheduler but has not requested the bus cannot be scheduled.
The eps variables of all devices with a higher number than the scheduled device are not
updated. If no device has been found, the bus is idle.

4.5.5.2. Implementation in Hardware

One of our design goals was to find an algorithm that can easily be implemented in hardware.
The complexity of the presented algorithm is O(n), since for a full calculation cycle the
values for n devices must be calculated. This is practicable but not efficient. To reduce the
complexity we must parallelize the algorithm.

This leads to the following design illustrated by the code in Figure 4.20. The function
within the loop modifies the eps value for each device, depending on the sign of the current
eps value; a positive value is represented when the highest bit is zero (Line 1). In this case,
temp1 is the value of points[cur], otherwise it is zero (Line 2). In the next step, we subtract
this value from points[cur+1] (Line 3). To multiply the result by two, we only need to add
an always-zero wire as the lowest bit (Line 4). Finally, we have to look at the break condition
of the algorithm. The loop is left when one eps has a negative value. In our parallelized
version, eps must not be updated if the value of all previous devices is negative (Line 5).

The logical-AND operation of step 2 means that every bit of points[cur] is logically
ANDed with the single upd[cur] bit.

The logic block is designed such that it only updates the eps[cur] values if a write-enable
line is asserted. The calculation can be done within one cycle that is needed to delay the
update of the original eps value. For the initial block (cur=0), the write-enable line is always
asserted, since the algorithm always updates the first eps value. The final decision of which
device is scheduled is based on the highest active write-enable line. Figure 4.21 shows the
block diagram of a single logic block of the new proportional-share arbitration algorithm.
This implementation has a complexity of O(1).

The initialization of the points array is either done by software during setup
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Initialization:
// Initialize point values from given ratio
sum = 0;
for (cur = DEVS - 1; cur >= 0; cur--) {

sum = sum + ratio[cur];
points[cur] = sum;

}
// Initialize eps values from points
for (cur = 0; cur < DEVS - 1; cur++) {

eps[cur] = (2 * points[cur + 1]) - points[cur];
}

Algorithm:
// Always grant the bus to the last device
arb = (1 << (DEVS-1));
for (cur = 0; cur < DEVS - 1; cur++) {

if (eps[cur] < 0) {
// device shall get the bus
eps_new[cur] = eps[cur] + 2 * points[cur + 1];
arb = arb | (1 << cur);

} else {
// device shall not get the bus
eps_new[cur] = eps[cur] + 2 * points[cur + 1] - 2 * points[cur];

}
}

Update:
grant = BUSIDLE; // Assume the bus will be idle
for (cur = 0; cur < DEVS; cur++) {

eps[cur] = eps_new[cur];
if (req & (1 << cur)) {

// If device has requested the bus, keep it
grant = cur;
if (arb & (1 << cur)) {

// If the device shall receive the bus, grant the bus
break;

}
}

}
return grant;

Figure 4.19.: C-code for proportional-share PCI-bus arbiter for multiple (DEVS) devices

(1) upd[cur] = MSB (eps[cur])
(2) temp1 = upd[cur] ∧ points[cur]
(3) temp2 = points[cur + 1] - temp1;
(4) temp3 = temp2 SHIFT-LEFT 1;
(5) eps[cur] = WRITE-IF[!(upd[cur - 1] ∨ · · · ∨ upd[0])] temp3;

Figure 4.20.: Pseudo-code to describe each logic block of the new arbiter

or due to changes in the bandwidth reservation of the schedule. The eps val-
ues are set after changes in the points array either by software or by hardware to
eps[n] = 2*points[n+1] - points[n].

The implementation of the fixed-size window to reduce the memory effect requires only
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Figure 4.21.: Block diagram for proportional-share arbiter

few changes. The eps updates are not on the critical scheduling path and can be performed
in the next PCI-bus cycle after the arbitration, while the bus transaction takes place. If the
values in the eps registers exceed or fall below the acceptable deviation limit, the eps values
are updated to stay in the requested range, i.e., they are set to the maximum allowed values.
The compare-and-set operations for lower and upper limit can be done in parallel since only
one result is used. Which result is written back is determined by the compare operation.
Figure 4.22 illustrates the logic block of one eps-update circuit.

