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Chapter 1

Introduction

Today’s operating systems can be divided into three main groups. There are monolithic systems such
as Linux, Solaris and Windows which implement all operating system abstractions, including device
drivers, in kernel space. Contrary to this approach, the exokernel systems such as Aegis [EKT94] are
almost devoid of any functionality and only implement a few stubs in kernel space. Exokernels hide
no resources behind abstraction layers or a set of trusted servers. Instead applications can directly
request physical memory pages or blocks on a disk; the exokernel merely ensures the protection
of these resources or makes sure they are free. Typically exokernel systems are augmented by a
library operating system which user mode applications are linked against. Multiple such libraries can
coexist in an exokernel system, for example one library providing a Unix API and another providing
a Windows API.

The research at Dresden University of Technology [TUD] is focused on the third group, microkernel
systems, in particular the FIASCO [Hoh98] L4 � -kernel. Such � -kernels only implement a minimal
set of necessary abstractions in kernel space upon which operating systems can be built. The
remaining functionality is implemented in user space. This approach makes such systems more
robust, because a single failing service can simply be restarted without having to take the entire
system down. Additionally, very little code actually runs with kernel level privileges, which shrinks
the trusted computing base considerably and makes systems more secure. There are even projects
trying to prove the correctness of the kernel code, such as the VFiasco project [HT01]. Furthermore,
due to their small size, � -kernel systems have a lower memory and cache footprint.

The first � -kernels like Mach [RJO+89] were slow and not very small; however, the first L4
� -kernel [Lie95] was only a few kilobytes in size. FIASCO is another L4 � -kernel with realtime
properties, written in C++. It implements message-based synchronous IPC1, external paging
mechanisms and security mechanisms based on secure domains (tasks, clans and chiefs).

As with any other software, the development of a � -kernel requires a lot of testing. Typically
kernel developers have a machine for coding and another machine for testing their kernel. During the

1Inter Process Communication



6 INTRODUCTION

development process the test machine needs to be rebooted over and over again which is a tedious
and time consuming task. This was one of the reasons which led to the proposal of developing a
version of the FIASCO kernel which runs entirely in user mode as a normal Linux program [Sch01].
A user space port of the kernel would allow developing and testing code on the same machine without
having to reboot. It even makes it possible to run multiple such kernels simultaneously on the same
machine. Anyone with an x86-based Linux machine could then run and test the FIASCO kernel and
develop software for it.

The work which is presented in this document is FIASCO-UX, a port of FIASCO to the Linux
system call interface. Throughout the development of this kernel port I tried to leave most of the
original FIASCO core code unchanged. This was achieved by adding a small emulation layer on top
of FIASCO which abstracts certain hardware functionality and implements it with Linux system calls.
The lack of hardware access also required to make small modifications in other parts of the kernel
code.

With the release of FIASCO-UX, the L4 community gains a � -kernel that runs entirely in user
mode and which executes unmodified L4 binaries on virtually any x86-based Linux system.

Terminology

This document deals with the emulation of kernel functionality in user mode. In order not to leave
the reader confused, the meaning of several terms used in this document shall be defined as follows:
The host kernel is the native Linux kernel under which FIASCO-UX runs. A task is an emulated
protection domain that consists of an address space and activities, threads, which execute in that
address space. The representation of a task in the host kernel is called host process.
Physical memory refers to the emulated physical memory in the user mode kernel and not to
the physical memory in the host kernel. Similarly, virtual memory refers to the emulated virtual
memory. Kernel mode refers to the notion of a privileged context in a user mode kernel, which
emulates the kernel context of a native kernel, even though that context actually runs in user mode
from the processor’s point of view.

When talking about the host kernel’s memory or the host kernel’s kernel mode, this is explicitly stated
in the text.



7

Chapter 2

Fundamentals

2.1 Process Tracing with the ptrace Interface

All emulators and programs striving to virtualize hardware and kernel functionality either modify the
underlying operating system directly, for example by loading kernel modules, or rely on support from
the operating system which allows the trapping of function calls that need to be emulated. For this
purpose the Linux kernel provides the ptrace interface1 , which shall be examined in this chapter.

2.1.1 Enabling Process Tracing

For security purposes the ability to trace processes is limited. A parent process can trace any of its
child processes. The child can request to be traced by its parent by using the PTRACE TRACEME

option. Alternatively the parent process can attach to a child process via the PTRACE ATTACH

option. The latter method also works for unrelated processes if the attaching process has the necessary
access rights. In that case the tracing process temporarily becomes the parent process of the traced
process, but this fact is hidden from both processes, so that for example getppid still returns the
expected value. The tracing and its effects can be undone from inside the tracing process using the
PTRACE DETACH option. Alternatively the parent process can use PTRACE KILL which delivers
a SIGKILL signal to the child process. Since this signal cannot be caught by the child process, the
child will cease to exist.

2.1.2 Tracing Modes

The ptrace interface offers three different tracing modes to choose from, depending on what level of
tracing is desired. After invoking ptrace with one of the three options, execution of the child process
resumes. When the child process stops due to a tracing event, the parent process will be notified with
a SIGCHLD signal. A subsequent call to wait or waitpid allows the parent to obtain the signal
number that caused the child process to stop. The tracing process can choose to cancel the signal by
resuming the child process with no continuation signal. In that case the child process will never see

1Several other Unix operating systems provide a similar interface, however ptrace is not part of the POSIX standard.
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the signal. Alternatively the tracing process can choose to forward or alter the signal by resuming the
child process with the desired continuation signal. The following three tracing modes are currently
available:

� PTRACE CONT

The child process continues until it receives a signal. Upon reception of a signal, execution
stops and the parent process receives a SIGCHLD signal, with wait indicating the reception of
the child’s signal.

� PTRACE SYSCALL

The behaviour is the same as for PTRACE CONT. Additionally the child process will stop upon
execution of a Linux system call (int 0x80). Two such tracing events will be generated -
one upon entering the kernel and one after exiting from kernel mode. This allows the parent to
inspect the system call parameters at the first stop and the return value at the second stop. Both
times the parent process will be sent a SIGCHLD signal, with wait indicating the reception of
a SIGTRAP signal by the child process.

� PTRACE SINGLESTEP

The behaviour is the same as for PTRACE CONT; however, the child process will also stop after
every single machine instruction. Again the parent process will be notified with a SIGCHLD
signal, with wait indicating the reception of a SIGTRAP signal by the child process.

It should also be noted that if the child process stops with a SIGTRAP signal, the tracing process
cannot easily distinguish between a stop due to a system call, a single step, or an int3 instruction. It
must either explicitly remember which tracing mode is currently used, or perform an opcode analysis
at the instruction pointer in the child process.

2.1.3 Inspecting and Modifying Registers

Only when a traced child process has been stopped can the tracing process inspect and modify the
register set of the child process. The PTRACE GETREGS option returns a structure containing the
entire register set. Similarly the PTRACE SETREGS option allows the parent to set all registers with
the values specified in the passed structure. The Linux kernel performs additional sanity checks on the
values of these registers. Any attempt to modify the privilege level of a segment selector will result
in an error. Modifications to privileged bits in the EFLAGS register will be silently discarded by the
Linux kernel.
Similar functions exist for floating point registers. The PTRACE GETFPREGS function retrieves the
floating point state of a traced process whereas PTRACE SETFPREGS can be used to modify floating
point registers.

2.1.4 Inspecting and Modifying Program Memory

Like the options that manipulate the contents of the registers, Linux offers the functionality to read
and modify the data and code of a traced process. The PTRACE PEEKDATA option copies a word
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from the specified address in the child’s address space into the tracing process’ memory. The
PTRACE POKEDATA option can be used to copy a word from the parent’s memory to the traced
child’s address space. The options PTRACE PEEKTEXT and PTRACE POKETEXT perform the same
operations on text segments; however, in Linux they are merely aliases for the first two options,
because no distinction is made between text and data segments.

