
Security Architectures Revisited

Hermann Ḧartig

Technische Universität Dresden
haertig@os.inf.tu-dresden.de

Abstract

The knowledge in technologies needed to build secure
platforms, orSecurity Architectures, has significantly ma-
tured over the recent years. These include small interface
technologies, access-control contracts, tunneling, secure
booting, effective resource control, and virtual machines.
Putting together these ingredients into a small secure plat-
form seems straightforward, yet still remains to be done,
and has the potential of making operating systems more de-
pendable.

1 Introduction

In the last decade, several (operating) system projects
were well underway to build platforms for applications with
very high security requirements. Examples include DSSA
(Digital Systems Security Architecture [5]), Trusted Mach
[2], and BSA (BirliX Security Architecture [7]). None of
them was used in practice, at least not in notably large scale.

One reason may be the (right or wrong) perception that
such systems were and — despite the events on September
11th — are not needed. Another reason may be that the
technology to build such systems was not mature enough at
the time.

This paper claims that today the knowledge to build such
a platform is well established in the operating-systems com-
munity and that the required technologies have significantly
matured over the recent years. However, they still need to be
combined into a proper architecture. The remainder of the
paper shortly states my view of the requirements for a small
secure platform and discusses the needed technologies and
their status. It finally puts these ingredients together into a
general-purpose small secure platform and explains the use
in a dedicated embedded system.

2 Requirements

Devices such as mobile phones or PDAs, but also note-
books and desktops will be and actually are used for valu-
able or critical applications such as banking transactions,
while on the same device all sorts of potentially danger-
ous rubbish applications are downloaded from the Internet.

Embedded systems are increasingly connected to and con-
trolled via the Internet. In comparison to such systems,
servers have advantages since they are (at least should be)
in a physically controlled and carefully administrated envi-
ronment. But also for servers, mobile code — intended as
such or unintended — presents a severe threat. The prime
requirement for these systems is that the valuable compo-
nents and applications are reliably protected from the other
parts.

To achieve this protection, a careful implementation of a
small secure platform (to avoid the infected term of a trusted
computing base) is needed that

• provides minimal yet sufficient functionality for appli-
cations with high security requirements,

• is flexible enough to be used either as complete general
purpose platform, as a scaled down dedicated embed-
ded system, or as a thin server,

• enables in real practice the employment of theprinci-
ple of least privilege, especially but not only for mobile
code, and uses it in the architecture,

• supports separation of secure and insecure parts of the
system to an extent that even the successful penetration
of the core of the insecure part does not endanger the
secure side,

• can prove its identity to near or far away communica-
tion partners,

• provides compatibility for legacy applications, is an
open (in contrast to a closed language) system, and
supports reuse of potentially insecure components
(e. g., of a network protocol stack), and

• is still small and simple enough for thorough evalua-
tion.

Small and simple enough in more precise terms is in my
view: A small group of people, for instance around seven,
must be able to completely control the secure platform, i. e.,
each member of the group should understand all interfaces
of the components of the architecture, and each component
should be completely understood by at least one member
of the group. Systems of the size of the Linux kernel, not
to speak about recent versions of other desktop operating
systems, will have tough times to achieve this property.



3 Technologies

The technologies needed to build a small secure platform
are small-interfaces technologies, tunneling, secure boot-
ing, access-control contracts, effective resource control, and
virtual machines. We discuss each shortly and point out ad-
vances and limitations of their current state of the art.

3.1 Small-interface technologies

For a secure platform to be under complete control of a
small group, it must be built as a small set of small compo-
nents with small interfaces. An example for a large interface
is interaction of components by unrestricted usage of point-
ers in a shared address space, still the most favorite way to
build large, monolithic operating-system kernels.

In recent years, the operating-systems community devel-
oped two (competing) technologies to build systems with
small interfaces. Both are based on small kernels that are
supposed to be small enough for thorough evaluation. Then
systems are extended either by adding extra functionality on
top of these kernels and in their own address spaces or by
downloading extra functionality in safe ways into these ker-
nels. The former is usually referred to as microkernel-based
approach while the latter is called the extensible-systems
approach.

In the microkernel-based approach, small interfaces
are enforced by separate address spaces, which are effective
even in the presence of pointers. Unsafe components can be
isolated in their own address spaces. The long held per-
ception of microkernel-based systems to be extremely slow
has been proven wrong by work based on the L4 family of
kernels [11, 6]. However, the applicability of these results
to systems with really small interfaces still needs to be in-
vestigated because these current systems use large compo-
nents (single-server Linux) and make use of shared regions
of memory.

