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Abstract 

Media servers that provide data independence 
need converters to adapt the data to the client's spe-
cific representation. For timed media objects, the 
conversion must eventually be performed in real-
time. This requires a careful planning of resources. 
In addition to processors, SCSI devices, busses etc. 
buffers have to be allocated. They are needed to 
cope with the jitter in processing times of subse-
quent converters. This papers presents a model that 
describes the buffer accesses in only a few parame-
ters and still allows to derive the minimum buffer 
size. 
 

1. Introduction 

Media servers today offer either data independ-
ence or realtime support, but not both [4]. Data in-
dependence means that applications can access data 
without knowing the storage format. For media data, 
this additionally means that some parameters like 
resolution, presentation of elements (e.g. frames), 
and rate can be different in the playout. The benefit 
of this indirection is that heterogeneous sets of cli-
ents can reference a single copy of the media data 
object. Realtime on the other hand means that the 
system guarantees a certain behavior. For a media 
server, a predefined quality of service is to be ex-
pected, namely a frame rate and a resolution in the 
case of video. This requires resource reservation and 
runtime support like scheduling. 

In the AMOS project at GMD IPSI in Darmstadt, 
Germany, an object-oriented database system has 
been enhanced to support realtime [8]. However, 
while internal processes have been optimized to a 
large extent, no guarantees can be given. Therefore a 
media server with data independence and realtime 

playout functions based on the planning and sched-
uling of processing times and buffer sizes is still not 
at hand. 

The goal of the project Memo.real at the Dresden 
University of Technology is to design a media 
server that combines data independence with real-
time support. Since data independence can only be 
achieved with the help of converters (or mappings), 
these converters must be executed in realtime. Given 
that their temporal behavior is known, an important 
task (next to scheduling) is to connect them through 
buffers. The idea of this work is that the streams 
flowing through the converters and the buffers can 
be modeled as so-called jitter-constrained periodic 
event streams [6]. While this modeling allows 
proper scheduling of the converters by a realtime 
operating system like DROPS [7], it also helps to 
calculate the minimum buffer sizes. The latter aspect 
is described in this paper. 

2. System Architecture 

Media servers offer a set of operations to access 
the media data objects. This set can be rather large, 
and it varies from system to system. Standardization 
has begun in the context of SQL:1999 under the 
name of SQL/MM [9], but it is not finished yet. In 
any case, there will only be a few operations that are 
relevant for realtime support, namely playout and 
recording. For this so-called streaming, proprietary 
protocols and thus specific clients must be used in 
most cases. A media server should instead be open 
for a large variety of different clients. 

Streaming operations that produce a variety of 
formats and support many protocols need converters 
in the server. The term “converter” can in fact mean 
many things. Converters can code or decode media 
data, they can scale or filter objects, they can change 
the color space, and so on. In order to generate the 



output format requested by the client from the stor-
age format, it can be necessary to use a chain (or 
more general, a directed acyclic graph) of convert-
ers. This idea is not new; it has been published by 
Dingeldein [3] and Candan [2], and it has been used 
in Microsoft’s DirectShow [13]. A more recent ap-
proach is described by Marder [12]. They all, how-
ever, restrict the discussion to the function and do 
not consider execution time. 

The converters in such a chain will have different 
processing times for the data elements (quanta [4]) 
that stream through them. Hence, buffers are needed 
in between. The starting point of the chain is usually 
the file system of the operating system. Even if the 
operating system supports realtime, it will deliver 
the quanta (i.e. blocks) with some jitter. So an addi-
tional buffer is needed at the beginning of the chain. 
At the end, the network accepts packets for delivery 
to the client. Again a buffer is needed, since the 
network will not accept packets at any time. The 
situation is sketched in Fig. 1. Assuming that the 
processing time of the converters in the chain is 
known, the question now is how large the buffers 
must be. 
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Figure 1. Chain of converters. 
 

The converters read quanta as input and produce 
other quanta as output. Typical examples of such 
quanta are the frames of a video. To organize the 
chain of converters, some information must be avail-
able about the size and the timing of the quanta. It is 
not sufficient to know the mean value of both, that 
is, average frame size and period. The worst case of 
both, however, can be used in planning, as it is done 
in realtime systems. But this usually leads to very 
bad resource utilization. In particular, the allocated 
buffers are much too large. This kind of planning 
could also lead to a rejection of the whole chain, if 
the resources needed for the worst case are not avail-
able. 

On the other extreme, the media object stored can 
be analysed and statistical information can be re-
corded for each quantum. This will be called a 
“trace” in the following. Of course, it is rather ex-
pensive. 