2.2 User Mode Linux

User Mode Linux [UML] was designed and implemented by Jeff Dike. It is a complete Linux kernel
that runs entirely in user mode. The UML kernel runs unmodified user code and only differs from
native Linux in the way it handles system calls and devices. UML does not support native devices.
Instead it provides a number of virtual devices that are emulated entirely in software, such as consoles,
block devices, serial devices and network devices.

2.2.1 UML Design

User Mode Linux uses a memory layout that was designed for good system call performance. The
upper area of the user address space in each UML process is reserved for the UML kernel as shown
in Figure 2.1.

UML Kernel

Linux Kernel

Tracing Thread Task Task

User Mode

Kernel Mode

UML KernelUML Kernel

ptrace

3 GB

4 GB

0 GB 

Virtual
Addresses

Figure 2.1: UML Tracing Relationship
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As a result the usable virtual memory size for user tasks decreases from 3 GB to 2.5 GB. The kernel
code and data are shared between all user tasks; each respective virtual memory area is backed by the
same physical pages.

2.2.2 Ring Transitions

The notion of a privileged kernel mode and an unprivileged user mode in User Mode Linux is emulated
by a special host process, called the UML tracing thread. It traces all other UML tasks. While a task
is executing in user mode, it is under tracing control by the tracing thread. When such a task raises
an exception, trap, or fault, it will receive a signal from the Linux host kernel, which is intercepted
by the tracing thread because it is tracing that task. Additionally the tracing thread will receive a
SIGTRAP signal when a task attempts to execute a Linux system call. If execution is to continue
in kernel mode, the tracing thread exchanges the user mode context of the task with a kernel mode
context and turns system call tracing off. The task then executes in PTRACE CONT mode rather than
PTRACE SYSCALL mode. The transition back to user mode is also done by the tracing thread, but
it is requested by the kernel context. Similar to an iret call, the kernel context raises a SIGUSR1
signal, which signals the tracing thread to switch back to the user context and turn system call tracing
back on.

2.2.3 UML System Calls

System calls under User Mode Linux trap directly into the native Linux kernel. However, UML
requires that system calls be executed in the UML kernel instead of the native Linux kernel. When
a task attempts to execute a system call, the tracing thread receives a SIGTRAP signal. Because
the system call should not be executed in the native Linux kernel, UML changes the system call
number to getpid, which is the least expensive and intrusive system call, since it does not change
the system state. It is not possible to prevent a system call from trapping into the Linux kernel,
because at the time the tracing process receives notification, the task has already entered the Linux
kernel. After cancelling the system call in the Linux kernel, UML emulates it in the UML kernel and
then passes control back to the task. The fork system call is a special case, because a new process
must be created in the host. UML changes a fork system call into a clone system call with the
appropriate parameters to duplicate the calling task. The new task starts in a trampoline which sets
up the necessary timers and signal handlers and then goes to sleep until the kernel sets up the correct
context and tracing for the new task. While a task runs in kernel mode on its kernel stack, system
call tracing for that task is turned off by the tracing thread. This allows the kernel context to make
system calls directly, without being intercepted by the tracing thread and without the system call being
changed to getpid.

2.2.4 Memory Protection

Having the kernel and task in the same address space makes kernel entries fast compared to designs
which put the kernel in a different address space (and thus in a different host process). All system
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calls and interrupts translate to signals whose handlers warp the calling process onto its kernel stack
(signal stack) in the kernel area with the help of the tracing thread. Returning from the signal handler
is equivalent to returning from kernel to user mode. This design, which simplifies system calls a lot,
is also a major security concern. Kernel code and user code reside in the same address space and must
be isolated from each other. Otherwise any user program could overwrite kernel code and modify or
crash the kernel. When returning from kernel mode, the entire kernel memory area must be protected
against read and write access. Similarly, when entering kernel mode the kernel memory area must be
unprotected. The mprotect operations are very expensive since they require page table entries in
memory to be updated. Having to do these protect/unprotect operations on each kernel entry slows
down system calls to a crawl, which is why memory protection is turned off by default. It can be
enabled by setting the jail kernel parameter when starting UML.

2.2.5 Task Switches

Context switches from one task to another happen on the kernel stack of the current process. All
currently inactive tasks block on their switch pipe by attempting to read a byte from it. The outgoing
task, that is the task which is currently running, writes a byte into the switch pipe of the incoming
task, that is the task which is going to run next, and then puts itself to sleep by reading from its own
switch pipe. The incoming task wakes up when a byte arrives for reading at its switch pipe. While it
was asleep the mapped kernel memory might have changed while executing in a different task. For
example, a slab allocator could have mapped a new page in kernel memory. Therefore the incoming
task must fix its kernel address space by scanning the page tables that cover the UML kernel’s virtual
memory, removing any pages that are no longer mapped, adding newly mapped pages and updating
page protection attributes. The same scanning must be done for the virtual user memory areas due
to lazy page management across tasks. When the kernel adds, modifies or revokes a page in the
address space of a different task, the modification is only made in the respective task page table and
not immediately carried out as an mmap, mprotect or munmap operation, because that would incur
additional context switches. When the kernel switches to a task later on, the page tables are scanned
for updates, and modifications are carried out in the current address space.

2.2.6 Interrupts

User Mode Linux implements device interrupts with the SIGIO signal. Each device driver that
generates interrupt events ensures that, at the same time, a SIGIO signal is generated for the currently
executing context. To achieve this, each interrupt line is associated with a pseudo terminal. UML
enables asynchronous I/O notification on the PTY’s read descriptor so that whenever a device driver
writes to the write descriptor of the PTY, one process will receive a SIGIO signal. Which process
receives the SIGIO signal is determined by the descriptor owner, which can be set using fcntl

and which UML always sets to the current task. The reception of a SIGIO signal by the currently
executing task forces the task onto its signal stack, which functions as the task’s kernel stack. The
UML kernel then proceeds to call the standard IRQ handlers in the kernel code. The timer interrupt
is a special case as it is not implemented using the SIGIO signal. The Linux setitimer system
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call provides access to different timers. ITIMER REAL is a timer which decrements in real time and
delivers a SIGALRM signal upon expiration, whereas ITIMER VIRTUAL only decrements when
the process is executing and delivers SIGVTALRM when it expires. The timer interrupt for tasks is
implemented using SIGVTALRM, so that a timer interrupt occurs based on UML’s internal notion of
execution time, rather than the host kernel’s timing which also accounts for the time consumed by
other processes in the host. The idle loop is a special case, because it blocks the kernel using sleep.
While the kernel sleeps, the virtual timer is not decrementing and the kernel would never wake up.
For this reason the kernel’s idle loop uses SIGALRM as timer interrupt.

During a task switch, the UML kernel changes the ownership of each IRQ line so that the
incoming task is forced to enter the kernel instead of the outgoing task when an interrupt occurs.
Additionally all pending interrupts in the outgoing task are forwarded to the incoming task by sending
the incoming task a SIGIO signal in this case.

2.2.7 Performance

Emulating hardware with software always incurs a performance penalty. The most critical
performance bottleneck with UML is the protection of kernel memory when switching from kernel
mode to user mode and vice versa. The corresponding mprotect operation involves walking page
tables in the host and changing attributes for each kernel page. There is additional overhead for all
kernel entries and exits, which require context switches to the tracing thread. For each system call,
which would normally require two ring transitions (to kernel mode and back), there are now four
context switches with UML. When a task executes a system call there is one context switch to the
tracing thread, which receives a SIGTRAP signal. The tracing thread then forwards that signal to
the task, which forces the task onto its kernel stack and causes a second context switch as the task
resumes. Two similar context switches occur when the system call returns back to user mode. The
fact that UML maps and unmaps pages lazily and the consequential address space scan on each
context switch further drains performance.