A difficult problem of the microkernel approach comes
with input-output drivers, if unrestricted use of DMA is al-
lowed. Then, a malicious component, though encapsulated
in its own address space, may initiate DMA transfers to any
physical address, thus in fact breaking the encapsulation via
address spaces. We know of two approaches to tackle that
problem:

The first one is to disallow DMA for untrusted compo-
nents. One technique to do that is to rely on virtualization of
hardware which in practice can be done for a limited num-
ber of devices only. The other technique is to mediate all
DMA accesses through a trusted server. Again, current PC
hardware with its not-exactly-systematic DMA interfaces
makes it necessary to look at each driver separately. The
situation becomes even harder for programmable devices.

The second approach is to restrict DMA access to a par-
tition of physical memory by hardware. This is simple if a
bus controller supports this. Then, all DMA, including that

from trusted components, first goes into that partition and
then is copied to the trusted component’s address spaces.
The content has to be protected by other means (see next
subsection on tunneling techniques). To solve this problem
more thoroughly, additional help may be needed from hard-
ware designs by providing a notion of address spaces on de-
vices or bus controllers (sometimes referred to as DVMA).
This may come with as little effort as a riser card for PCI
devices [17].

In the extensible-systems approach, small interfaces
are enforced by restricting the components to be down-
loaded into the kernel. A common restriction is the use
of safe languages [3], which implies inherent difficulties in
dealing with input-output drivers. Another approach is to
include a transaction-like mechanism into the kernel [15].
However, this seems to cause even harder performance
problems than those of the microkernel fraction. A third
line to mention is having pieces of code carrying their own
proofs which are checked before activation [12].

Both technologies are developed far beyond the status of
the ones available to the builders of the previous attempts
to build security architectures. As an example, the Mach
kernel used as base of the Trusted-Mach architecture, was
more than ten times larger (interface, size, cycles, . . . ) than
L4.

In addition to supporting small interfaces, both technolo-
gies have the potential to provide legacy operating-system
interfaces to support legacy applications, a requirement
listed in Section 2. For instance, to move the Linux kernel
onto user level as a binary-compatible single-server emu-
lation of the Linux system-call interface required changes
respectively additions of around 7000 lines of code. Per-
formance comparisons between a Mach-based and an L4-
based single-server implementation of the Linux kernel
bring home the point that the technology has matured sig-
nificantly [6].

3.2 Tunneling

Tunneling is a technique to use software that by itself
does not provide a required property and adding this prop-
erty in an additional layer. Well-known examples are using
an insecure protocol for secure communication by encrypt-
ing packets before handing them over or tunneling IPv6
packets over IPv4 channels. The term tunneling as used
in this paper may be overextending the more common uses
of this term.

Potential applications of tunneling for a small secure
platform include the file system and input-output drivers:

The file systemdoes not need to be part of a small se-
cure platform unless denial of service is a concern. Instead,
an untrusted file system can be used to store encrypted in-
formation. This implies for a security architecture that an
existing file system can be reused, for example the file sys-



GUI

Application

Operating System

Hardware

Application

GUI

Figure 1. Authentication chain

tem of a complete Linux system in the insecure part of the
architecture. Of course, an adversary can destroy data in
the Linux file system after a successful intrusion, but can
neither obtain access to confidential information nor apply
unnoticed changes. This may be completely acceptable if
a local file system merely acts as cache for a remote but
accessible file server.

Still, the ability to protect some storage such as a mini-
mal flash file system for cryptographic keys needs to be part
of the minimal secure platform. If enough such protected
storage is available, it may make sense as well to store data
that has been modified since last backup, which turns the
file system into more than just a cache.

Input-output drivers increasingly become the most
complex, ugly, and least-controlled parts of systems. Their
partial removal from the trusted part would enormously in-
crease the possibilities for a thorough evaluation of a plat-
form. Though nobody tried this, it seems possible, if and
only if DMA management can be put under control. For
instance, a trusted file system does not need a trusted disk
driver.

The inherent limitation of tunneling however is in denial
of service attacks. If a driver is needed for a requested func-
tionality, it must be part of the secure platform. But in em-
bedded appliances, where Internet access is often needed
for reporting purposes only, protocols can be left out of
the secure platform and reused using tunneling techniques.
Hence, an aggressive combination of small interface tech-
nologies and tunneling indeed promises to have the poten-
tial of keeping the small platform small enough to stay un-
der complete control of a small group of developers.

