
Buffer Optimization in Realtime Media Servers
Using Jitter-constrained Periodic Streams

Claude-Joachim Hamann, Andreas Märcz, Klaus Meyer-Wegener
Technische Universität Dresden, Fakultät Informatik, 01062 Dresden, Germany

[ch4|am9|kmw]@inf.tu-dresden.de

Abstract

Media servers that provide data independence
need converters to adapt the data to the client's spe-
cific representation. For timed media objects, the
conversion must eventually be performed in real-
time. This requires a careful planning of resources.
In addition to processors, SCSI devices, busses etc.
buffers have to be allocated. They are needed to
cope with the jitter in processing times of subse-
quent converters. This papers presents a model that
describes the buffer accesses in only a few parame-
ters and still allows to derive the minimum buffer
size.

1. Introduction

Media servers today offer either data independ-
ence or realtime support, but not both [4]. Data in-
dependence means that applications can access data
without knowing the storage format. For media data,
this additionally means that some parameters like
resolution, presentation of elements (e.g. frames),
and rate can be different in the playout. The benefit
of this indirection is that heterogeneous sets of cli-
ents can reference a single copy of the media data
object. Realtime on the other hand means that the
system guarantees a certain behavior. For a media
server, a predefined quality of service is to be ex-
pected, namely a frame rate and a resolution in the
case of video. This requires resource reservation and
runtime support like scheduling.

In the AMOS project at GMD IPSI in Darmstadt,
Germany, an object-oriented database system has
been enhanced to support realtime [8]. However,
while internal processes have been optimized to a
large extent, no guarantees can be given. Therefore a
media server with data independence and realtime

playout functions based on the planning and sched-
uling of processing times and buffer sizes is still not
at hand.

The goal of the project Memo.real at the Dresden
University of Technology is to design a media
server that combines data independence with real-
time support. Since data independence can only be
achieved with the help of converters (or mappings),
these converters must be executed in realtime. Given
that their temporal behavior is known, an important
task (next to scheduling) is to connect them through
buffers. The idea of this work is that the streams
flowing through the converters and the buffers can
be modeled as so-called jitter-constrained periodic
event streams [6]. While this modeling allows
proper scheduling of the converters by a realtime
operating system like DROPS [7], it also helps to
calculate the minimum buffer sizes. The latter aspect
is described in this paper.

2. System Architecture

Media servers offer a set of operations to access
the media data objects. This set can be rather large,
and it varies from system to system. Standardization
has begun in the context of SQL:1999 under the
name of SQL/MM [9], but it is not finished yet. In
any case, there will only be a few operations that are
relevant for realtime support, namely playout and
recording. For this so-called streaming, proprietary
protocols and thus specific clients must be used in
most cases. A media server should instead be open
for a large variety of different clients.

Streaming operations that produce a variety of
formats and support many protocols need converters
in the server. The term “converter” can in fact mean
many things. Converters can code or decode media
data, they can scale or filter objects, they can change
the color space, and so on. In order to generate the

output format requested by the client from the stor-
age format, it can be necessary to use a chain (or
more general, a directed acyclic graph) of convert-
ers. This idea is not new; it has been published by
Dingeldein [3] and Candan [2], and it has been used
in Microsoft’s DirectShow [13]. A more recent ap-
proach is described by Marder [12]. They all, how-
ever, restrict the discussion to the function and do
not consider execution time.

The converters in such a chain will have different
processing times for the data elements (quanta [4])
that stream through them. Hence, buffers are needed
in between. The starting point of the chain is usually
the file system of the operating system. Even if the
operating system supports realtime, it will deliver
the quanta (i.e. blocks) with some jitter. So an addi-
tional buffer is needed at the beginning of the chain.
At the end, the network accepts packets for delivery
to the client. Again a buffer is needed, since the
network will not accept packets at any time. The
situation is sketched in Fig. 1. Assuming that the
processing time of the converters in the chain is
known, the question now is how large the buffers
must be.

converterbuffer buffer converter buffer
OS

filesys

OS

network

Figure 1. Chain of converters.

The converters read quanta as input and produce
other quanta as output. Typical examples of such
quanta are the frames of a video. To organize the
chain of converters, some information must be avail-
able about the size and the timing of the quanta. It is
not sufficient to know the mean value of both, that
is, average frame size and period. The worst case of
both, however, can be used in planning, as it is done
in realtime systems. But this usually leads to very
bad resource utilization. In particular, the allocated
buffers are much too large. This kind of planning
could also lead to a rejection of the whole chain, if
the resources needed for the worst case are not avail-
able.