More information about the performance of User Mode Linux is presented in Chapter 5.
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Chapter 3

Design

The shortcomings of address-space protection in User Mode Linux led to the decision to use a different
design for the implementation of FIASCO-UX. Instead of having the kernel mapped in the top half
gigabyte of a task’s virtual memory, FIASCO-UX puts the kernel in its own host process as shown in
Figure 3.1. FIASCO-UX abandons the idea of a tracing thread and traces all L4 tasks itself.

Linux Kernel

User Mode

Kernel Mode

ptrace

Fiasco−UX Kernel L4 Task L4 Task

Trampoline PageTrampoline Page

3 GB

4 GB

0 GB

Virtual
Addresses

Figure 3.1: FIASCO-UX Tracing Relationship

To perform memory map operations in the different address spaces, FIASCO-UX maps a single page
into each task, which is used for trampoline operations. The available virtual memory size for L4
tasks is thus nearly 3 GB.
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3.1 Virtual-Memory Layout

The FIASCO kernel uses a memory layout that is unsuitable for use with FIASCO-UX, because it uses
virtual addresses beyond 3 GB that are not accessible to Linux programs running in user mode. The
memory layout for FIASCO-UX was therefore changed as shown in Figure 3.2.

Virtual Memory Area Size Usage
0x00000000-0x0fffffff 256 MB Fiasco-UX Code
0x20000000-0x3fffffff 512 MB Thread Control Blocks, Kernel Stacks
0x40000000-0x4fffffff 256 MB GNU Libc Internals (standard address)
0x50000000-0x5fffffff 256 MB Kernel Structures, IDT, GDT, TSS
0x60000000-0xbffeffff 1.49 GB Mapped Physical Memory
0xbfff0000-0xbfffffff 64 KB Fiasco-UX Linux Process Stack
0xc0000000-0xffffffff 1.0 GB Linux Kernel

Figure 3.2: FIASCO-UX Kernel, Virtual Memory Layout

FIASCO is written in C++ and uses only few functions of the C library. It is therefore linked to a very
lean C library from the OSKit, which has been designed for kernel and operating-system development.
Due to the fact that the OSKit C library uses functions that operate directly on hardware, such as
directly writing to video memory for character output, it cannot be used for programs running under
Linux. The Free Software Foundation provides a C library for Linux, glibc, which FIASCO-UX is
linked against.

3.2 FIASCO-UX Startup

3.2.1 Constructors

The GNU C library requires proper initialization before some of its functions can be used. Therefore,
special care must be taken to run the constructors in the right order. FIASCO-UX requires that
kmem::init() be executed before any of its constructors, because some constructors allocate
memory, such as the mapping database. For a correct startup, the following sequence of initialization
must be followed.

1. glibc constructors

2. kmem::init()

3. other FIASCO-UX constructors

4. main()

However, the constructors must all run at once. For this reason we turned kmem::init() into a
constructor and introduced a new constructor priority scheme, which allows programmers to specify
the exact order in which constructors are called, even across different source files.
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3.2.2 Physical Memory

FIASCO-UX needs a backing store for frames of physical memory that it hands out to L4 tasks.
Because both an L4 task and the FIASCO-UX kernel need to access the memory, shared memory
is the only choice. FIASCO-UX implements physical memory via POSIX memory-mapped files.
The kernel maps the entire physical memory into its virtual address space in order to be able to copy
directly to and from user-task address spaces (see Figure 3.2). The file resembling physical memory
normally resides in /tmp and has no file name associated with it, to prevent other (possibly hostile)
processes from accessing the physical memory pages of FIASCO-UX.
Because no FIASCO-UX kernel code or data is ever mapped into the virtual address space of an L4
task, there is no need to allocate pages of physical memory for the FIASCO-UX kernel. Even resource
manager programs like rmgr, which know about the physical memory layout, cannot overwrite kernel
code this way and more physical memory is available for applications. A few physical pages are
reserved as shown in Figure 3.3. FIASCO-UX also reserves a percentage of physical memory for
kernel allocators and page tables, but their addresses are not fixed.

Physical Memory Area Size Usage
0x00000000-0x00000fff 4 KB Multiboot Info Structure
0x00001000-0x00001fff 4 KB Task Trampoline Page
0x00002000-0x00002fff 4 KB Fiasco-UX Signal Altstack

Figure 3.3: FIASCO-UX Kernel, Reserved Physical Pages

3.2.3 Loading of ELF Modules

Under normal circumstances it is not the kernel’s responsibility to load the L4 tasks that are to be run.
At the time the kernel starts, the bootloader will have already loaded the required ELF modules and
passed the memory map to the kernel in a multiboot structure. This mechanism cannot be used with
FIASCO-UX because the kernel is not booted via a bootloader but is instead started as a process from
a shell or script. In order to load the ELF modules into the physical memory file, FIASCO-UX can
use one of the following techniques:

1. Use a modified bootloader process to load the ELF modules

2. Implement its own ELF loader

3. Load the modules via execl()

The third method is by far the easiest to implement, because it relies on the Linux ELF loader to do
most of the work. FIASCO-UX employs a little trick in order to load the modules. For each module
the FIASCO-UX kernel forks off a child process and then attaches to it via ptrace. When the child
process then executes the image of the task to load, the process will stop at the exec system call,
because the child process is traced by FIASCO-UX. At this point the Linux loader has unpacked the
ELF image into memory and the process’ instruction pointer points to the image’s entry point. After
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the instruction pointer has been recorded in the multiboot entry for that module, FIASCO-UX copies
the ELF sections from the child’s memory area to the respective address range in the physical memory
file, using the memory map provided by Linux for each process in /proc/pid/maps.

3.2.4 Kernel Initialization

The kernel startup code for FIASCO-UX is slightly more complex than that of FIASCO. FIASCO-UX
provides a command line parser, with options to specify the size of the physical memory and which
modules to load. Besides remembering the location of the multiboot info structure, FIASCO-UX also
has to remember the file descriptor of the physical memory file, needed later to map pages from that
file, and the pointer to the first argument vector, argv[0], which stores the process name. The process
name is later overwritten in each child process so that the Linux ps command shows the task number
for each task that runs under FIASCO-UX’s control.

FIASCO-UX does not initialize the console, video memory, interrupt controller, GDT, LDT or
any of the built-in kernel debuggers, because none of these are used in this port.

3.3 Changes to the Kernel Core

3.3.1 Tasks and Host Processes

FIASCO runs each task in its own address space. Within a task, multiple threads can run concurrently,
sharing the same address space. For FIASCO-UX, two possible mappings of tasks and threads to
Linux processes are worth considering:

1. Create one Linux host process for each L4 thread. Threads belonging to the same task can share
their memory mappings if all of their memory is mapped as shared memory.

2. Create one Linux thread for each L4 thread using clone with the option CLONE VM.

3. Create one Linux host process for each task. Threads can run within that particular Linux
process by switching instruction pointer and stack pointer, like some user-level thread packages
do.

The first method generates more overhead in the host kernel than the other two. Linux would have
to allocate process control structures for each thread. Also when mapping or unmapping pages in a
task, FIASCO-UX would have to iterate over all threads of that task and remove the pages in every
corresponding host process. The second method does not have this overhead, but uses clone, a
Linux specific system call which is not portable. FIASCO-UX implements the third method with one
process per task.
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3.3.2 Page Tables

Kernels that run in kernel mode manipulate the address space of a task by means of page tables.
The page table hierarchy is accessed by the processor via the page directory base register (CR3). By
adding or removing entries from a page table the kernel can add or remove pages from a process’
address space respectively. However, FIASCO-UX runs in user mode and therefore cannot load the
page directory address in CR3. Also, due to the address space protection mechanisms employed
by Linux, the FIASCO-UX kernel process cannot add or remove pages from other process’ address
spaces. FIASCO-UX handles these two problems in the following manner:

� FIASCO-UX maintains the same page table data structures the FIASCO kernel uses, however,
they are not used by the processor and are only kept by FIASCO-UX for the kernel’s internal
management of address spaces.