3.3 Secure booting

Neither microkernels nor tunneling solve the problem of
What You See Is What You Get. It is easy to emulate a user
interface or a complete device that pretends to be something
which it is not, hence prompting the user to unveil secrets
involuntarily. A recent successful attack on PGP made use
of exactly this phenomenon.

The technique to solve this type of problem has been
known for over 10 years [5, 7] assecure booting.Secure

booting ensures that a specific hardware with a specific OS
with a specific GUI and a specific application is indeed run-
ning in the identified device. Secure booting relies on hard-
ware to establish the identity of a boot loader, on the boot
loader of the operating system, on the OS of the user inter-
face, and so on, thus forming a bottom-up chain of authen-
tication rooted in hardware (Figure 1). An authentication
protocol can then be used to verify this chain from a remote
computer. A remote computer may be a server several thou-
sands of miles away or a smart card used to locally identify
a device.

Recent attacks on cell phones can be attributed to this
class of problems. There, cheap cell phones were sold under
the precondition that for a certain limit of time only a certain
provider can be used. It was part of the operating systems’
functionality to enforce this deal. The attackers stole the
cell phones and replaced the operating systems. Their com-
munication partners were not able to find out whether or not
the cell phone was using its original operating system.

There are two limitations that need to be mentioned. One
is the need for physical protection of the devices, notably
their tamper resistance and freeness of side channels. Side
channels are means to extract confidential data such as cryp-
tographic keys usingunintended interfaces.An example for
an unintended interface is power consumption that changes
depending on whether a 1 or a 0 is currently processed in a
cryptographic key. An obvious unintended interface is di-
rect access to the memory bus of a device, for instance with
in-circuit emulators. Tamper resistance requires — in con-
trast to tamper proofness — that unnoticed modifications
are impossible (or very unlikely). Both avoidance of unin-
tended interfaces and tamper resistance are hard to achieve,
depending on the efforts of the attacker. A constant flow of
news from the University of Cambridge impressively brings
home that point.

The other limitation against which secure booting does
not defend is an attack that is sometimes referred to as the
Mafia Fraud. Here, an adversary replaces a device with
a faked one that forwards all communication to the origi-
nal one and thus successfully performs all required protocol
steps of the secure booting protocol. It then can show an ar-
bitrary user interface that prompts the user to reveal secrets
involuntarily. Several techniques to solve this problem have
been proposed. The most promising in my opinion is based
on frequent, key-controlled hopping between large numbers
of channels. This solution will be presented at the upcoming
military communication conference [1].

The apparent change within the past years is that manu-
facturers started building devices based on such ideas.

3.4 Access control based on contracts

In practice, access rights in end-user systems are granted
much too lavishly. The main reason for that — besides neg-



ligence — is the complexity of mapping an intended se-
curity policy to discretionary access-right mechanisms, at
least as provided by today’s platforms. Rule-based schemes
did not help in practice either, since the known sets of rules
turned out to be of not much use outside of the domain of
military document systems. In other words, an intuitive and
practical way of correctly employing the principle of least
privilege is missing. In the increasing presence of mobile
code — some prophets are even foreseeing mobile code as
the governing principle for software usage — this situation
is dangerous.

Help may come from lifting the process of granting ac-
cess rights up one level of abstraction. Access rights then
are based on contracts of the following kind:If I get ac-
cess right to these specific resources, then I will perform
that specific function for you.The requested access rights
have to be shown up front. For example, before a new pro-
gram is installed, it needs to show the contract, i. e., which
resources it needs to perform which function. Then, before
an installed program is executed, it explicitly presents the
access rights to the objects it needs beyond the access rights
already granted to the installed program, if any. As another
example, before a new piece of mobile code is downloaded
and started, it needs to state its needs and promised func-
tion.

Several implementations of this scheme have been pub-
lished. Even UNIX can be seen as having an early version
of this: Manual pages used to contain a section “used files”
stating the resources needed, yet were used for documenta-
tion only.1 All of these implementations share most of the
techniques and properties, but also at least one major hard
problem that needs to solved:

Programs in general and mobile code in particular be-
come offers for contracts, i. e., together with actual code
and identification of vendor, each program contains a (sym-
bolic) list of resources needed. To ensure this mapping of
code to vendor and requested resources, the integrity of con-
tracts must be enforced by cryptographic signatures. When-
ever a program is installed, the list of requested resources is
shown up front and offered to the user for approval.