On the other extreme, the media object stored can
be analysed and statistical information can be re-
corded for each quantum. This will be called a
“trace” in the following. Of course, it is rather ex-
pensive.

In between, there is the model of a jitter-con-
strained periodic event stream [6]. It provides more
information than mean or worst-case, but much less
than a trace. Regarding time, the events are the reads
and writes of the converters. In principle, these are
periodic processes. Due to variations in processing
time, there may be a jitter. Events may be too early
or too late. This jitter, however, is constrained, so it
must not pass beyond a boundary. The model is in-
troduced in chapter 3. Please note that it can also be
used for “infinite” streams (e.g. live video), while
traces can not.

The idea of period and constrained jitter can in
fact be extended to the size of the quanta; for details
see chapter 3 below. This extends the model with a
second stream. The two streams can be introduced
into the planning process stepwise as depicted in
Fig. 2. Starting from a worst-case analysis for both
at the top, either processing time or quantum size
can be described by a stream. This is useful if time,
or size, resp., does not vary. For instance, an un-
compressed video can have fixed frame size, and a
converter can be programmed to read from a buffer
exactly at the beginning of each period. Even if the
worst case is used to cope an unknown jitter, a sin-
gle stream is still better than the worst-case analysis
for both time and size. At the bottom, there is the
model that uses both streams. This is most compli-
cated, but it should yield the best result among the
four models of Fig. 2. Of course, it cannot be as
good as a trace.

processing time : mean & jitter
quantum size : worst case

processing time : worst case
quantum size : worst case

processing time : worst case
quantum size : mean & jitter

processing time : mean & jitter
quantum size : mean & jitter

Figure 2. Planning models for converters

3. Buffer sizes

To actually perform the planning, the streams
must be discussed in more detail. The situation

shown in Fig. 1 can be regarded as a sequence of
converters with buffers between them, each of
which represents a typical producer-consumer prob-
lem: A producer P starts at some point in time t0 and
periodically, at intervals of length T, generates
quanta Qi of varying size. It needs varying time to
do so (see Fig. 3).

Figure 3. Generation of quanta

The quanta are stored in a buffer B. Consumer C
reads quanta from the buffer periodically, too, either
in the same size as stored or in a different size. The
time of removal (i.e. the time when the consumer
releases the buffer allocated to the consumed data)
may vary, too. The consumer acts as a producer for
the next link in the chain. In any case, the consumer
must not starve, i.e. at least those quanta must be
available in B that the consumer needs in the next
period. This makes it necessary to identify two val-
ues: the lead time tlead of the producer and the mini-
mum size Bmin of the buffer that can hold all data.
Ideally, a trace is available to calculate the values. It
contains the complete information of all quantum
sizes plus corresponding production and processing
times. However, this information is not available in
all cases- obtaining it might be too expensive.

On the other hand, planning on the basis of worst-
case assumptions alone (that is, maximum quantum
size and maximum production time) will lead to bad
resource utilization. To cope with this situation, the
model of jitter-constrained periodic streams has
been introduced in [6]. The variation in time of
events in a periodic sequence is constrained: Events
are supposed to happen with a constant distance T in
time, but are allowed to vary in fixed boundaries,
namely not earlier than τ before and not later than τ′
after the beginning of each period. Also, the mini-
mum distance D in time between two subsequent
events is given. This allows to calculate a number of
important characteristics for the streams, for exam-
ple the maximum burst size, minimum and maxi-
mum burst distance, and minimum buffer size to
avoid loss of data [6]. In fact, these characteristics

do not depend on τ and τ′ individually, but only on
the sum of the two. Finally, to combine two of these
streams, a starting point is needed as an additional
parameter. This leads to the following definition
(see also Fig. 4).

Definition. Given T, D, τ, t0 with
T > 0 average event distance (length of period),
0 ≤ D ≤ T minimum distance,
τ ≥ 0 maximum lateness

(deviation from beginning of period),
t0 ∈ R starting point.
Then a jitter-constrained periodic stream is a se-
quence (ai)i = 0,1,2,... with

 ai ∈ [iT, iT + τ] and ai+1 – ai ≥ D ∀i ∈ N.