� Whenever a page table entry for an L4 process is changed, the change is not automatically
visible in the task’s address space, but has to be performed manually. Because only the Linux
kernel and a Linux process itself can modify the respective address space, the L4 task has to
add and remove pages in its virtual memory area itself. A ptrace extension could help with
this problem.

3.3.3 Page Fault Handling

When the processor encounters an access to a page that is not mapped or has insufficient access rights,
it raises a page-fault exception and executes the kernel’s page-fault handler. In order to resolve the
fault, the kernel needs to know the fault address, which can be found in the register CR2 and which
is not accessible from user mode. A Linux process that performs an illegal memory access is sent
a SIGSEGV signal by the kernel. FIASCO-UX installs an extended signal handler for SIGSEGV in
each L4 task, which causes the Linux kernel to put a ucontext structure onto the process’ signal stack,
which also contains the fault address. Reading the page fault address of a process in user mode is only
possible from within the SIGSEGV handler of that process.

3.3.4 User Memory Access

The FIASCO kernel can always access the user memory of the current task, because the task’s virtual
memory is mapped below 3 GB, whereas the kernel’s memory is mapped above 3 GB. Copying from
and to pages of that task are therefore simple memcpy operations. When a new task is scheduled,
FIASCO simply loads a new page directory address and the address space layout of the new task is
automatically in effect for the next address translations. FIASCO-UX cannot do the same, because
loading new page tables does not automatically make the task’s address space visible in the kernel
process. To emulate the original FIASCO behaviour, FIASCO-UX would have to unmap the user
address space of the old task in the kernel process and then map the entire user address space of the
new task at each task switch. This is too expensive and therefore FIASCO-UX copies data via the
physical pages that back the virtual pages of the task.
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� The kernel translates the task’s virtual address into a physical address using the task’s page
table. If the page table contains no mapping for that virtual page or the page has insufficient
access rights, the copy operation raises a page fault for that task.

� The kernel translates the physical address into a virtual address inside the kernel process. This
is always possible, because the kernel has all physical memory mapped in its virtual address
space.

� The copy operation then copies between the virtual memory areas in the kernel. Special care
must be taken when crossing page boundaries, because adjacent virtual memory pages in the
task are not guaranteed to be backed by adjacent physical pages. Therefore all copy operations
copy data until reaching a page boundary, then do a new address translation before continuing.

This mechanism allows the FIASCO-UX kernel to copy directly between a user address space and the
kernel address space. It also makes it possible to copy directly between two user address spaces by
performing the aforementioned translation for both tasks. Being able to directly copy between user
address spaces means that the I/O window as used by the native FIASCO kernel for Long IPC is no
longer necessary. In the FIASCO-UX kernel, all code related to the I/O window has been replaced
with appropriate copy routines between user address spaces.

3.3.5 Privileged Instructions

Some parts of the FIASCO kernel operate directly on hardware and thus cannot be used in
FIASCO-UX. This includes instructions that are only permitted in ring 0 (kernel mode) and access
to control registers which are not accessible from user mode. In general there are two approaches to
solving this problem:

1. Replacing the privileged instructions throughout the kernel code with procedures that emulate
their behaviour.

2. Attempting to execute the privileged instructions, which allows us to leave the code unchanged.
A SIGSEGV signal is sent to the process indicating a general protection fault. The kernel must
then figure out which instruction led to the fault and emulate it correctly.

FIASCO-UX implements the latter method, because it does not clutter the kernel stack with call frames
of the emulation procedures and requires no modifications to the kernel code, except for adding code
to emulate three instructions (cli, sti, iret). The disadvantage of this method is the overhead
resulting from the SIGSEGV handler which traps these instructions. Registers that are not accessible
from user mode are substituted with global variables, for example CR2with page fault addr and
CR3 with page dir addr.

3.3.6 Kernel Lock

The implementation of kernel lock t::test() and kernel lock t::test and set()

in the FIASCO kernel makes use of the interrupt bit (IF) in the EFLAGS register to determine the
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status of interrupts. Because FIASCO-UX runs entirely in user mode, interrupts in the host kernel
will always be enabled while FIASCO-UX executes. Consequently the IF bit will always be set and
cannot be used as an indicator for the status of interrupt delivery. FIASCO-UX uses a global variable
interrupts disabled instead.

3.3.7 FPU Handling

The floating point unit can only be used by one thread at a time. When switching between threads,
native operating systems save the FPU state of the old process and restore the FPU state of the new
process. When using lazy FPU save/restore, the FPU state is only saved when it has been modified and
only restored when a thread attempts to use the FPU and thereby generates an exception. However,
such an FPU exception is not reflected back to the user mode program, but handled transparently
inside the host kernel. This means that FIASCO-UX cannot detect if or when one of its threads uses
the FPU. Lazy FPU saving is therefore not possible. Due to the fact that the Linux host kernel handles
the FPU context switching between its processes, FIASCO-UX does not have to care about the FPU
state when switching between tasks, because each L4 task is represented by a host process. When
switching between threads of the same task, the FPU state must be saved and restored. Such an intra-
task thread switch can also occur indirectly, for example thread 1 of a task A switches to a thread of
task B and task B then switches back to thread 2 of task A. The Linux kernel only knows about task
switches. It does not know that inside these tasks, thread switches occur as well. FIASCO-UX handles
this issue by remembering the FPU owner thread on a per task basis. Each time someone switches to a
thread of that task, that thread is compared with the FPU owner thread. If they are not equal, the FPU
context of the owner thread needs to be saved and the FPU state of the new thread must be restored.
The new thread then becomes the FPU owner thread.

3.4 Limitations

There are a few limitations in the FIASCO-UX kernel that users should be aware of:

� The Linux interval timer has a granularity of 10 milliseconds. This is also the rate at which
FIASCO-UX generates timer ticks. The original FIASCO kernel generates timer ticks every
millisecond.

� Intel microprocessor documentation [Intel] states that the sti instruction enables interrupts
after the instruction following sti. The delayed effect of sti when followed by a ret

allows to return from a function with interrupt delivery deferred until after the return. With
FIASCO-UX interrupts are enabled as soon as sti has been executed. Because neither FIASCO

nor FIASCO-UX rely on the special aspect of sti this is not an issue.

� FIASCO-UX cannot detect and emulate the behaviour of code changing the IF bit (interrupt
flag) in the EFLAGS register using a combination of pushf / popf or pushfd / popfd.
This is due to the fact that these instructions do not generate an exception when invoked with
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insufficient privileges; instead the privileged bits do not change. Beware of code that does
something like this:

/* interrupts enabled here */

pushfd

cli

/* critial section, interrupts disabled */

popfd

/* interrupts enabled here */

FIASCO-UX will not recognize the effect of popfd restoring the previously saved state of the
IF bit. However, it will execute the cli instruction and interrupts will be disabled after this
section of code.

� When entering kernel mode, FIASCO-UX disables all maskable interrupts. This is the
behaviour of an interrupt gate. Trap gates do not disable interrupts during kernel entry. FIASCO

and FIASCO-UX use only interrupt gates, so FIASCO-UX does not distinguish between the
different gate types and disables interrupts unconditionally.