> limit < −limit

set −limitset limit

WE WE

eps

Figure 4.22.: Block diagram for eps-update logic

To allow the system to sort devices in arbitrary order, we need an additional small logic
block. By means of an n × n matrix, the order of devices, physically determined by their
location on the bus, can be translated into a virtual order used for scheduling and vice versa.
The same matrix is used to translate the virtual order back into the physical bus order.

4.5.6. Support for Soft Reservations

The proposed scheme can easily be extended to support a combination of soft and hard
reservations. We only need to double the proposed hardware, resulting in two separate arbiters
and two request/grant-line pairs for each device. A device uses the first pair of request/grant
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lines to acquire bandwidth for its hard reservation and the second pair to get soft-reserved
bandwidth. To guarantee a certain share of the bus bandwidth to be given to soft reservations,
a proxy device P is added to the arbiter that handles hard reservations. This bandwidth is
distributed among the devices with soft reservations according to their soft shares. Figure 4.23
illustrates this scheme.

Dev 1 Dev 2 Dev 3

Soft reservation

Dev 1 Dev 2 Dev 3 P

Hard reservations

Figure 4.23.: Block diagram supporting hard and soft reservations

For example, a hard reservation tuple of (5 : 2 : 1 : [2]) and a soft reservation tuple of
(6 : 3 : 1) distributes 80% of the total bus bandwidth among hard reservations and reserves
20% of the bus bandwidth for soft reservations. In addition to the reserved 20%, all bandwidth
which remains unused by hard reservations is distributed among devices with soft reservations
in a 6 : 3 : 1 ratio.

4.5.7. Bandwidth and Latency Considerations

In this section we describe how the share parameters must be calculated such that a device
obtains a certain bandwidth and how the worst-case latency of devices can be determined

The described proportional-share algorithm has no knowledge about s and d properties of
a device. It considers only time where the bus is occupied, i.e. s+d as a whole. Since data is
only transferred during time d but not during s, the achieved bandwidth is lower. Therefore,
we must adapt the requested share if a certain bandwidth must be achieved. It must hold
that the total bus utilization is less than or equal to 1:

U =
1

bwpci

n∑

i=1

bwi
si + di

di
≤ 1. (4.24)

Additionally, it must hold that device x is able to generate the required bandwidth bwx:

bwx ≤ bwpci
dx

sx + dx + rx
. (4.25)

To calculate the shares of each device, we assume that a device generates as much band-
width as it can and that we have to throttle its access to the bus. If all devices would generate
only exactly the requested amount of bandwidth and Equation 4.24 holds, all devices would
receive their requested amount of bandwidth, even under a round-robin algorithm. The δx
value of a device determines its share of the bus. The proportional-share algorithm is designed
to share the entire bandwidth among all devices. However, sharing the entire bus bandwidth
(bwpci) is often not the intention and devices want to reserve only a certain amount of band-
width. Hence, we introduce a dummy device with Dζ = (1, 0, 0). This dummy device has
only one non-data cycle to absorb all remaining bandwidth. In a real system, where devices
request the bus less frequently and generate less bandwidth, the remaining bandwidth can
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be given to time-sharing devices that have not made a bandwidth reservation. The dummy
device is merely a help to calculate the correct shares. Since no bandwidth can left unused,
following must hold:

n∑

i=1

δi = 1− ζ. (4.26)

The bandwidth each device receives is:

bwx = bwpci
δxdx

ζ +
n∑

i=1
δi(si + di)

. (4.27)

4.5.8. Results and Simulation

To verify these results, we give the following example. Three devices D1=(5,8,3), D2=(3,16,4),
and D3=(10,12,4) require the bus for 6MB/s, 16MB/s, and 8MB/s respectively.