Constantly being requested to approve contracts will cer-
tainly lead to thetoo-many-alarms effectand in conse-
quence to unintended approvals of contracts. Hence, short-
cuts are needed. One way to provide shortcuts is the use
of (symbolic) access-control lists (ACLs) expressing trust
with regard to sources of code. For example, all programs
of a certain distribution or package are trusted for a speci-
fied set of objects. Whenever a new process is started, the
requested rights are first checked against these ACLs before
confronting the user.

The result of an agreed-upon contract is a (symbolic) list

1This analogy was pointed out by Sape Mullendar when explaining
how the Amoeba architects intended to generate capabilities from machine
readable documentation.

of resources the process (the program in execution) may
use, in principle similar to a (classical and old-fashioned)
capability list. Accessing an object, for instance opening a
file, without possessing the proper capability is a violation
of the contract. In contrast to classical capability and ACL
schemes, capabilities and ACLs are in symbolic form, e. g.,
in some platform-independent form that can be mapped to
system-dependent names, for instance in a Unix-like system
to file or DNS names or to symbolic representations of pa-
rameters. These capabilities then can and must be inspected
at all invocations that carry symbolic names, for instance
in a Unix-like system at open, connect and bind, and vari-
ous exec system calls. Classical capabilities containing non-
symbolic identifiers of object and access rights to them, for
instance Unix’s file descriptors, are created by some of these
invocations and are used and checked thereafter. Adding
enforcement of symbolic capabilities to a system like Linux
requires about 350 lines of changes to the kernel [10].

Capabilities, at least at the symbolic level, may have to
include parameters. For instance, to control access to a
modem, it makes sense to include the requested telephone
numbers. Again, this is simple if a symbolic command-line
interface such as often used to invoke Unix programs is en-
forced for accesses to resources in question.

An example for a symbolic requested resource is“dial
1 800 123 4567891”which is accepted if an ACL con-
tains“dial 1 800 *” . Sometimes, mappings are expressed
explicitly, for instance a program may request access to
“mailer-spool-dir” and the corresponding ACL may con-
tain “mailer-spool-dir is /var/spool/mail”.

From our experience, thehard problem in practice is
that all interpreters must be made to obey access-control
contracts. For example, a JVM running in a network
browser may either implement it by itself2 or the under-
lying operating system may force it to do so. The former
requires trust in all interpreters, and there are (too) many,
as the spread of macro viruses via document editors shows.
The latter requires the interpreters to be modified such that
for each new contract (e. g., a downloaded applet) a new
encapsulated entity of the underlying system (e. g., a new
process running the browser in Unix-like systems) needs
to be created. The contract, the resources needed by the
new browser process on behalf of the newly downloaded
applet, needs to be forwarded to the underlying operating
system and attached to the newly created encapsulated en-
tity (Unix process). This problem becomes more compli-
cated for more interesting forms of interpreter nesting. The
attempts of several of my bravest students to do so with the
Netscape browser failed miserably.

2IBM’s Flexxguard System implements a similar scheme.



3.5 Effective resource control

Effective defense against denial-of-service attacks
through blocking of resources needs effective resource con-
trol. Work in the real-time systems community has brought
significant progress in two areas.

One of them allows better control over the allocation of
resources to parts of a system. Systems such as Resource
Kernels [14] and DROPS[8] in principle allow reserving re-
sources independent of their type, i. e., CPU as well as disk
bandwidth, for example. While, to my knowledge, such
systems are still very much in prototypical status, their po-
tential is promising.

The other area is a technique called early demultiplexing.
While in classical implementations of protocols, the deci-
sion on whether or not to throw away a packet came rather
late and thus wasted resources just for policing, newer im-
plementations even making use of small dedicated CPUs
in off-the-shelf network-interface cards have proven the
progress. Examples with numbers are given in [4].

Both techniques seem helpful in preventing localized de-
nial of service attacks based on intentional resource exhaus-
tion. Dealing with distributed attacks will require support
from routers or lawyers.

3.6 Virtual machines

Virtual machines support legacy at an even lower level in
comparison to the emulation of operating system interfaces.
Legacy operating systems run (nearly) unchanged. This
replaces then-fold effort to emulaten legacy operating-
system interfaces by the emulation of just one hardware
architecture. This technique, pioneered by IBM’s main-
frames, became available for PC architectures in recent
years.

