
Diplomarbeit

Managing Overload with ATLAS
Real-Time Scheduling

Sebastian Wagner

23. Februar 2017

Technische Universität Dresden
Fakultät Informatik

Institut für Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Härtig
Betreuende Mitarbeiter: Dr. Michael Roitzsch

M.Sc. Hannes Weisbach

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 23. Februar 2017

Sebastian Wagner

Abstract

This work presents an implementation of overload management for the ATLAS soft real-
time scheduler. In the scope of my thesis, I examined five different strategies for dis-
tributing a required cutback among jobs of an overloaded schedule in ATLAS. Informa-
tion about the current load situation is communicated with a system call from the kernel
implementation to the runtime in userland.

In the userland, a load manger was implemented, that uses this information in conjunc-
tion with functional alternatives and iterative refinement functions to adapt to varying
load situations. Both the kernel component, as well as the load manager, were evaluated
using three different benchmarks.

Task

The ATLAS system was developed at the TU Dresden OS Chair to explore an interface,
where applications explicitly submit individual real-time jobs. This policy allows for
more flexible applications, but sacrifices restrictions necessary for admission testing.
Therefore, a system scheduled by ATLAS can experience overload.

This thesis should augment the ATLAS infrastructure with overload management facil-
ities. Using the knowledge of future job executions, overload should be detected and
communicated to applications in a useful way. The thesis should discuss design alterna-
tives for this communication mechanism, which may include modifications to the ATLAS
kernel scheduler, additional user-level components, or changes to the ATLAS runtime li-
brary. One communication method should be selected and implemented.

To mitigate the overload, execution time allocations of applications must be throttled
or otherwise penalized. Different cutback policies like absolute, proportional, or utility-
based fairness can be employed. At least two different policies should be implemented
and compared using benchmark applications. The evaluation should analyze the impact
on execution time reservations and violations of application timing requirements.

7

Contents

1 Motivation 11

2 Scheduling 13
2.1 A Primer on Scheduling . 13
2.2 Real-Time . 14

2.2.1 Soft, Firm, and Hard Real-Time . 14
2.2.2 Aperiodic, Periodic, and Sporadic Tasks 15

2.3 Linux . 16
2.3.1 Processes . 17
2.3.2 Schedulers . 17

2.4 ATLAS . 21
2.4.1 Kernel . 22
2.4.2 Userland . 25

2.5 Usage . 28
2.5.1 ATLAS without its Runtime . 28
2.5.2 ATLAS with Concurrent Queues . 30

3 Overload 32
3.1 EDF and RMS in Overload . 33
3.2 TAFT scheduler . 36
3.3 ROBUST . 36
3.4 Dover . 38
3.5 CBS . 38
3.6 Adaption to Overload . 39

3.6.1 Service Adaption . 40
3.6.2 Job Skipping . 40
3.6.3 Period Adaption . 41

4 Design & Implementation 43
4.1 Formalism . 43
4.2 Kernel . 44

4.2.1 Overload Detection . 45
4.2.2 Overload Handling . 47
4.2.3 Configuration . 54

4.3 System Call . 55
4.4 Userland . 56

4.4.1 Modes of Operation . 57
4.4.2 Execution Times and Deadlines . 57
4.4.3 Example—Functional Alternatives . 57

9

4.4.4 Example—Iterative Refinement . 58

5 Evaluation 60
5.1 Setup . 60

5.1.1 Development . 60
5.1.2 Experiments . 62

5.2 Overload Avoidance . 62
5.2.1 Functional Alternatives . 63
5.2.2 Iterative Refinement Functions . 67

5.3 Overload Handling . 68
5.3.1 Setup . 68
5.3.2 Results . 70

6 Conclusion 78

Glossary 81

List of Acronyms 83

List of Figures 86

List of Listings 89

List of Tables 90

Bibliography 91

10

1 Motivation

Current operating systems (OS) like Windows, OS X, and Linux possess the ability to
concurrently execute multiple applications. This enables users to have services run-
ning in the background and also start multiple applications in the foreground that they
want to use. For most machines and use cases, the amount of applications executing in
parallel is way higher than the amount of tasks the hardware is actually able to concur-
rently execute. Hence, temporal multiplexing for the execution of tasks on the central
processing unit (CPU) has to take place. This is done via scheduling in the OS. [TB14]

Applications may have different requirements with respect to how often they start work
on the CPU, how much CPU time this work uses, and until what point in time the work
has to be finished. For example, a video player has to load the data for a frame, decode
it, and display it at a certain point in time. If the video player does not achieve to display
the frame in time, the user may recognize a degradation of the Quality of Service (QoS)
of the video stream.