We derive the following equation system from Equation 4.26 and 4.27:

6ζ − 978δ1 + 114δ2 + 132δ3 = 0
16ζ + 208δ1 − 1808δ2 + 352δ3 = 0
8ζ + 104δ1 + 152δ2 − 1408δ3 = 0
ζ + δ1 + δ2 + δ3 = 1

(4.28)

Solving this equation system leads to the following values: δ1 = 0.00824, δ2 = 0.01099,
δ3 = 0.00733, and ζ = 0.97344.

To verify these values, we perform a simulation with our “PCItrace” bus simulation tool.
We set the share values of the devices to m1 = 824, m2 = 1099, and m3 = 733. The share
value of the dummy device is m4 = 97344. The simulation run of 1,000,000 cycles—this is
about 30ms on the PCI bus—takes about 2.3s on a 600MHz Pentium III system. Figure 4.24
shows the results generated by the “PCItrace” tool.

The bus-access pattern for the three devices is shown in Figure 4.25.
Applying Equation 4.25 to the descriptors of each device shows that the device’s achievable

bandwidth is much higher than the requested bandwidth. The smaller the recovery value,
the smaller the probability that due to contention a device does not deliver the requested
bandwidth. To explore this relation, we calculate the recovery values under which the devices
would still be able to generate the required bandwidth if no contention occurs at all. We
determine rx,max by the following

rx,max =
bwpcidx
bwx

− sx − dx, (4.29)

resulting in r1,max = 163, r2,max = 113, and r3,max = 176. To verify this result, we perform
the same simulation, but set the recovery values to these calculated maximum values. Since
now the total bus bandwidth is completely consumed by the three devices, the dummy device
is not needed anymore.

The results of the listing in Figure 4.26 shows that even under these maximum recovery
values, the requested bandwidth can be guaranteed.

Figure 4.27 shows the simulated bus-access pattern for the devices with the maximum
recovery values under which devices achieve the requested bandwidth.
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Arbitration scheme : Proportional Share
------------------------------------------------------------
Statistics of Device 1 [Device 1]
Burst max 32 bytes, stall 5, recovery 3

Maximum single card bandwidth : 66.00MB/s
Simulated Bandwidth : 6.03MB/s

------------------------------------------------------------
Statistics of Device 2 [Device 2]
Burst max 64 bytes, stall 3, recovery 4

Maximum single card bandwidth : 91.82MB/s
Simulated Bandwidth : 15.94MB/s

------------------------------------------------------------
Statistics of Device 3 [Device 3]
Burst max 48 bytes, stall 10, recovery 4

Maximum single card bandwidth : 60.92MB/s
Simulated Bandwidth : 8.08MB/s

------------------------------------------------------------
Statistics of Device 4 [Dummy device]
Burst max 0 bytes, stall 1, recovery 0

Simulated Bandwidth : 0.00MB/s

============================================================
Simulated Total Bandwidth : 30.05MB/s
Bus Idle : 0.00%
Bus Contention : 100.00%

Figure 4.24.: “PCItrace” simulation run for example

In contrast to the previous simulation, where achieved and requested bandwidth are iden-
tical, setting the recovery values to the maximum possible values achieved bandwidth that is
slightly lower than the requested bandwidth. The reason for this behavior is that all devices
now achieve the requested bandwidth only when they operate under their maximum theo-
retical bandwidth without any bus contention. However, as soon as the access of multiple
devices must be coordinated and contention may occur, the resulting bandwidth of each de-
vice is slightly lower. Hence, to achieve the requested bandwidth devices must not operate at
their theoretically possible bandwidth limit.