Isolation or separation is supported by providing differ-
ent machines for different (classes of) applications. Espe-
cially, it solves the DMA problem mentioned in Section 3.1
by emulating input-output devices such that even malicious
drivers cannot break the separation (as is possible in cur-
rent small-interface technologies). However, this comes at
the cost of emulating the devices, which is higher than the
cost involved with identifying and controlling their DMA
accesses.

3.7 More on technologies

This paper concentrates on technologies in the operating-
systems domain. However, it must be stated that software-
engineering technologies to systematically build more reli-
able software in general have matured as well since the last
significant efforts to built security architectures.

Methods for static analysis to discover certain types of
faults have advanced. C (and C++), the most favored lan-
guage(s) for operating-systems builders, have never earned

4 L Linux
E−Sign Banking...

Installer Secure
Storage NS GUI User

Auth Backup EA

Fiasco−Microkernel

Linux Apps

Figure 2. The Nizza architecture

the reputation of being the most advanced language with re-
spect to safe programming. Now, some restricted versions
of C are proposed that maintain its versatility, but allow
stricter analysis.

These and related technologies of good software engi-
neering and programming practice are considered as orthog-
onal to the architectural technologies discussed in this pa-
per. I ignore them henceforth.

4 Architectures

Putting together these technologies into a security ar-
chitecture based on a small secure platform seems rather
straightforward in principle. Still, this section should be
taken with a ton of salt, since so far it is educated specu-
lation to a very large extend. We sketch a rather general-
purpose platform (Nizza) and an application of the tech-
nologies to a dedicated system (Micro-Sina).

4.1 Nizza

Nizza3 is a back-of-the-envelope (literally speaking) de-
sign for a small secure and general-purpose platform sup-
porting applications with high security requirements such as
digital signatures and banking protocols while still having
the option of running legacy code. It is sketched in Figure
2. Discussing Nizza serves as an opportunity to identify the
critical components and the role of technologies discussed
before.

The architecture separates the system into two parts, the
legacy and potentially rubbish part (left) and the secure part.
Both, legacy and secure sides, run on the small secure plat-
form whose principle tasks are to provide minimal suffi-
cient functionality for applications with high security re-
quirements and to ensure separation. Applications on the
secure side reside in their own address spaces. They con-
tain all functionality which is needed but not provided by
the small secure platform, e. g., as libraries. New applica-
tions on the secure side can be installed from outside by

3Nizza is the German name of Nice, France



contacting the legacy side which forwards such requests to
the installer. This also is the first usage of tunneling: Rather
than providing transport and higher-level protocols in the
secure side, the insecure side’s functionalities are used.

The unsafe side, L4Linux and its applications, is based
on a user level implementation of the Linux kernel [6]. It
uses transparent libraries as invented by Mach for binary
compatibility for most applications. L4Linux is running in
its own set of address spaces.

The prime requirement for the insecure side is that it can-
not harm the secure side, even if its core, the formerLinux
Kernel, is penetrated successfully. L4Linux — on an as-it-is
basis — needs to betamedin several aspects:

• L4Linux needs to be modified to have the X-Windows
server run on a frame-buffer implementation that is
provided by a secure GUI (see below).

• Input-output drivers that need to be part of the small
secure platform need to be taken out from L4Linux,
however can still be used via stubs from L4Linux. This
technique is reasonably well understood due to the
reuse experience of drivers in the DROPSreal-time sys-
tem.

• DMA needs to be put under control to enforce address-
space separation. If hardware support is available to
restrict DMA to a partition of physical memory, all
DMA — including the one initiated on the secure side
— is directed to that partition and then copied to se-
cure memory. Hence the contents must be protected by
other means, e. g., via tunneling techniques. The effort
needed for that and the resulting performance remain
still unclear.

Having a virtual machine instead of L4Linux would be de-
sirable since it is more general with regard to legacy soft-
ware. Then however, protocols to cross machines bound-
aries (e. g., TCP/IP) belong to the secure part.

The platform is based on Fiasco, a careful reimplemen-
tation of the L4 interface. It provides address-space sepa-
ration as a basic means to keep interfaces small. The L4
microkernel interface has about a dozen system calls, hence
the interface can be considered small. It is not only un-
der complete control of one person, but is small enough to
have triggered Dresden’s theory group to leave alone their
stacks and lists and try a source-code-based formal verifi-
cation of a claim that is fundamental for address space sep-
aration: “Only kernel-code runs in kernel mode” [9]. The
major drawback of the current situation is L4’s elegant but
notoriously inflexible chiefs&clans mechanism [11]. Con-
siderations are well under way to replace it by somewhat
else in one of the future versions of the interface.