As a simplification, such a stream will be identified
by the tuple (T, D, τ, t0) in the following.

Figure 4. Jitter-constrained periodic stream

Experience indicates that the jitter of size and the
jitter of processing time are independent. Now, the
idea that goes beyond other approaches (e.g. [1],
[15]) and the worst-case analysis is to model the se-
quence of quantum sizes also by such a stream
(S, M, σ, s0) with
S > 0 average quantum size,
0 ≤ M ≤ S minimum quantum size,
σ ≥ 0 maximum deviation from accumu-

lated quantum size,
s0 ∈ Z initial value.

The following example illustrates the idea (see
Tab. 1). A process P generates at time ti 8 quanta of
size si, i = 0,...,7.

ti/s 1,6 2,4 2,8 3,2 6 6,4 6,8 8,5
si 1 2 0 1 4 4 3 1

Table 1. Trace si = P(ti) to generate 8 quanta

Two jitter-constraint periodic streams are as-
signed to this process: a “time stream” (see Fig. 5a)

 Q2
 Q1 Q3 Q4

 t0 t0 + T t0 + 2T t0 + 3T t

678

}

 T τ
 D

t0 t0 + iT t

6447448

 []

PT = (T = 1s, D = 0,4s, τ = 2s, t0 = 0s)

and a “size stream” (see Fig. 5b)

 PS = (S = 2, M = 0, σ = 5, s0 = –1).

(The minimum values D and M are irrelevant in the
following).

Figure 5a. Time stream of producer P

Figure 5b. Size stream of producer P

To calculate the lead time tlead and the needed
buffer Bmin , it is assumed that the consumer C takes
from the buffer the ith quanta with size unchanged at
exactly the beginning of the ith period, and releases
the buffer immediately. Using the traces P(t) and
C(t) of producer P and consumer C, the lead time
tlead equals the largest difference between P(t) and
C(t) in direction of the abscissa (t–axis, see Fig. 6).
Then Bmin is the largest difference between P(t - tlead)
and C(t) (for more details see [5]).

Figure 6.
Calculating tlead

Figure 7.
Jitter-constrained stream

instead of trace

Assuming now that P and C are jitter-constrained
periodic streams just given by

PT = (TP, DP, τP, t0,P),
 PS = (SP, MP, σP, s0,P),
 CT = (TC, DC, τC, t0,C),
 CS = (SC, MC, σC, s0,C).

The only restriction is that

C

C

P

P

T
S

T
S

R == = const.,

i.e. both processes work with the same average data
rate. (This condition must hold for all pairs of buffer
processes in a converter chain like the one in Fig. 1).
Then the traces P(t) and C(t) must be substituted by
linear functions Pu(t), Pl(t), Cu(t), and Cl(t), resp.,
resulting from the parameters of PT , ... , CS and
bounding the traces upwards and downwards. It
holds for the upper bounds

 Pu(t) = Rt + σ P + s0,P

 Cu(t) = Rt + σ C + s0,C

and for the lower bounds

 0 5 10

 t

 123 t
 D τ

× × × × × × × ×







σ

 s

 10

 5 t/s

s0

tlead

t

s
















t

s

{
 τP

Pu(t)

Pl(t)

R⋅t

s0

 σP

RτP

 Pl(t) = Rt + s0,P – RτP ,
 Cl(t) = Rt + s0,C – RτC .

Now tlead is given by (see Fig. 7)

Pl(t – tlead) = Cu(t).

The calculation of Bmin is done in the same manner
as described above. It follows :

 P
C

lead R
t τ

σ
+= ,

  0min)(sRB CPPC −++⋅+= σσττ .

A concluding example illustrates the approach. A
converter produces a stream of 400 quanta in total
with a period of length TP = 1s. The time needed to
produce a quantum varies from DP = 0.341s to
1.012s with a mean of 0.751s. The accumulated be-
ginnings of periods are exceeded by at most a τP of
15.501s. The average size of quanta is 3362.4 Bytes.
Also, σP = 289,391 Bytes and s0,P = -37,478 Bytes
(see Fig. 7). The consumer C takes the quanta from
the buffer with size unchanged (that is, PS = CS) and
releases the buffer space after 1s at the latest. Then
the producer is to start tlead = 16.501s before the con-
sumer wants to start, and a buffer size Bmin of
382,373 Bytes guarantees a data transfer without
loss of data.