The worst-case access latency is determined by the maximum time other devices occupy
the bus. We can estimate the worst-case latency as follows: a device x that receives mx-times
during the period P receives the bus mx-times exactly at the beginning of the period. Hence,
the maximum distance between two requests ∆ is the following

∆x =
∑

i6=x

mi (4.30)
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Device 1
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Bus contention
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PCI time us

PCI BUS SIMULATION (4 Devices)

Figure 4.25.: Simulated bus-access pattern for the example devices

Arbitration scheme : Proportional Share
------------------------------------------------------------
Statistics of Device 1 [Device 1 (r-max)]
Burst max 32 bytes, stall 5, recovery 163

Maximum single card bandwidth : 6.00MB/s
Simulated Bandwidth : 5.81MB/s

------------------------------------------------------------
Statistics of Device 2 [Device 2 (r-max)]
Burst max 64 bytes, stall 3, recovery 113

Maximum single card bandwidth : 16.00MB/s
Simulated Bandwidth : 15.94MB/s

------------------------------------------------------------
Statistics of Device 3 [Device 3 (r-max)]
Burst max 48 bytes, stall 10, recovery 176

Maximum single card bandwidth : 8.00MB/s
Simulated Bandwidth : 8.08MB/s

============================================================
Simulated Total Bandwidth : 29.83MB/s
Bus Idle : 67.34%
Bus Contention : 4.36%

Figure 4.26.: “PCItrace” simulation run with calculated maximum recovery values

The worst-case time each device x must wait is:

τlat,x =
∑

6=x

(
mi(si + di)

)
(4.31)
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PCI BUS SIMULATION (3 Devices)

Figure 4.27.: Simulated bus-access pattern for the example devices

This worst-case estimation is relatively pessimistic, especially for evenly-sized shares with
larger numbers. Based on the properties of the algorithm, exact worst-case-latency values for
two devices can be calculated; for multiple devices, simulation must be used.

For the two-devices case, the maximum time during which the one device will not receive
the bus occurs when the error variable ε of the original algorithm is initially set to −0.5. The
earliest time at which the device will receive the bus is when the error value reaches 0.5 (see
also Figure 4.14). With each arbitration cycle, the error variable is incremented by the share
δ (see also Equation 4.19). Let ∆ now be the number of arbitration cycles during which the
algorithm does not assign the bus to a device. To obtain the maximum number of arbitration
cycles, the following must hold

− 0.5 + ∆δ ≥ 0.5. (4.32)

Since the number of arbitration cycles is discrete, the value for ∆x for device x can be
calculated by

∆x =
⌈ 1

δx

⌉
− 1. (4.33)

The resulting worst-case latency is

τlat,x = ∆x

( 2∑

i6=x

(si + di)
)

= ∆x

(
s3−x + d3−x

)

4.6. Conclusions

In this chapter we presented a model to describe the behavior of PCI-bus devices. By splitting
a single PCI transaction into three phases, non-data (s), data (d) and recovery (r), we can
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calculate worst-case bandwidth as well as worst-case latency of each device. Additionally, we
can determine the maximum bandwidth a device is able to deliver.

As shown in Section 4.3.3, the latency timer that each master must implement cannot be
used effectively to restrict the bandwidth a device can generate. Since an effective restriction is
a fundamental requirement for giving bandwidth guarantees, only a new arbiter can effectively
solve this problem.

Based on the Bresenham line-drawing algorithm, we developed a novel arbiter to assign
arbitrary shares of the bus bandwidth to individual devices. The proposed algorithm has
a complexity of O(n), which has been reduced by parallelizing to O(1). The functionality
required for each logic block is simple enough that arbitration can be made within one PCI-
bus clock cycle. By chaining two arbiters, a mixed hard/soft-reservation scheme, as already
used for other resources by Drops, can be implemented. While the first arbiter handles all
hard reservations, the second arbiter is responsible for all soft reservations. A proxy device in
the first arbiter ensures that a certain fraction of the bus bandwidth is always given to soft
reservations.

The new arbitration algorithm not only distributes bandwidth among devices but guar-
antees also a worst-case latency. The new arbitration algorithm achieved good results in our
simulation environment.
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5. Results — Conclusions — Future Work

This chapter summarizes the research results of this thesis, draws conclusions and discusses
open points for future work.