An important component of the small secure platform is
the name server. It provides a symbolic name interface to
all resources of the small secure platform including a com-
munication interface to the insecure side. It maintains the

certificates needed to check the validity of requests from
outside. An important role of the name service is to provide
symbolic names that are used in access-control contracts,
capabilities, and ACLs.

The “installer” is the component responsible for loading
and installing other components of and new applications on
the secure side of the system. The installer’s responsibil-
ity includes the decisions on newly-proposed access-control
contracts and the derivation of symbolic access-control and
capability lists. The installer however needs to take care
only of the small secure platform as aninterpreter, not of
nested interpreters. An installer is a complex component,
alone due to the machinery needed to load and establish ap-
plications besides and independent of L4Linux. However,
it can rely on L4Linux to load programs from servers. The
installer needs to be aware of secure booting. It establishes
the authentication chain and makes it available to the trusted
GUI. We will subsume the boot loader and related compo-
nents to be part of the installer and will not discuss that part
of secure booting henceforth.

The secure storage component, if it is designed for con-
fidentiality and integrity, again can rely on tunneling. The
actual storage of large data can be left to the L4Linux file
system. Encryption technology can be used to protect data
against information dissemination and unnoticed modifica-
tions. It cannot protect against destruction of data, i. e.,
against a denial of service class attack. However, this may
be tolerable if almost all data on a PDA or cell phone is
stored on a server anyway reducing the secure storage com-
ponent to a mere cache for the largest part of data. How-
ever, direct, i. e., untunneled secure storage is needed for
the keys and for data added since the last backup. It seems,
that soon modern chips can have enough memory on chip to
avoid having to add an extra external module to the tamper-
resistant device.

A trusted GUI component must reliably show the au-
thentication chain of the application that is currently con-
trolling the screen. To this end, it needs to provide a inter-
face to the X window system that disallows direct access to
the video memory. The component to authenticate human
users need to be part of the small secure platform as well.
Keeping input-output drivers in the secure platform small,
for instance by reusing existing drivers with tunneling tech-
niques, will be a major challenge.

We assume that everything else can be done at the appli-
cation level. This includes cryptographic infrastructures as
needed by specific applications.

4.2 Micro-Sina

Micro-Sina4 is an effort to replace a Linux-based im-
plementation of a VPN box by one based on the Fiasco

4Micro-Sina is sponsored by the BMWi and done in cooperation with
Secunet AG.



microkernel. The objective is to identify and implement
the minimal functionality that is needed for that purpose.
Micro-Sina will (probably) not include secure booting since
physical protection is provided for these boxes. It will
contain a secure storage component, a name server, and
some input-output drivers. In notable contrast to Nizza,
L4Linux can (probably) not be used for TCP/IP- or IPsec-
tunneling. Reusing L4Linux’s IPsec implementation would
require trust in L4Linux, and reusing its TCP/IP imple-
mentation after having done the encryptions would violate
IPsec’s data-format obligations. Hence, according to our
current understanding, we need to extract Linux’s (or an-
other system’s) IPsec implementation and carefully port or
completely rebuilt it from scratch on top Fiasco as part of
the small secure platform. This is an example for a major
limitation of the applicability of tunneling.

5 Related work

For related work, we will concentrate on security archi-
tectures, i. e., on the integrative usage of the key technolo-
gies rather than adding more references to the technolo-
gies per se. We will skip closed-language-based systems
and real-time systems that employ separation techniques in
similar ways (such as Oncore System’s and DROPS’ real-
time variants of Linux). In my view, IBM’s and VMWare’s
implementations of virtual machines and completely new
implementations such as the EROS operating system come
closest to what I claimed to be desirable. However none of
these comes anywhere near to some derivatives of MULTICS

and to the very well-written descriptions of the DSSA. The
most complete integrative implementation of a Nizza-like
architecture is probably Christian Stüble’s Perseus [13].

5.1 Classical security architectures

DSSA [5] is centered around an elaborate authentication
scheme which is rooted in hardware and extends up to the
authentication of application processes. It is used in combi-
nation with very flexible ACLs that allow fine-grained au-
thorization. Although DSSA has never been implemented
completely, the authors claim credibly that they did not en-
counter difficulties that they suspected to be unsurmount-
able. DSSA was accompanied by a technique that allowed
formal reasoning about the validity of claims of their proto-
cols. Though these formalisms met scepticism in the cryp-
tography community, it at least turned out a powerful tool in
convincing peers about certain claims (as I had experienced
once when being the object to a such as exercise). DSSA did
not look at other techniques discussed in this paper. It did
not care about the size of implementations of secure plat-
form. Although the ACL scheme was fine-grained, there
were no considerations about how to use them to express
users’ needs.