� Some functions of the GNU C library (glibc), especially printf, sprintf, snprintf and
vprintf use more than 2 KB stack when invoked. Because the kernel stacks in FIASCO-UX
are smaller than 2 KB any attempt to call such a function directly or indirectly on a kernel stack
will result in corrupting the preceeding TCB. FIASCO-UX does not need to call any of these
functions in kernel code; there are also less expensive output functions, such as puts available.
The general problem of stack intensive functions in glibc can probably be avoided by linking
against a less bloated C library, such as dietlibc.
Alternatively the kernel stacks could be made bigger, which would reduce the number of
possible tasks and threads. It would also be a fundamental change in kernel memory layout,
compared to the native FIASCO kernel.

� The number of pages that can be mapped in an L4 process is limited by the Linux host kernel.
Currently a process cannot have more than 65536 VMA1 mappings. This can be problematic
for pagers which map small 4 KB pages one by one instead of using 4 MB superpages. Linux
kernels in the 2.2 series merge adjacent VMAs, whereas newer 2.4 kernels do not. In such a case
a task can map no more than 256 MB with single 4 KB pages before memory map operations
start failing.

� Because there are currently no virtual devices available for FIASCO-UX, there is also no support
for I/O ports. Once such device emulation exists, the emulation code can be extended to support
I/O ports by performing an opcode analysis at the instruction pointer to detect the presence of
in and out instructions.

1Virtual Memory Area
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Chapter 4

Implementation

4.1 Task Creation

In this section I will examine the steps that are necessary to create an L4 task under FIASCO-UX.
For each new task, a new process has to be created in the host. The normal means by which a Linux
process can create new tasks is the fork system call1. This system call creates an exact copy of the
calling process, which then becomes the calling process’ child process. The created child process
inherits copies of the parent process data space, heap and stack, which are copied on demand using a
copy-on-write mechanism. Additionally the child also inherits open file descriptors, user and group
IDs, signal masks and signal dispositions. When FIASCO-UX creates a new L4 task, the task should
start with an empty address space so the kernel can allocate pages as needed, for example whenever a
page fault occurs. Therefore the child process has to unmap its entire virtual address space inherited
from the parent, including the page containing the currently executing code. After having unmapped
the address space, the task must not execute any instruction anymore, because this would result in an
immediate page fault and the termination of the child process, because the memory has just vanished.
Because the new task also inherits all signal dispositions and the set of blocked signals from the parent,
the FIASCO-UX kernel, all signals must be unblocked and meaningful signal handlers for the child
must be installed. The recommended method for installing a signal handler under Linux is to use the
sigaction function. However, deep within glibc lies code that makes use of undocumented signal
handler features and caused numerous crashes during the development of FIASCO-UX. To understand
the problem we have to examine the way that Linux signal handlers work:

� When a signal is delivered in a process, the kernel saves the context of the process in a signal
frame on the process’ stack (or signal stack) and jumps to the function that had previously been
declared as signal handler for that signal. When the signal handler returns, the signal frame has
to be removed from the stack and the interrupted context must be restored.

� The signal frame is removed by the Linux kernel using the sigreturn system call. Because
the signal handler does not call sigreturn itself, the Linux kernel modifies the return address
on the process’ stack to point to a few instructions inside the signal frame.

1clone and vfork are less common and less portable
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� When the signal handler then returns via a ret instruction, execution does not resume in the
interrupted code, but inside the cleanup code which the kernel put inside the signal frame.

� The cleanup code calls sigreturn, and then returns to the interrupted context.

� A rather unknown fact is that Linux provides a possibility to use custom code to clean up the
signal frame. The manpage of sigaction states that the sa restorer field of the sigaction
structure is obsolete. In fact this field can be used to specify a custom restorer function instead
of the generic one.

� The GNU C library uses this undocumented feature and provides custom restorer code in order
to make GDB aware of signal frames.

Because the L4 task just had all of its memory unmapped, the pages containing the glibc restorer code
were no longer present. As soon as the first signal occured and the signal frame was to be cleared
from the stack, the kernel jumped into unallocated memory and the host process crashed.
To prevent this problem, FIASCO-UX bypasses the glibc sigaction function altogether and installs
the signal handlers for the task directly with Linux syscalls. That way the Linux kernel puts the default
restorer code onto the signal stack, which is guaranteed to be present.
When all of a task’s virtual memory is unmapped upon task startup, the child process keeps the top
pages which Linux uses as process stack. At the top of these pages, just below 3 GB, the Linux
kernel allocates the process environment, which contains the process name and the argument list. The
pointer to the process name resides inside Linux kernel space and cannot be changed. FIASCO-UX
overwrites the process name with the task number, so that ps shows the task number corresponding to
the host process. In addition to the page containing the process name, FIASCO-UX maps the physical
page 0x1000 into all its tasks and uses it for trampoline code. The virtual memory layout of all L4
tasks is shown in Figure 4.1.

0x00000000-0xbfffdfff Available
0xbfff0000-0xbfff0fff Trampoline Page
0xbfff1000-0xbfffffff Linux Process Stack, Environment, Name
0xc0000000-0xffffffff Linux Kernel

Figure 4.1: FIASCO-UX: Task Virtual Memory Layout

4.2 Address-Space Manipulation

One unfortunate consequence of having a seperate process for the kernel and address-space protection
among all processes is the inability of the kernel process to manipulate the address space of an L4
task directly. Ideally the kernel process should be able to map and unmap pages in a traced process,
but that functionality is not provided by Linux. Only a process itself can map or unmap pages in its
own address space.
FIASCO-UX uses the trampoline page of a process for address space manipulation. Because the
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trampoline page is a fixed physical page (0x1000), its virtual address in the kernel (0x60001000)
is well-known and the kernel can write to it directly. The trampoline works as follows:

� The kernel process retrieves the current register status of the task process using
PTRACE GETREGS and saves it for later restoration.

� The syscall opcode int 0x80 is written to the bottom of the trampoline page.

� The kernel writes the syscall parameters that are passed on the stack directly above the syscall
opcode on the the trampoline page.

� The register set of the task is modified, so that EIP2 points to the syscall opcode and EAX

reflects the Linux syscall number. The modified registers are then committed to the task using
PTRACE SETREGS.

� The kernel process then activates the task process and waits for it to return from the system call.

� The task stops twice, once as it enters kernel mode and again when it returns from kernel mode,
at which point the syscall is complete.

� The kernel process restores the previous register set for the task.

This scheme can be used with all required syscalls. FIASCO-UX provides trampoline code for
the syscalls mmap, munmap and mprotect, to map, unmap and change permissions on a page,
respectively. The syscall itself is performed by the task, but under control of the tracing kernel process.

During the development of FIASCO-UX the trampoline code contained a bug that sometimes made
trampoline calls fail in mysterious ways. It turned out that it is not sufficient to set up the registers
directly required by the Linux syscall. Especially the registers CS and SS must be loaded with valid
selectors. Whenever the selectors happened to be valid, the trampoline call worked; when they were
random, the call failed. The current code now copies all of the task’s old registers, only overwriting
those to be modified, which guarantees that the selectors are valid.

4.3 Interrupts, Signals

FIASCO-UX implements interrupts with the SIGIO signal and a byte queue for each interrupt line.
Linux allows the SIGIO signal to be configured as an asynchronous notification event when data can
be read from a file descriptor. Currently Linux supports SIGIO on sockets and pseudo terminals, but
not on pipes and fifos. FIASCO-UX opens a pseudo terminal (PTY) for each interrupt line, which
works like a pipe. For each interrupt line there is one host process that generates interrupt events
by writing a byte into the write end of the PTY. The read end of each PTY is shared between the
FIASCO-UX kernel and all L4 processes. The Linux fcntl system call with the F SETOWN option
allows to configure a process as signal owner; that process receives the SIGIO signal to indicate

2Instruction Pointer
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there is data to be read. Whenever the FIASCO-UX kernel schedules an L4 task to run, it changes
the SIGIO owner to the PID of the active task. When that task enters the kernel, the kernel changes
ownership back to the PID of the kernel process. When a task runs and an interrupt comes in, the
task will stop immediately with a SIGIO signal and the kernel process will gain control and handle
the interrupt. It should be noted that the kernel can only stop a task by sending that task a signal.
The overhead of sending the task the SIGIO signal directly is smaller than only delivering interrupts
(SIGIO signals) to the kernel process and then sending a stop signal to the task process. With one
host process for each interrupt line, interrupts can happen asynchronously from the kernel control
flow and different interrupts can occur simultaneously. The kernel can handle interrupts with different
priorities by polling the PTY byte queues in the right order. FIASCO-UX currently only implements
the timer interrupt, but other interrupt sources can be added by implementing processes that generate
their interrupt events.