5.1. Thesis Results

Chapter 3 discusses the influence of memory-bus load on an application accessing main mem-
ory executed on the host processor. This load can be generated either by other processors
or by devices on peripheral buses. Since we have restricted our research to uniprocessor,
PCI-bus-based systems, the memory-bus load is generated only by devices on the PCI bus.
As a result, the execution time of the application increases under PCI load. To quantify this
impact, we introduced the slowdown factor in Sections 3.1. The slowdown factor describes
the ratio between the execution time of an application under external load and under no ex-
ternal load. In an empirical approach, measurements under various external loads are taken
to determine the slowdown factor. For reservation schemes that consider worst-case execu-
tion times—as in hard real-time systems—the worst-case impact is of interest. By increasing
the external load to the maximum possible bandwidth, the worst-case slowdown factor of an
application can be measured. The drawback of the empirical approach is that many mea-
surements on a platform must be taken. Two factors determine the slowdown factor of an
application: (a) the characteristics of the application, and (b) the influence of external load
on memory-sensitive processor instructions.

The characteristics of an application can be described by the instruction mix introduced
in Section 2.6.2. The worst-case impact on memory-sensitive processor instruction is de-
scribed by the upper-bound worst-case slowdown factor (WCSF). This upper bound can be
determined by measuring the impact of maximum external load on an application accessing
only memory. A combination of the instruction mix and the upper-bound WCSF is used to
determine the application’s worst-case slowdown factor.

To determine the slowdown factor under a certain load, we replace the upper-boundWCSF
by the slowdown factors of read and write operations under the given external load. These two
slowdown factors can be either taken from measurements or approximated by a polynomial
function of order two. The results of the approximation by a polynomial function are very
precise.

In Chapter 4, we focus on the PCI bus, especially its use in soft real-time systems such as
Drops. Many publications in the embedded real-time community claim that the PCI bus is
an alternative to current bus systems for use in real-time environments. However, they do not
substantiate this claim by any means. Therefore, we analyzed standard off-the-shelf PCI-bus
host bridges to determine their behavior in terms of arbitration, latency and bandwidth.

Starting from the models given by the PCI-bus specification, we derived a simplified model
that allows us to describe the behavior of devices on the bus. Each device can be described by
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a triple D = (s, d, r): s describes the number of non-data cycles per transaction, d gives the
number of data cycles, and finally, r describes the minimum time a device requires between
two transaction. The model is powerful enough to calculate latencies and bandwidths of
individual devices and can also be used to perform PCI-bus simulations.

All analyzed bridges provide only a simple round-robin arbitration scheme; none of the
analyzed bridges support any kind of bandwidth reservation to guarantee a certain bandwidth
to a device. Based on our model, we can determine the minimum bandwidth a device can
achieve under worst-case, and the maximum bus-access latency a device can experience. This
is sufficient to use current PCI-bus systems, especially in low-bandwidth real-time environ-
ments, but it does not efficiently handle the requirements of high-bandwidth systems where
bandwidth reservation is important. Under the conditions that bus utilization is less than
100% and that all devices behave well and cooperate, the PCI bus can be used in real-time
environments. Here, the calculated worst-case values are very pessimistic

If devices can generate higher bus bandwidth and the resulting utilization would exceed
100%, regulation is mandatory to guarantee real-time capabilities and enforce resource reser-
vation. Hence, we designed a new arbiter that provides such bandwidth guarantees, but
which retains the advantages of low latency, by a design that allows an easy implementation
in hardware. This arbiter also allows us to keep the behavior of current round-robin-based
PCI host bridges.

One design goal was to support both hard and soft reservations. Doubling the hardware
leads to an arbiter that allows each device to make two reservations, one for mandatory and
another for optional bandwidth. This allows us to provide the required support for systems
such as those based on imprecise computations or on quality-assuring scheduling.

To test and verify our results under current hardware as well as with the new arbitration
scheme we developed the simulation tool “PCItrace.”