Trusted Mach [2] (T-Mach) is a careful implementation

of multi-level security. It is based on a kernel derived from
the Mach microkernel that implements a reference monitor
for a multi-level security policy. T-Mach certainly suffered
from the then state of the art in building small kernels. A fair
appreciation of T-Mach based on the available information
and the space available for this paper is not possible.

BirliX was a fairly complete, object-based reimplemen-
tation of the Unix kernel interface in a language safer than
C. The effort needed to achieve true binary compatibil-
ity turned out enormous which leads to my perception that
reuse of off-the-shelf operating systems for the insecure
side is the method of choice. BirliX had reinvented secure
booting but did not implement it either. It had a notion of
combining capabilities (subject restrictionsin BirliX speak)
with ACLs of fine granularity. Subject restrictions were car-
ried around by programs, coming close to but not quite ar-
riving at access-control contracts.

5.2 Virtual-machine implementations

In discussions with strict believers in virtual-machine
technology I observed the somewhat naive perception that
virtual machines solve all problems radically per se.

They do not. First, separation of machines does not nec-
essarily separate applications. It does not make a big dif-
ference whether network or local IPC is used to allow ap-
plications to communicate with the outside world. Some
way of controlled interaction and installation of applications
must be provided, e. g., access-control contracts. Second,
the malicious-driver problem is solved only for drivers for
emulated hardware devices, not for the drivers needed to
implement the virtual machine. Hence, the small-platform
problem that becomes hard when input-output devices are
part of the platform still needs to be solved, best using some
small-interface technology. Once a device is so well un-
der control that it can be emulated, it is fairly easy to make
sure the driver does not use DMA to corrupt other processes
address spaces. Hence, the problem of providing encap-
sulated drivers remains hard. Third, virtual machines do
not solve thesmallplatform problem per se although build-
ing a small virtual-machine implementation seems possible.
Fourth, the secure-booting problem is orthogonal to using
virtual machines. Fifth, is does not help to provide virtual
machines if the operating systems running on them are not
secure.

However, some of the problems described in this paper
are well addressed by some of today’s virtual-machine sys-
tems. LPAR, IBM’s implementation of virtual machines
in their z-Series line of machines, is small enough to have
earned an EAL-5 evaluation. Also, VMWare’s new server-
oriented implementations are not based on Linux or Win-
dows 2000 anymore, but on a smaller kernel. Providing a
virtual machine is certainly the technology of choice to sup-
port legacy.



Remains to say:If only all CPUs would clearly separate
user/kernel from metal/virtual issues to support efficient im-
plementations of virtual machines (unlike the x86 architec-
ture).

5.3 EROS

EROS [16] — an operating system that has been devel-
oped from scratch — is based on a carefully designed ca-
pability system and persistent single-level storage. EROS

addresses several problems mentioned in this paper.
EROScertainly possesses the basic security mechanisms

to provide access-control contracts. Is does not (yet) ad-
dress the problem of cooperating interpreters.

The authors claim that a Linux-compatible environment
is in progress, but from our experience with BirliX we as-
sume that this effort is in danger of becoming a never-
ending hunt for a moving target. For legacy applications, we
see no other practical chance than either virtual machines or
adaptation and encapsulation of original operating-system
implementations to a new underlying small secure platform.

For EROS, critical applications need to be refactored
from existing ones into components to take advantage of
the underlying kernel’s security properties, which induces a
significant development cost. EROS’ authors do not seem
to look in systematic application of tunneling techniques to
save effort for the implementation of the secure partitions
of the platform.

EROS postulates the implementation of distinguishable
trusted and untrusted user interfaces but does not take into
account adversaries that can replace EROSby another oper-
ating system. It does not address secure booting techniques
to prevent that kind of attacks.

Overall, EROS, to our knowledge, is a well-designed ca-
pability system that addresses some but not all problems of
this paper and uses some but by far not all technologies that
are at hand for the design of secure architectures. As a side
remark, we expect the anticipated effort to gain EAL 7 cer-
tification will be hard, since EROS is not to be based on a
small-interface technology.