4.4 Signal Stack

When the kernel or a user-mode process is interrupted by an interrupt in FIASCO, the processor saves
the context of three or five words respectively on the current stack to allow the restoration of that
context later. Due to the fact that FIASCO-UX uses signals to implement interrupts, the Linux kernel
also puts the entire interrupted context on the current stack. However, that context is much bigger,
typically several hundred bytes. This is problematic for two main reasons:

� The kernel stack of FIASCO is small and cannot grow because it is stacked in between TCBs.
FIASCO-UX makes no changes to the layout of kernel stacks and TCBs and therefore also has
limited kernel stack space. With several interrupts occuring in a nested manner and several
function call frames already on the stack, the kernel stack can grow down excessively and
corrupt the TCB, with unfortunate consequences for the stability of the kernel.

� Secondly, delivering Linux signals on the FIASCO-UX kernel stack means that FIASCO-UX
will find a non kernel frame on that stack, which can confuse kernel debuggers that know
nothing about the layout of a Linux signal frame and may try to follow the inter-linked call
frames.

The limited kernel stack space was the main reason leading to the decision to deliver signals
on an alternate stack. Linux allows the registration of such an alternate stack by means of the
sigaltstack system call. Signals on that alternate stack cannot occur in a nested manner; each
signal blocks all other signals and multiple occurances of itself while running in the signal handler.

4.5 Kernel Mode

The following section discusses a crucial part of the FIASCO-UX emulation code - the code which
handles the emulation of privileged instructions, interrupts and page faults in kernel mode. Figure
4.2 shows a state-transition chart of the execution path in kernel mode. Most of the emulation
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code runs in a signal-handler context, indicated by a black box. Because signal handlers restore
the interrupted context and all registers at once, they are ideal to warp the kernel into an entirely
different context by modifying the instruction pointer, stack pointer and signal mask in the restore
context. The kernel entry function sets up a processor context on the kernel stack and modifies
the signal handler context, so that the kernel process falls into the specified interrupt gate when the
signal handler returns.

sigio_handler

SIGIO

Kernel Context
Current

Kernel Context
New

kernel_entry

L4 Task

SIGSEGV

Interrupt Pending

Page Fault

segv_handler

do_iretTask
stopped

CS = 0 CS > 0

ptrace

emulate iret

emulate cli, sti

Setup Entry Frame &
Interrupt Gate

Figure 4.2: FIASCO-UX Emulation Call Graph (Black boxes indicate signal context)

4.5.1 Privileged Instructions

FIASCO and FIASCO-UX use a number of instructions, such as cli, sti, and iret, that can
only be executed by tasks with a sufficient privilege level. Because FIASCO-UX is a user mode
application, any attempt to execute one of these instructions will result in the Linux kernel delivering a
SIGSEGV signal to the calling process and executing the handler for that signal. The segv handler

receives a pointer to an ucontext structure (see Figure 4.3) as parameter. The ucontext structure
contains the trap number, error code and address of the fault. If the trap number is 0xd (general
protection fault), then FIASCO-UX attempted to execute an illegal or privileged instruction. In that
case the segv handler checks the opcode at the current instruction pointer (EIP) to determine
which instruction led to the fault. The instructions cli and sti manipulate the status of interrupt
delivery. FIASCO-UX emulates their behaviour by filling or clearing the mask of blocked signals in
the interrupted context on the signal stack. The segv handler then returns and the modified mask
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of blocked signals is immediately in effect. The iret instruction causes a call to do iret and will
be discussed in Section 4.5.4.

4.5.2 Interrupts in Kernel Mode

Interrupts can occur asynchronously to the normal control flow in the kernel, unless they have been
disabled by the cli instruction. When interrupts are enabled in FIASCO-UX and an interrupt is
pending in the kernel process, the Linux kernel will deliver a SIGIO signal to FIASCO-UX and
the sigio handler will be called. This handler polls all interrupt queues and enters the kernel
with the pending interrupt of the highest priority through an interrupt gate. It is possible that a stale
SIGIO signal does not indicate an interrupt activity, namely when the interrupt event had already
been dequeued before the SIGIO signal was delivered. In this case the handler simply returns.

4.5.3 Kernel Mode Page Faults

FIASCO-UX uses page faults to map certain memory areas on demand, such as TCBs. When the
kernel process attempts to read or write to a memory area that is currently not mapped, the Linux
kernel will deliver a SIGSEGV signal to the FIASCO-UX process and the ucontext structure contains
0xe (page fault) in the trap number. Additional information is also provided in that structure, such as
the page fault address (CR2) and the error code, which describes if the fault was due to a read or a
write operation. FIASCO-UX then enters the kernel through the page fault interrupt gate. The layout
of the ucontext structure is shown in Figure 4.3.

+00
0 31

uc flags
32 63

uc link ptr
64 91

ss sp
92 127

ss flags

+16 ss size gs fs es

+32 ds edi esi ebp

+48 esp ebx edx ecx

+64 eax trapno error eip

+80 cs eflags uesp ss

+96 fpregs ptr oldmask cr2 sigmask

Figure 4.3: ucontext structure

4.5.4 Ring Transitions

The iret instruction is used by FIASCO and FIASCO-UX to restore a previously interrupted context
or to setup an entirely new context. The interrupted context consists of either three (kernel mode) or
five (user mode) words, determined by the value of the code segment (CS).

If the code segment indicates privilege level 0 (kernel mode), do iret returns from the signal handler
context with the interrupted context restored. If the privilege level is greater than 0 the execution will
continue in user mode and an L4 task is scheduled to run.
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4.6 User Mode

Execution in user mode happens outside the FIASCO-UX process in the L4 task processes. This
means that the kernel has to determine the PID of the host process which corresponds to a particular
L4 task. This information is stored in an unused page directory slot. Furthermore, interrupts have
to be forwarded to the task process and the register set of the kernel must be transferred to the task
process. This is done by reading out the interrupted context on the signal stack and committing the
registers to the task process using PTRACE SETREGS. The FIASCO-UX kernel process then activates
the task process using PTRACE SYSCALL and waits for it to stop using waitpid. The task process
stops upon the delivery of a signal at which point the FIASCO-UX process is notified of that event by
waitpid returning the status of the task. A task can stop due to the following signals:

� When the task performs an L4 syscall (int 0x30 through int 0x36) the Linux kernel will
deliver a SIGSEGV signal for that task, because the task raised an exception.

� When a page fault occurs in the task, the Linux kernel will also deliver a SIGSEGV signal.

� When the task performs an int3 instruction or a Linux system call, the Linux kernel will
deliver a SIGTRAP signal for the task.

� Interrupt activity on one of the interrupt queues results in a SIGIO signal being delivered to the
task.

When the L4 task stops, the task’s registers are copied back to the signal handler context, interrupt
delivery is changed back to the kernel process and FIASCO-UX emulates a kernel entry for that task.