5.2. Conclusion

We can conclude from Chapter 3 that any external load on the memory bus delays the
execution of an application. The factor by which the execution is slowed down depends
on the ratio of bandwidth available to the processor, the main-memory interface, and the
bandwidth of the external source, in our case the PCI bus. Compared to earlier measurements
on slower systems, such as Pentium machines with 90MHz, the impact on modern systems is
much lower since memory and local bus became much faster but the PCI bus still operates
at 33MHz. However, with new technologies such as PCI Express or InfiniBand providing
higher bandwidth to devices, the impact will increase again. Additionally, on a multiprocessor
systems, not only the PCI host bridge but each individual processor is a source of memory-bus
bandwidth. In this case, we expect a much higher impact than in our case.

The conclusion of Chapter 4 is that the design of the PCI bus is flexible enough to be
deployed in real-time environments. The advantages of the round-robin arbitration scheme
used by current host bridges are simplicity and low arbitration costs. However, it is too simple
to provide adequate features for using the PCI bus in real-time systems where overload can
occur. Our simple yet powerful design of a new arbiter provides support for soft and hard
bandwidth reservation and keeps the costs for arbitration low.
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5.3. Future Work

This thesis opens up many opportunities for future work. Describing the memory behavior of
an application based on its instruction mix has been verified on modern processors. Exten-
sions were made to cover unpredictabilities such as multi-level caches, translation look-aside
buffers, branch predictions, and so on. It remains open how future architectures with specula-
tive execution, processors with explicit instruction-level parallelism such as Intel’s Itanium, or
systems with simultaneous multi-threading (SMT) can be described by this technique. Addi-
tionally, we have to consider multiprocessor systems, where multiple processors can generate
memory-bus load. In such systems, we expect a much higher impact on applications.

We have designed a hardware solution for the new arbiter. However, we could not imple-
ment this arbiter in real silicon. Future work needs to be done to integrate the new arbiter
into a host bridge, especially if other buses such as AGP are present. Additionally, fur-
ther research is also required to integrate into current processor scheduling schemes PCI-bus
bandwidth reservation and its impact on applications executed by the host processor.
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A. Glossary and Abbreviations

Admission control: Test to allow or deny addition of new applications to the system. The
result is a yes-no decision and not a set of scheduling parameters.

Arbiter: Bus unit that manages all requests for the bus and grants bus access to one device.

Arbitration: Process of selecting one from a set of bus-requesting devices and assigning bus
access to it.

Alpha, AXP: 64-bit architecture designed by Digital Equipment Corporation (DEC) based
on the 21x64 Alpha processor.

Backside bus: Connects the processor core and the second-level cache. Operates with the full
processor speed, i.e., the core frequency (determined by the Âfrontside bus) multiplied
by the CPU’s internal multiplier.

Bresenham algorithm: A fast, integer-only algorithm to draw a line between two points.
Originally invented for (two-dimensional) plotting devices.

Bridge: Couples two (or more) identical or different buses. Examples are PCI-to-PCI bridge,
or PCI-to-ISA bridge.

Bus master: PCI-bus device that can initiate a transfer.

Bus scheduling: Combines the Âarbitration and the calculation of scheduling parameters to
achieve a requested goal such as assured bandwidth or maximum latency.

Contention: The state where the bus is occupied by one device and one or more devices try
to acquire the bus.

Deadline: Point in time by which an operation must be successfully completed to achieve a
valid result.

Delayed transactions: Transactions introduced to reduce the number of cycles the PCI bus
is held by a device, without transferring data. They allow starting a transaction and
completing it later. Other bus masters are allowed to use the bus bandwidth that
would be wasted if the originating bus master were to hold the bus in wait states.
Delayed transactions were designed for slow devices and are only used by bridges or
I/O controllers.

External load: Specific to a processor. All load on the Âfrontside bus that is not generated by
this processor. In the uniprocessor case, all external load is generated by I/O devices.
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Frontside bus: Also known as local bus or memory bus. Connects the processors and the
Âhost bridges with main memory. Data read from or written to physical main memory
passes the frontside bus. The frontside-bus speed determines the basic core frequency
of the CPU. The memory bus is often proprietary and designed in conjunction with the
processor.