In current OS, the scheduler usually does not know about the timing requirements of
applications. At best, it is possible to indicate some form of priority for the task so
the scheduler can better decide which task to run next. However, although priorities
can express which task to favor when selecting the next task to execute, they cannot
represent deadlines.

Classic real-time OS research introduced hard real-time systems as a solution to this
problem. For applications with varying load hard real-time systems overestimate re-
source usage, as the worst case execution time (WCET) has to be assumed. Soft real-
time systems are a model more suited for applications like video players. While schedul-
ing tasks with specific deadlines and execution times, in soft real-time systems those
deadlines do not always have to be met. The Auto-Training Look-Ahead Scheduler (AT-
LAS) is such a soft real-time system. ATLAS relieves programmers of the need to supply
the execution times for their applications. Instead, ATLAS predicts them using a linear
auto-regressive predictor.

In ATLAS, jobs arrive while the scheduler is running and are unknown beforehand. So,
ATLAS can be classified as a clairvoyant on-line scheduler, in which it is not possible to
create a schedule a priori. The schedule ATLAS executes depends on the quality of the
execution time predictions. Thus, the schedule is not fixed and situations may occur in
which the schedule is overloaded.

Overload might develop either voluntarily or involuntarily; the former, due to the user
being unaware of the current system load and submitting too many jobs, the latter, for
example, if a malicious process tries to claim a bigger share of the available CPU time
by submitting either too many jobs or jobs with largely exaggerated execution times.

11

If such a situation occurs, usually the overall QoS of the system declines due to jobs
missing their deadlines. Overload can be counteracted by applications that are aware of
the load situation in the system and react to it. Some possibilities to react to high load
situations that will be highlighted in this thesis include specifying functional alternatives
and functions of iterative refinement.

Functional alternatives provide, for certain load intensive functions, other functions that
calculate less precise results. Albeit the result being slightly inaccurate, the application
can still work with it. Iterative refinement functions are designed as loops, that yield
more precise results the longer they run. In these loops, each iteration uses the result of
the previous iteration to improve the precision. The suitability of both of these concepts
of imprecise calculation for overload mitigation in ATLAS will be examined in this thesis.

12

2 Scheduling

This chapter will present the basics for the rest of this thesis. First, a short overview of
how scheduling works in hardware is given in Section 2.1. After that, Section 2.2 intro-
duces the concept of real-time applications. Sections 2.3 and 2.4 show how scheduling
in Linux and ATLAS is implemented. Finally, Section 2.5 will give examples on how to
practically use the knowledge acquired earlier.

2.1 A Primer on Scheduling1

Applications consist of a finite number of instructions to execute. Those instructions
can read, write, and modify memory. To prevent applications from accessing other
applications’ memory, OS use virtual memory. Physical memory is no longer addressed
directly but by using virtual addresses that map to physical memory. The translation
of virtual addresses to physical addresses is done by the memory management unit
(MMU). Virtual memory offers two advantages: first, memory-modifying instructions of
one application cannot influence other applications’ memory; second, applications can
be programmed as if they owned the whole address space.

When switching from one application to another, the memory mapping for the task’s
address space and register values have to be exchanged. This is called a context switch
and performed by the scheduler. To regain control of the CPU in the first place, the
scheduler uses a programmable interrupt timer (PIT)2 that emits an interrupt after a
certain amount of time. The interrupt is then routed via the programmable interrupt
controller (PIC) to the CPU3, the interrupt handler of the OS processes it, and control is
passed to the scheduler. The scheduler selects the next task to be executed and restores
this task’s state. It then passes control to the task, which continues execution, and
after a certain time, the same procedure is repeated, thus creating the impression that
multiple applications are executed in parallel. This mechanism is usually referred to as
multitasking. On systems that consist of more than one core, of course, applications
can actually run in parallel. But even in this case, multitasking is necessary if more
applications than cores should run in parallel.

Another abstraction mechanism used by OS is threading. Threads allow applications to
define multiple control flows that are executed in parallel or pseudo-parallel. In contrast

1This section is intended for readers unfamiliar with the field of process scheduling in operating systems.
Thus explanations are simplified.

2An integrated circuit (IC) located on the mainboard.
3Modern systems use an advanced PIC (APIC) that has a split design with the local APIC (LAPIC) part

integrated directly into the CPU. The LAPIC part also contains a high-resolution timer.

13

to tasks, threads of the same task operate on the same address space and therefore have
access to the same data.