The event that led to the L4 task entering the FIASCO-UX kernel must be determined in order
to jump to the correct interrupt gate. Interrupts have a unique signal (SIGIO). The int3 debug
extension and Linux system calls (SIGTRAP) can be easily distinguished by examining the opcode at
the instruction pointer. However, when the L4 task stops with a SIGSEGV signal, the kernel process
cannot immediately tell whether this was due to a page fault or an L4 syscall. As stated before, L4
uses int 0x30 through int 0x36 for its syscalls. If the task wanted to enter the FIASCO-UX
kernel with one of these syscalls, then the instruction pointer (EIP) will point to the opcode sequence
0xcd followed by one byte indicating the interrupt number.
In any other case the task has raised a general protection fault or a page fault. In case of a page
fault, the FIASCO-UX kernel needs to know the faulting address (CR2), the error code (read or write
access) and in all other cases the trap number. This information cannot be read using the ptrace
interface and is only accessible from a signal handler inside the task process. Because L4 tasks have
no notion of signals or signal handlers, FIASCO-UX copies the signal handler code to the trampoline
page of that task and then forwards the intercepted SIGSEGV signal to the task’s process in the host.
When the task returns from the signal handler, it will stop again and the FIASCO-UX kernel process
can read out the ucontext structure which has been stored on the task’s signal stack, the trampoline
page. The offset of the ucontext structure on the signal stack is architecture dependent, but the signal
handler receives a pointer to it as one of its parameters. The offset calculated from that pointer is
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written to a well-known location on the trampoline page to allow the kernel to find the ucontext
structure and read out the necessary information.
This trampoline operation is very expensive in terms of CPU cycles, but Linux currently provides no
alternative solution.

4.7 Race Conditions

The lack of support for sharing signal masks between Linux processes brings up two race conditions
in the interrupt emulation:

� When the FIASCO-UX kernel wants to schedule a user mode task by activating its process in the
host, it has to forward interrupts to that process by changing the ownership of the SIGIO signal
to the PID of the task’s process. After the call to iret and before the ownership has been
changed to the task, an interrupt could come in and would be pending in the kernel process.
The task would not receive a SIGIO signal for this interrupt and would continue executing
until the next interrupt, which would likely be a timer interrupt. The pending interrupt in the
kernel process would be delivered as soon as FIASCO-UX unblocks signals after the task’s
kernel entry. FIASCO-UX works around this race condition by checking for pending interrupts
in the kernel after changing the ownership of the PTY descriptor to the task. If an interrupt
occured, the task process will not be activated, interrupt delivery will be changed back to the
kernel process and FIASCO-UX will proceed with a task kernel entry.

� The second race condition is more serious, as it could lead to interrupts being delayed for long
periods or even being lost forever. The problem is similar to the first one. When an L4 task
enters the kernel with a syscall and before the kernel can change the PTY ownership back to the
kernel process, an interrupt could come in and would be delivered to the task process, which is
stopped at that time. If the syscall put the task to sleep forever, the interrupt would be trapped
on the task and never be delivered. As with the first problem, the race condition can be fixed
by polling all interrupt queues after a task’s kernel entry and queueing a SIGIO signal for the
kernel process if an interrupt occured in the meantime.

These workarounds prevent both race conditions and ensure that no interrupt activity will go
unnoticed. There is additional overhead for polling the interrupt queues for activity and processing the
interrupt events in both cases. Additional overhead occurs for the delivery of pending SIGIO signals
whose interrupt events had already been dequeued by one of the workarounds.
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Chapter 5

Performance Analysis

This chapter examines the performance of FIASCO-UX. All benchmarks were conducted on an
otherwise idle Linux system with minimal workload. It should be noted that running a heavy
workload (X, compiler, etc.) can degrade the performance of FIASCO-UX immensely.

The first point of interest is the slowdown ratio of the emulation kernels compared to the native
kernels. For this purpose I compared the cheapest syscall on both systems, getpid on Linux and
id nearest on FIASCO. Both syscalls reflect the cycles (clk) required for one kernel entry and
exit plus minimal processing overhead in the system call path. FIASCO-UX is about 60 times slower
than FIASCO, UML with address space protection at least 120 times slower than Linux. Both User
Mode Linux and FIASCO-UX ran under a native Linux 2.4.19 host kernel during this benchmark.

Linux Kernel getpid AMD Duron 800 Intel Pentium 4 1600
Linux 2.4.19 native 273 clk 0.3 � s 1650 clk 1 � s
UML 2.4.19-32um without jail 33500 clk 42 � s 111000 clk 69 � s
UML 2.4.19-32um with jail 136000 clk 170 � s 207000 clk 129 � s

FIASCO � -Kernel id nearest AMD Duron 800 Intel Pentium 4 1600
FIASCO native 305 clk 0.4 � s 1631 clk 1 � s
FIASCO-UX 17600 clk 22 � s 49400 clk 31 � s

Figure 5.1: Native Kernels vs. User Mode Kernels

Figure 5.2 shows the standard L4 pingpong benchmark, which measures Short-IPC performance
between threads of the same task (Intra-AS1), and between threads of different tasks (Inter-AS).
Surprisingly, inter-address-space IPC is faster than intra-address-space IPC. The reason for this
strange behaviour is the expensive FPU save/restore operation when switching among threads of
the same task. FPU state need not be saved across thread switches among different tasks because
the Linux host kernel already performs this task. Again FIASCO-UX is about 50 times slower than
FIASCO.

1Intra Address Space
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Pingpong Benchmark AMD Duron 800 Intel Pentium 4 1600
FIASCO Intra-AS 543 clk 0.7 � s 3280 clk 2.0 � s
FIASCO Inter-AS 890 clk 1.1 � s 4095 clk 2.5 � s
FIASCO-UX Intra-AS 46500 clk 58 � s 94500 clk 59 � s
FIASCO-UX Inter-AS 43500 clk 54 � s 88000 clk 55 � s

Figure 5.2: L4 Pingpong Benchmark, FIASCO vs. FIASCO-UX

Figure 5.3 shows the most expensive operations in the emulation path. For example, an IPC operation
costs one waitpid call, waiting for the task to stop, one PTRACE GETREGS call to read out the
task’s current register context, one call to PTRACE PEEKTEXT at the task’s instruction pointer to
check for an IPC syscall opcode, a call to kernel entry to warp execution to the right interrupt
gate and calls to fcntl and poll to change and poll the IRQ lines. The kernel’s syscall path contains
one sti and one iret opcode which are emulated in the kernel’s SIGSEGV handler. Upon return to
user mode there is another call to fcntl and poll to change ownership on the IRQ lines and check
for IRQ activity, a call to PTRACE SETREGS to set up the task’s new register state and finally a call
to PTRACE SYSCALL to restart the task. These operations cost roughly 17200 of the 17600 cycles
measured for id nearest on an AMD Duron 800. The rest of the code in the syscall and emulation
paths accounts for the remaining cycles.