Form factor: Standardizes the physical dimension of a device.

Host bridge: Connects the I/O bus, such as PCI or VMEbus to the Âfrontside bus.

IA-32: The 32-bit Intel Architecture, formerly known as x86. IA-32 CPU models are Pen-
tium 4, Pentium III, Xeon, Celeron, but also Pentium II, Pentium, as well as i486 and
i386.

Internal load: Specific to a processor. It describes the load on the Âfrontside bus that is
generated by this processor.

Latency: The time between the triggering of an event and the response to that event. For
buses, latency describes the time between requesting the bus and granting the bus to
the device.

Latency timer: A programmable timer on each PCI card that limits the maximum tenure on
the PCI bus during heavy bus traffic for this card.

PCI command: The PCI bus allows 16 possible commands to drive the bus, four of which
are reserved. The defined commands are: Memory Read, Memory Read Line, Memory
Read Multiple, Memory Write, Memory Write and Invalidate, I/O Read, I/O Write,
Configuration Read, Configuration Write, Interrupt Acknowledge, and Special Cycle.

Proportional-share algorithm: An algorithm that assigns resources in a fixed ratio. The
entire resource is shared among all clients.

Slowdown factor: Describes the ratio of the execution time of an application on the host
processor between an idle system and a system under I/O load.

Upper-bound worst-case slowdown factor: The Âworst-case slowdown factor of an appli-
cation that is most sensitive to Âexternal load, i.e., performs only memory-sensitive
instructions.

Worst-case slowdown factor: An application-specific value that describes the maximum pos-
sible impact of Âexternal load on an application.
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C. Pamette PCI-Bus Logfile

Figure C shows an extract of a logfile, generated by the PCI-performance-measurement pro-
gram and the Digital Pamette FPGA board. The first column is the captured cycle number,
the last column shows the state according to our PCI bus model. The Pamette reads 128
bytes from main-memory address 0x00BDA300, the data is 0x1234FEDC.

0206 -- F0 I1 T1 D1 Cmd:7 Addr:00BDA300 s
0207 -- F0 I0 T1 D1 :0 -------- s
0208 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0209 -- F0 I0 T0 D0 be:0 data:1234FEDC d
020A -- F0 I0 T0 D0 be:0 data:1234FEDC d
020B -- F0 I0 T0 D0 be:0 data:1234FEDC d
020C -- F0 I0 T0 D0 be:0 data:1234FEDC d
020D -- F0 I0 T0 D0 be:0 data:1234FEDC d
020E -- F0 I0 T0 D0 be:0 data:1234FEDC d
020F -- F0 I0 T0 D0 be:0 data:1234FEDC d
0210 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0211 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0212 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0213 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0214 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0215 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0216 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0217 -- F1 I0 T0 D0 be:0 data:1234FEDC d
0218 -- F1 I1 T1 D1 :0 -------- s
0219 to 0238 31*r
0239 -- F0 I1 T1 D1 Cmd:7 Addr:00BDA340 s
023A -- F0 I0 T1 D1 :0 -------- s
023B -- F0 I0 T0 D0 be:0 data:1234FEDC d
023C -- F0 I0 T0 D0 be:0 data:1234FEDC d
023D -- F0 I0 T0 D0 be:0 data:1234FEDC d
023E -- F0 I0 T0 D0 be:0 data:1234FEDC d
023F -- F0 I0 T0 D0 be:0 data:1234FEDC d
0240 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0241 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0242 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0243 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0244 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0245 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0246 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0247 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0248 -- F0 I0 T0 D0 be:0 data:1234FEDC d
0249 -- F0 I0 T0 D0 be:0 data:1234FEDC d
024A -- F1 I0 T0 D0 be:0 data:1234FEDC d

Log of a Pamette-generated PCI-bus trace. Symbols: F: Frame, I: IRDY, T: TRDY, D: Data,
be: bus-enable lines.
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