Due to the high cost of context switches, OS schedulers try to avoid them. Response
times (e.g. the time until an application can react to an event like a key-press) on
the other hand should also be kept low by the scheduler. This presents a dilemma. If
the scheduler switches too often, overhead induced by context switches increases. If it
switches too rarely, response times render the system unusable.

Sometimes, applications have to wait for I/O operations to finish and thus cannot con-
tinue computation. Also, there are applications that are designed to carry out actions
periodically. In those cases the application can voluntarily yield control to the scheduler
which in turn can schedule another task that actually uses the CPU. This mechanism,
called a voluntary context switch, is orthogonal to the aforementioned involuntary con-
text switch caused by the timer interrupt. When control is passed to the scheduler by
an involuntary context switch, an application is said to be preempted.

2.2 Real-Time

Applications such as video players, have constraints on when results of their compu-
tations need to be delivered.4 Those applications—usually referred to as real-time
applications—encapsulate work that has to be completed into so called jobs. Jobs are
characterized by their respective deadlines and execution times. While the correctness
of non-real-time applications only depends on the delivered result, a real-time applica-
tion’s correctness also depends on when this result is available.

2.2.1 Soft, Firm, and Hard Real-Time

Jobs of real-time applications can be differentiated by how computations that miss dead-
lines affect the system. The value of a result of the computation differs depending on
when it arrives. This behavior is depicted in Figure 2.1 with the x-axis representing the
time t the result arrives and the y-axis the value of the result of the function v() to the
system as a whole [But11]. How the value of the result changes after the deadline d is
determined by the type of the real-time task at hand.

Hard Real-Time Jobs

Hard real-time jobs may never miss a single deadline. If one is missed, the whole system
is useless and there is no point in continuing any computation using this system. One
prominent example would be an air bag that, if it failed to trigger in time, would be

4Staying in the example, video players should have each frame decoded at the point in time it is supposed
to be displayed.

14

dv(r)

t

(a) hard

dv(r)

t

(b) firm

dv(r)

t

(c) soft

Figure 2.1: Different types of real-time jobs

pointless. As seen in Figure 2.1(a), the result loses all value and the system ceases to
function, if a single deadline is missed5.

Firm Real-Time Jobs

Firm real-time jobs can tolerate misses of deadlines on some jobs. If a job misses its
deadline, the computation done by that job is useless, but the system can continue
to function, if it does not miss too many deadlines in a specific period of time. For the
overall QoS of the system, it is essential that deadline misses do not occur too frequently.
For example, a video player could miss deadlines on some frames—and compensating
for this by reusing the previous frame—without the user noticing this. If there are too
many deadline-misses, the QoS would suffer and users may perceive the degradation
of quality. The Plot 2.1(b), depicts this as v(r) having no value after the deadline and
continuing to do so.

Soft Real-Time Jobs

Soft real-time jobs may, just like firm ones, miss their deadlines. In contrast to firm
real-time jobs, results of the computation done by the job are still useful after the job
has passed its deadline, though their value decreases gradually. Figure 2.1(c) displays
this by letting v(r) approach zero after the deadline d.6

2.2.2 Aperiodic, Periodic, and Sporadic Tasks

Tasks can further be classified by how often and how regularly they start jobs. Classic
real-time research groups jobs into the classes aperiodic, periodic, and sporadic.

5Though not mathematically correct, it is a nice representation for a failing system.
6The partial function used after the deadline is application-specific and may be different from what is

depicted in Figure 2.1(c).

15

Aperiodic Tasks

Aperiodic tasks produce work only once. So, they (or their job) are characterized by
their WCET and relative deadline. As they are not repeated, in contrast to periodic or
sporadic tasks, they lack a period or minimum inter-arrival time.

Periodic Tasks

Periodic tasks regularly emit jobs with a certain WCET. How often a task starts a new
job is denoted by its period. Additional to the WCET of these jobs, they have a relative
deadline. Their scheduling is extensively researched and there are many implemen-
tations, e.g. by classic scheduling algorithms like earliest deadline first (EDF) or rate
monotonic scheduling (RMS)7.

Sporadic Tasks

Sporadic tasks, like periodic tasks, emit more than one job. While periodic tasks emit
jobs in a regular fashion, the arrival times of jobs of a sporadic task are only bounded
by a minimum inter-arrival time. In the worst case, the scheduler has to plan for jobs
arriving at exactly the period defined by said minimum inter-arrival time. This has the
drawback that it usually largely over-estimates actual resource usage.