In between, there is the model of a jitter-con-
strained periodic event stream [6]. It provides more 
information than mean or worst-case, but much less 
than a trace. Regarding time, the events are the reads 
and writes of the converters. In principle, these are 
periodic processes. Due to variations in processing 
time, there may be a jitter. Events may be too early 
or too late. This jitter, however, is constrained, so it 
must not pass beyond a boundary. The model is in-
troduced in chapter 3. Please note that it can also be 
used for “infinite” streams (e.g. live video), while 
traces can not. 

The idea of period and constrained jitter can in 
fact be extended to the size of the quanta; for details 
see chapter 3 below. This extends the model with a 
second stream. The two streams can be introduced 
into the planning process stepwise as depicted in 
Fig. 2. Starting from a worst-case analysis for both 
at the top, either processing time or quantum size 
can be described by a stream. This is useful if time, 
or size, resp., does not vary. For instance, an un-
compressed video can have fixed frame size, and a 
converter can be programmed to read from a buffer 
exactly at the beginning of each period. Even if the 
worst case is used to cope an unknown jitter, a sin-
gle stream is still better than the worst-case analysis 
for both time and size. At the bottom, there is the 
model that uses both streams. This is most compli-
cated, but it should yield the best result among the 
four models of Fig. 2. Of course, it cannot be as 
good as a trace. 
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Figure 2. Planning models for converters 
 

3. Buffer sizes 

To actually perform the planning, the streams 
must be discussed in more detail. The situation 



shown in Fig. 1 can be regarded as a sequence of 
converters with buffers between them, each of 
which represents a typical producer-consumer prob-
lem: A producer P starts at some point in time t0 and 
periodically, at intervals of length T, generates 
quanta Qi of varying size. It needs varying time to 
do so (see Fig. 3). 
 

 
 
 
 
 

Figure 3. Generation of quanta 
 

The quanta are stored in a buffer B. Consumer C 
reads quanta from the buffer periodically, too, either 
in the same size as stored or in a different size. The 
time of removal (i.e. the time when the consumer 
releases the buffer allocated to the consumed data) 
may vary, too. The consumer acts as a producer for 
the next link in the chain. In any case, the consumer 
must not starve, i.e. at least those quanta must be 
available in B that the consumer needs in the next 
period. This makes it necessary to identify two val-
ues: the lead time tlead of the producer and the mini-
mum size Bmin of the buffer that can hold all data. 
Ideally, a trace is available to calculate the values. It 
contains the complete information of all quantum 
sizes plus corresponding production and processing 
times. However, this information is not available in 
all cases- obtaining it might be too expensive. 

On the other hand, planning on the basis of worst-
case assumptions alone (that is, maximum quantum 
size and maximum production time) will lead to bad 
resource utilization. To cope with this situation, the 
model of jitter-constrained periodic streams has 
been introduced in [6]. The variation in time of 
events in a periodic sequence is constrained: Events 
are supposed to happen with a constant distance T in 
time, but are allowed to vary in fixed boundaries, 
namely not earlier than τ before and not later than τ′ 
after the beginning of each period. Also, the mini-
mum distance D in time between two subsequent 
events is given. This allows to calculate a number of 
important characteristics for the streams, for exam-
ple the maximum burst size, minimum and maxi-
mum burst distance, and minimum buffer size to 
avoid loss of data [6]. In fact, these characteristics 

do not depend on τ and τ′ individually, but only on 
the sum of the two. Finally, to combine two of these 
streams, a starting point is needed as an additional 
parameter. This leads to the following definition 
(see also Fig. 4). 
 
Definition. Given  T, D, τ, t0  with 
T > 0 average event distance (length of period), 
0 ≤ D ≤ T  minimum distance, 
τ ≥ 0 maximum lateness 

(deviation from beginning of period), 
t0 ∈ R starting point. 
Then a jitter-constrained periodic stream is a se-
quence (ai)i = 0,1,2,... with 

  ai ∈ [iT, iT + τ]   and   ai+1 – ai ≥ D   ∀i ∈ N. 

As a simplification, such a stream will be identified 
by the tuple (T, D, τ, t0) in the following. 
 

 
 
 
 
 

Figure 4. Jitter-constrained periodic stream 
 

Experience indicates that the jitter of size and the 
jitter of processing time are independent. Now, the 
idea that goes beyond other approaches (e.g. [1], 
[15]) and the worst-case analysis is to model the se-
quence of quantum sizes also by such a stream 
(S, M, σ, s0) with 
S > 0 average quantum size, 
0 ≤ M ≤ S minimum quantum size, 
σ ≥ 0 maximum deviation from accumu-

lated quantum size, 
s0 ∈ Z initial value. 
 