6 Acknowledgements

The envelope used for designing Nizza laid on a table on
Nice’s beach surrounded by Birgit Pfitzmann, James Rior-
dan, Michael Waidner, Arnd M̈uller, and myself. Christian
Stüble, PhD student at Saarbrücken, then started to under-
take the brave attempt to bring the envelope to paper and to
start implementing some of these ideas.

Many discussions with students and other members of
the operating-systems and real-time group of Technische
Universiẗat Dresden helped a lot when writing this down.
Michael Hohmuth and Christian Stüble have helped in fin-
ishing this paper.

Dresden’s operating-systems and real-time group grate-
fully acknowledges generous grants from DFG, BMWi,
IBM, Intel, and others that enabled this work.

7 Conclusion

The topic of this workshop isCan we depend on OSes?
The answer is:We could much more so, if only the

technologies that have significantly matured over the recent
years would be put to proper use.

References

[1] A. Alkassar and C. Stüble. Towards secure IFF - preventing mafia
fraud attacks. Accepted for IEEE Military Communications Confer-
ence 2002 (MILCOM), Anaheim, California, Oct. 7-10, 2002.

[2] N. Associates. Trusted Mach — specifications. URL:
http://www.nai.com/research/nailabs/finished-

projects/trusted-mach.asp

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski,
D. Becker, S. Eggers, and C. Chambers. Extensibility, safety and
performance in the Spin operating system. In15th ACM Symposium
on Operating System Principles (SOSP), pages 267–284, Dec. 1995.

[4] U. Dannowski and H. Ḧartig. Policing offloaded. InProceedings of
the Sixth IEEE Real-Time Technology and Application Symposium,
Washington D.C., May 2000.

[5] M. Gasser, A. Goldstein, C. Kaufmann, and B. Lampson. The Digital
distributed system security architecture. In12th National Computer
Security Conference (NIST/NCSC), pages 305–319, Baltimore, 1989.

[6] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
performance of µ-kernel-based systems. In16th ACM Symposium on
Operating System Principles (SOSP), pages 66–77, Oct. 1997.

[7] H. Härtig, O. Kowalski, and W. K̈uhnhauser. The BirliX security
architecture.Journal of Computer Security, 2(1):5–21, 1993.

[8] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul. Cooper-
ating resource managers. InFifth IEEE Real-Time Technology and
Applications Symposium (RTAS), Vancouver, Canada, June 1999.

[9] M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Re-
port TUD–FI02–03–M̈arz 2002, Dresden University of Technology,
2002. URL:http://os.inf.tu-dresden.de/vfiasco/

[10] S. Lehmann and A. Westfeld. Kapselung ausführbarer Bin̈ardateien.
slcaps: Implementierung von Capabilities für Linux. In D. Fox,
M. Köhntopp, and A. Pfitzmann, editors,Verlässliche IT-Systeme
(VIS), pages 21–35. GI, Vieweg, Sep. 2001.

[11] J. Liedtke. Toward real µ-kernels.Commun. ACM, 39(9):70–77,
Sept. 1996.

[12] G. C. Necula and P. Lee. Safe kernel extensions without run-time
checking. In2nd Symposium on Operating Systems Design and Im-
plementation (OSDI ’96), pages 229–243, 1996.

[13] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber. The
PERSEUS system architecture. Technical Report RZ 3335 (#93381),
IBM Research Division, Zurich Laboratory, Apr. 2001.

[14] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource
allocation model for qos management. InProceedings of the 18th
IEEE Real-Time Systems Symposium, 1997.

[15] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disas-
ter: Surviving misbehaved kernel extensions. In2nd USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
pages 213–227, Seattle, WA, Oct. 1996.

[16] J. Shapiro and N. Hardy. EROS: A principle driven operating system
from the ground up.IEEE Software, pages 26–33, Jan. 2002.

[17] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang. SoftSDV:
A pre-silicon software development environment for the IA-64 archi-
tecture.Intel Technology Journal, (4), 1999.

http://www.nai.com/research/nailabs/finished-projects/trusted-mach.asp
http://www.nai.com/research/nailabs/finished-projects/trusted-mach.asp
http://os.inf.tu-dresden.de/vfiasco/

	Introduction
	Requirements
	Technologies
	Small-interface technologies
	Tunneling
	Secure booting
	Access control based on contracts
	Effective resource control
	Virtual machines
	More on technologies

	Architectures
	Nizza
	Micro-Sina

	Related work
	Classical security architectures
	Virtual-machine implementations
	EROS

	Acknowledgements
	Conclusion