2.3 Linux

Linux is a unixoid operating system kernel initially developed by Linus Torvalds. Af-
ter Torvalds released its source code in 1991, it has grown to include more than 19
million lines of code8 distributed under the GNU General Public License (GPL). As a
large portion of this code base consists of drivers, Linux supports a wide variety of hard-
ware. Linux runs on many instruction set architectures (ISAs) from rarely used ones
like PArisc to widespread ones like x86 and ARM, thus making it applicable for many
usage scenarios. [Lee15]

Development of the kernel is done in a distributed way using the git version control
system with contributing developers from all over the world. Due to its open source
nature, it is possible to extend and modify the Linux kernel. This was, for example,
done by Google with Android, which is now the most commonly used OS on mobile
phones. Linux is also widely used on servers. An overview of the OS used to run web
servers shows that 66.6 % of them use Unix-like systems. Of these 66.6 % of systems,
55.2 %9 use Linux as their OS. [W3T16]

7Formally, both describe different methods for assigning priorities. The scheduling is then done based on
these priorities.

8As at Linux 4.0.
9As at 11/2016. Note, that this study also shows 43.7 % systems for which the study was not able to

determine the OS. The actual share of Linux may be higher.

16

2.3.1 Processes

In the Linux kernel, both processes and threads are represented by tasks. Implementa-
tion-wise, the difference is that threads share their parents’ address space while newly
created processes are assigned a new memory mapping. Internally, tasks are represented
by a structure task_struct that contains the following data:

• General information about the task at hand (process ID, thread group ID, state,
stack pointer, exit state, memory mappings, whether the task is being traced).

• Information about how the task should be scheduled (CPU affinity, scheduling
class, the run queue the task is on, priority).

• Signal processing information, like signal handlers and the mask of blocked sig-
nals.

• Statistics and accounting information (number of context switches, time spent in
system and user mode).

2.3.2 Schedulers

Linux includes multiple schedulers that serve different purposes. For implementing
those schedulers, the Linux kernel provides a structure sched_class that each sched-
uler implementation has to define10. Next, I will first describe how scheduling in Linux
works in general. After that, run queues and the scheduler interface structure are de-
scribed. Finally, I will give an overview of the different schedulers implemented in
Linux.

Scheduler Invocation

The scheduler of the Linux kernel is invoked by calling schedule(). When invoked,
the scheduler selects the next task to run and executes a context switch to the newly
selected task. In case it selects the just preempted task, the scheduler passes control
back to this task, saving the unnecessary context switch. The schedule() function
itself is invoked when

• a task switches into the sleep state or

• wakes up from the sleep state,

• and regularly via a timer interrupt.

Run Queues

A run queue is a container that holds tasks known to the scheduler. There exists one
structure rq for each CPU. Each rq holds scheduler-specific run queues for each sched-

10Though some fields may be set to NULL.

17

uler implementation. Scheduler-specific run queues are usually named <scheduler

name>_rq and do not necessarily have to be queues; the run queue for the Completely
Fair Scheduler (CFS), cfs_rq, for example, is implemented as a tree.

Interface

The schedulers included in Linux are described by the structure sched_class that con-
tains a pointer to the next sched_class. This is used to order scheduling classes from
higher to lower sched_classes11. Tasks of a higher sched_class get to run first,
while tasks of a lower sched_class only get to run when none of the tasks of higher
classes are runnable. The rest of the structure consists of several function pointers to
the corresponding implementation12 [See13].

• enqueue_task and dequeue_task are responsible for inserting a task into and
removing one from the run queue of the current sched_class.

• yield_task is called when a task voluntarily yields the CPU. For example, this
function can be used, when a thread has to wait for another thread or a resource.

• yield_to_task enables a calling task to yield the CPU in favor of another task in
the same task group. This is currently only used in CFS. [van11]

• check_preempt_curr takes a task as its argument and checks whether the given
task can preempt the current task. If both tasks are of the same class, check_pre-
empt_curr of the current scheduler implementation is called. Otherwise it checks,
if the given task has a higher sched_class than the current task.

• pick_next_task: This function is used to find the next task to run. Depending on
the actual sched_class implementation, pick_next_task may use a heuristic
to determine which task to run next or just pick the first task in the sorted backing
data structure of the scheduler.

• For a descheduled task and (possibly) its parent task, put_prev_task updates the
accounting information.

• When a task changes its class, set_curr_task is called to set the current task of
the run queue of the scheduler and to update accounting information of this task.

• task_tick is invoked regularly by the scheduler timer. It updates the statistics
about the running task and its parents like the amount of CPU time the task has
received.