The following example illustrates the idea (see 
Tab. 1). A process P generates at time ti 8 quanta of 
size si, i = 0,...,7. 
 
ti/s 1,6 2,4 2,8 3,2 6 6,4 6,8 8,5 
si 1 2 0 1 4 4 3 1 

Table 1. Trace si = P(ti) to generate 8 quanta 
 

Two jitter-constraint periodic streams are as-
signed to this process: a “time stream” (see Fig. 5a) 
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PT = (T = 1s,  D = 0,4s,  τ = 2s,  t0 = 0s) 

 
and a “size stream” (see Fig. 5b) 
 
 PS = (S = 2,  M = 0,  σ = 5,  s0 = –1). 
 
(The minimum values D and M are irrelevant in the 
following). 
 

 
 
 
 
 
 
 

Figure 5a. Time stream of producer P 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5b. Size stream of producer P 
 

To calculate the lead time tlead and the needed 
buffer Bmin , it is assumed that the consumer C takes 
from the buffer the ith quanta with size unchanged at 
exactly the beginning of the ith period, and releases 
the buffer immediately. Using the traces P(t) and 
C(t) of producer P and consumer C, the lead time 
tlead equals the largest difference between P(t) and 
C(t) in direction of the abscissa (t–axis, see Fig. 6). 
Then Bmin is the largest difference between P(t - tlead) 
and C(t) (for more details see [5]). 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 
Calculating tlead 

Figure 7. 
Jitter-constrained stream 

instead of trace 
 

Assuming now that P and C are jitter-constrained 
periodic streams just given by 
 

PT = (TP,  DP,  τP,  t0,P), 
 PS = (SP,  MP,  σP,  s0,P), 
 CT = (TC,  DC,  τC,  t0,C), 
 CS = (SC,  MC,  σC,  s0,C). 
 
The only restriction is that 
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i.e. both processes work with the same average data 
rate. (This condition must hold for all pairs of buffer 
processes in a converter chain like the one in Fig. 1). 
Then the traces P(t) and C(t) must be substituted by 
linear functions Pu(t), Pl(t), Cu(t), and Cl(t), resp., 
resulting from the parameters of PT , ... , CS and 
bounding the traces upwards and downwards. It 
holds for the upper bounds 
 
 Pu(t) = Rt + σ P + s0,P 

 Cu(t) = Rt + σ C + s0,C 

 
and for the lower bounds 
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 Pl(t) = Rt + s0,P – RτP , 
 Cl(t) = Rt + s0,C – RτC . 

Now tlead is given by (see Fig. 7) 

Pl(t – tlead) = Cu(t). 

The calculation of Bmin is done in the same manner 
as described above. It follows : 

 P
C

lead R
t τ

σ
+=  , 

  0min )( sRB CPPC −++⋅+= σσττ . 

A concluding example illustrates the approach. A 
converter produces a stream of 400 quanta in total 
with a period of length TP = 1s. The time needed to 
produce a quantum varies from DP = 0.341s to 
1.012s with a mean of 0.751s. The accumulated be-
ginnings of periods are exceeded by at most a τP of 
15.501s. The average size of quanta is 3362.4 Bytes. 
Also, σP = 289,391 Bytes and s0,P = -37,478 Bytes 
(see Fig. 7). The consumer C takes the quanta from 
the buffer with size unchanged (that is, PS = CS) and 
releases the buffer space after 1s at the latest. Then 
the producer is to start tlead = 16.501s before the con-
sumer wants to start, and a buffer size Bmin of 
382,373 Bytes guarantees a data transfer without 
loss of data. 

4. Conclusions and Outlook 

The buffer sizes in chains of converters can now 
be derived from a small set of parameters that char-
acterize a stream of reads or writes. These parame-
ters are period, jitter (lateness), and starting point for 
time, and average size, maximum deviation from 
accumulated size, and prefetch for size. This leads to 
better buffer allocation than in worst-case analysis. 

In the particular situation that the consumer al-
ways reads quanta in exactly the same size as the 
producer has written them, further optimization is 
possible. The model of jitter-constrained streams can 
also be used to plan the resources needed by the 
converters. [11] 

Once media servers in isolation have been en-
hanced with data independence, they can be used in 
cooperation. Projects like Imos [14] and MacWrap 
[10] demonstrate how media servers can be inte-
grated in database management systems. 
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