Emulation Path Operation AMD Duron 800 Intel Pentium 4 1600
cli/sti/iret Kernel Signal Handler 3145 clk 3.9 � s 5556 clk 3.5 � s
fcntl Change IRQ Ownership 437 clk 0.5 � s 1744 clk 1.1 � s
poll Check IRQ Activity 1561 clk 1.9 � s 2472 clk 1.5 � s
fpu reclaim Save/Restore FPU Context 1901 clk 2.4 � s 3868 clk 2.4 � s
waitpid Wait For Child Stop 636 clk 0.8 � s 2056 clk 1.3 � s
memcpy Copy Trampoline Code 398 clk 0.5 � s 508 clk 0.3 � s
kernel entry Setup Interrupt Gate 352 clk 0.4 � s 360 clk 0.2 � s
PTRACE GETREGS Read Task Context 842 clk 1.1 � s 2648 clk 1.7 � s
PTRACE SETREGS Write Task Context 1119 clk 1.4 � s 2880 clk 1.8 � s
PTRACE PEEKTEXT Read Task Memory 941 clk 1.2 � s 2316 clk 1.4 � s
PTRACE SYSCALL Resume Task Execution 2958 clk 3.7 � s 8096 clk 5.1 � s
task sighandler Get Task Fault Context 8000 clk 10 � s 15000 clk 9.4 � s
magic mmap Map Page In Task 18000 clk 22.5 � s 40000 clk 25 � s
magic munmap Unmap Page In Task 17000 clk 21.3 � s 40000 clk 25 � s

Figure 5.3: Emulation Path Costs

The mapping or unmapping of a page in a task costs two calls to PTRACE GETREGS, two calls to
PTRACE SETREGS, two calls to PTRACE SYSCALL, two calls to waitpid, a call to mmap or
munmap in the task and four context switches between the FIASCO-UX kernel and the task.
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Conclusions

The development of FIASCO-UX has shown that it is possible to run a complete � -kernel entirely
in user mode. The emulation of merely three assembler instructions (cli, sti and iret) is all
that is required to leave major portions of assembler code in FIASCO-UX unchanged. However,
the high cost for the emulation of these instructions due to the signal handler overhead provides an
opportunity for optimization. For example, cli and sti could be replaced with appropriate calls to
sigprocmask. This would require major modifications to assembler code in the kernel using these
instructions and has therefore not been done at this point.

However, both FIASCO-UX and User Mode Linux show that user mode kernels cannot compete with
their native counterparts in terms of performance. While user code will execute as fast as on a native
kernel, ring transitions to and from kernel mode incur high performance penalties. These can be
avoided in several ways:

� If security is not an issue, kernel code and user code can share the same address space.
Transitions between privilege levels can then be implemented via signal handlers, as in UML,
or via calls to longjmp. Access to user memory is a trivial memcpy operation. When
using process tracing (ptrace) with this scheme, address space protection is possible as
demonstrated in UML’s jail mode. Without tracing address space protection is impossible
and there is no privilege separation at all. It is therefore not a recommended solution.

� Emulators like VMware [VMW] benefit from the loading of kernel modules. All emulator
functionality that requires support from the host kernel has full access to all kernel control
structures without having to rely on time consuming trampoline calls. Because the loading of
kernel modules requires root access on the machine and can compromise the security of the host
kernel, it is not a favourable solution either. Furthermore, kernel interfaces are often changing,
which makes kernel modules much less portable.

� A far more interesting solution is the addition of more options to the ptrace interface in
Linux. Because that interface has been designed for the debugging of tasks, it can trivially be
extended to support emulators like User Mode Linux and FIASCO-UX in a much better fashion.
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In a discussion between the author of User Mode Linux, Jeff Dike, and myself on the Linux Kernel
Mailing List, we identified that the following extensions to the ptrace interface and signal handling
would sufficiently boost the performance of both UML and FIASCO-UX:

� The ability to map, unmap and modify pages in a traced process from inside the tracing process
would completely avoid the overhead of trampoline calls in FIASCO-UX and the address space
scan in UML. The number of context switches for such operations would decrease from four to
zero, the number of ring transitions from nine to two. Such options could for example be called
PTRACE MMAP, PTRACE MUNMAP and PTRACE MPROTECT.

� An extension to clone that would permit multiple processes to share the same pending signal
mask. The first process to accept (via sigwaitinfo) or deliver (via a signal handler) an
interrupt signal would clear it from the pending mask and the signal would then no longer
be pending in any of the other processes. This would eliminate all race conditions relating
to interrupt delivery and completely avoid the need to forward pending signals during context
switches.

� Another high performance penalty, reading out a task’s fault context, would be eliminated with
an addition to the siginfo structure for the SIGSEGV signal. Currently the fault address is
passed in the si addr field of the siginfo structure in the task’s signal handler, whereas there
is currently no way to obtain the error code of the fault from that structure, which is necessary to
distinguish between read faults and write faults. The error code is only available in the ucontext
structure on the faulting task’s signal stack.
If a system had the aforementioned shared pending signal masks, the tracing process could then,
in case of a task’s fault, simply dequeue the task’s SIGSEGV signal from the shared signal queue
using sigwaitinfo, which returns the siginfo structure, but not the ucontext structure. This
approach completely avoids all overhead associated with signal handlers. The fault information
including the error code would be available from the siginfo structure returned. Apart from two
ring transitions for the sigwaitinfo system call, no other context switches occur in such a
scenario.

It remains to be seen what new ptrace functionality will be included in future versions of the Linux
kernel. Current ongoing work in User Mode Linux introduces a new PTRACE SWITCH MM call to
Linux which looks very promising.

Further work on FIASCO-UX should concentrate on implementing missing functionality, such
as the support for I/O ports and virtual devices. Since FIASCO-UX can be run inside GDB, it
is unclear whether the FIASCO kernel debugger should be ported to run under FIASCO-UX. For
debugging user mode L4 tasks under FIASCO-UX it is necessary to implement a GDB stub similar to
that in UML, which allows GDB to attach to L4 tasks, even though the FIASCO-UX kernel is already
tracing them.



33

Chapter 7

Summary

The result of this port is an L4 compliant � -kernel that can be used for the development of L4
applications under any Linux system. With GDB, there exists a powerful debugger, which is
compatible with FIASCO-UX, and which can be a useful tool in the further development of the
FIASCO � -kernel.

The experience I gained during the development of FIASCO-UX has been very helpful in my
understanding of some Linux and FIASCO internals.

Finally, the native FIASCO kernel has also benefitted from this user mode port. Due to its
different timing behaviour, FIASCO-UX exposed a few bugs in the native kernel which had not been
discovered before. Some new abstractions introduced during this port will also make it easier to port
FIASCO to other architectures.

The source code of FIASCO-UX has been merged into the main FIASCO tree and is available
from remote CVS at: http://os.inf.tu-dresden.de/drops/download.html
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Glossary

API Application Programming Interface. Set of system defined routines through which an
application calls into the operating system or a library

Context Program state. Typically consists of the register state of the CPU and the program’s
stack

CPU Central Processing Unit, Processor

ELF Executable and Linking Format. Binary interface definition that extends across multiple
operating environments

FPU Floating Point Unit, Coprocessor. Used for mathematical operations

Gate Predefined entry point in the operating system through which tasks can call certain
services

GDB The GNU Debugger. A program which can be used to monitor the execution of other
programs

GDT Global Descriptor Table. A memory management table that describes system-wide
memory segments

IPC Inter-Process Communication. Exchange of data between one process and another
according to a certain protocol

L4 Second generation API for � -kernels

LDT Local Descriptor Table. A memory management table that is used to describe memory
segments for each non-kernel process

Long IPC Inter-Process Communication that involves copying memory between two threads

� -kernel Small kernel which implements only basic services according to a chosen policy
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Page Table Data structure maintained by the operating system for the mapping of virtual pages to
physical pages

Paging Mechanism to map and unmap physical pages in the virtual address space of processes
or the kernel

PID Process ID. Identifies each process in an operating system

POSIX Portable Operating System Interface, that allows both BSD-based and AT&T-based
Unix systems to share a common system call interface

PTY Pseudo Terminal. Paired device where one end acts like a terminal and the other is
typically controlled by a program

Selector An opaque handle referring to a code, data or text segment in an address space

Short IPC Fast Inter-Process Communication which exchanges data only through processor
registers

Signal Synchronous or asynchronous event which interrupts the current program in order to
call a service routine

Task Protection domain that consists of an address space and one or more threads

TCB Thread Control Block. Management structure in a kernel which contains thread state
information

Thread Sequence of instructions which run in parallel with other activities in a task

Trampoline Small piece of code that calls a context which otherwise cannot be called from the
original context

x86 Processor architecture originally designed by Intel. Now used on most desktop
computers
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