4. Conclusions and Outlook

The buffer sizes in chains of converters can now
be derived from a small set of parameters that char-
acterize a stream of reads or writes. These parame-
ters are period, jitter (lateness), and starting point for
time, and average size, maximum deviation from
accumulated size, and prefetch for size. This leads to
better buffer allocation than in worst-case analysis.

In the particular situation that the consumer al-
ways reads quanta in exactly the same size as the
producer has written them, further optimization is
possible. The model of jitter-constrained streams can
also be used to plan the resources needed by the
converters. [11]

Once media servers in isolation have been en-
hanced with data independence, they can be used in
cooperation. Projects like Imos [14] and MacWrap
[10] demonstrate how media servers can be inte-
grated in database management systems.

5. References

[1] Anderson, D. J., “Metascheduling for Continuous Media“,
ACM TOCS, vol. 11, no. 3, Aug. 1993, pp. 226-252.
[2] Candan, K.S., V.S. Subrahmanian, and P.V. Rangan, “To-
wards a Theory of Collaborative Multimedia”, in: IEEE Int.
Conf. on Multimedia Computing and Systems (ICMCS) 1996.
[3] Dingeldein, D., “Multimedia interactions and how they can
be realized”, in: A.A. Rodriguez and J. Maitan (eds.), Proc.
SPIE 2417 (1995), Photonics West Symposium, Multimedia
Computing and Networking (San José, Febr. 6-10, 1995), pp.
46-53.
[4] Gemmel, D.J., H.M. Vin, D.D. Kandlur, P.V. Rangan, and
L.A. Rowe, “Multimedia Storage Servers: A Tutorial”, IEEE
Computer, vol. 28, no. 5, May 1995, pp. 40-49.
[5] Hamann, C.-J., and L. Reuther, „Pufferdimensionierung für
schwankungsbeschränkte Ströme in DROPS“, in: Proc.
MMB'99, 10. GI/ITG-Fachtagung Messung, Modellierung und
Bewertung von Rechen- und Kommunikationssystemen (Trier,
Germany, Sept. 22-24, 1999), VDE-Verlag.
[6] Hamann, C.-J., “On the Quantative Specification of Jitter
Constrained Periodic Streams”, in: Proc. MASCOTS'97, 5th Int.
Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (Haifa, Israel, Jan. 1997).
[7] Härtig, H., R. Baumgartl, M. Borriss, C.-J. Hamann, M.
Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and J. Wolter,
“DROPS - OS Support for Distributed Multimedia Applica-
tions”, in: Proc. 8th ACM SIGOPS European Workshop (Sintra,
Portugal, Sept. 7-10, 1998).
[8] Hollfelder, S., F. Schmidt, M. Hemmje, and K. Aberer,
“Transparent Integration of Continuous Media Support into a
Multimedia DBMS”, in: Proc. Int. Workshop on Issues and
Applications of Database Technology (IADT'98).
[9] Information Technology – Database Languages – SQL
Multimedia and Application Packages – Part 1: Framework,
ISO/IEC CD 13249-1.
[10] Lindner, W., and A. Heuer, „Das MacWrap Projekt –
Nutzung eines objekt-relationalen DBMS für ein offenes Mul-
timedia-Datenbanksystem“, in: Proc. 12. GI-Workshop Grund-
lagen von Datenbanken (Plön, 13.-16. Juni 2000).
[11] Märcz, A., „Entwurf eines Modells zur Konverterbeschrei-
bung“, Diplomarbeit, Dresden University of Technology, De-
partment of Computer Science, 2000.
[12] Marder, U., “VirtualMedia: Making Multimedia Databases
Fit for World-wide Access”, extended abstract, in: Proc. EDBT
2000 Ph. D. Workshop (Konstanz, Germany, March 31 - April
1, 2000), pp. 47-50.
[13] Microsoft, “Streaming Media Technology”, White Paper,
1998.
[14] Süß, H., “A Flexible Architecture for the Integration of
Media Servers and Databases”, in: Advances in Multimedia
Information Systems: Proc. 4th Int. Workshop MIS'98, Springer,
1998, LNCS vol. 1508, pp. 174-184.
[15] Want, R., A. Hopper, V. Falcão, and J. Gibbons, “The Ac-
tive Batch Location System”, ACM TOIS, vol. 10, no. 1, Jan.
1992, pp. 91-102.