• Whenever a task creates a child task (a child-process or a thread from the user-
land’s point of view), task_fork is called from the creating task’s context. This
function receives the new task as an argument and is responsible for enqueuing it
into the run queue of the CPU it is intended to run on.

11If a sched_class A points to sched_class B via this pointer, A is a higher scheduling class than B.
12Linux kernel source code, Version 4.0, kernel/sched/core.c

18

• switched_from and switched_to are called, when the task at hand is moved
from one sched_class to another one. switched_from is called for the previous
class and switched_to for the new one.

• prio_changed is invoked when the priority of a task has changed. This might
preempt the current task.

• For updating runtime statistics of the current task, like received execution time or
when execution of the task has started, update_curr is used.

If the kernel supports symmetric multiprocessing (SMP), the scheduling class can define
implementations for functions related to it. For example, these include select_task_rq
which selects the run queue and thus CPU a waking task is supposed to run on. By
changing to an appropriate run queue, load balancing can be implemented in Linux.
Another possible function pointer to define is migrate_task_rq, which is called imme-
diately before migrating a task to a new run queue.

By using the next field of the sched_class, the individual scheduler implementa-
tions form a hierarchy, which is depicted in Figure 2.2. Only if no tasks of higher
sched_classes are runnable, tasks of lower ones are considered for selection. The cur-
rent13 hierarchy from higher priority schedulers to lower ones is as follows14 [Ces14,
Tor15]:

• stop_sched_class: The stop scheduling class is a special class. It can only sched-
ule one stop task per run queue. This task, as it is in the highest scheduling class,
preempts every other task and can be preempted by no task. The stop task is used
when migrating tasks between CPUs.

• dl_sched_class: The deadline scheduling class implements Abeni and Buttazzo’s
concept of the Constant Bandwidth Server (CBS) [AB98].

• rt_sched_class: The realtime scheduling class implements the SCHED_RR and
SCHED_FIFO scheduling classes described in the Portable Operating System Inter-
face (POSIX) specification.

• fair_sched_class: This class represents CFS. It can be used with the different
scheduling policies batch, normal, and idle.

• idle_sched_class: The idle scheduling class is like stop a special scheduling
class that can schedule one idle task per CPU. This task can be used to detect,
when the CPU can be put into power saving states.

Schedulers implemented in Linux

O (1)-Scheduler Version 2.6 of the Linux kernel introduced a scheduler that had a
runtime complexity of O (1) with regard to the number of scheduled tasks. It was imple-
mented using two lists, one holding tasks that are about to run and the other holding
tasks that have already run. The scheduler would always take the first process, execute

13As at Linux 4.0.
14See the next section about more detail on the deadline, realtime, and fair scheduling classes.

19

Stop

Deadline

Realtime

CFS

Idle

DEADLINE

FIFO
RR

BATCH
NORMAL
IDLE

Figure 2.2: Scheduling classes implemented in Linux [Wei16]

it, and insert it into the second list. When all the processes had run, the scheduler would
swap those two lists and repeat the process.

CFS Starting with version 2.6.23, Linux replaced the O (1)-scheduler with the Com-
pletely Fair Scheduler (CFS). It uses a red-black tree as the data structure for its run
queues. Red-black trees offer the advantage that insertion, deletion, and searching in
the tree can be done in O (log n)15 in the worst case.

A task waiting for I/O-operations (like reading from a file descriptor) and thus blocking
most of the time is said to be I/O-bound. Contrary, tasks that heavily utilize the CPU
are called CPU-bound.

CFS offers a notion of sleeper fairness, meaning that I/O-bound tasks and ones that
often voluntarily sleep are prioritized when selecting the next task to run. This decreases
the time an I/O-bound task has to wait until it gets selected, with the intention of
reducing response times for interactive applications.

For scheduling different types of applications, CFS offers three different scheduling poli-
cies [BC05]:

• SCHED_NORMAL is used for regular applications that do not need to be scheduled
in a special way. It offers the aforementioned sleeper fairness and is thus suited
for interactive as well as non-interactive applications.

• SCHED_BATCH reduces the amount of times a task is preempted. Therefore, this
policy allows better use of caches while sacrificing interactivity.

• SCHED_IDLE can be used for non-interactive background tasks, which are only run
when no task of the other scheduling policies is runnable.

15For O (log n), n denotes the number of elements in the tree.

20

Realtime With the realtime class, Linux implements the SCHED_FIFO and SCHED_RR

policies specified in the POSIX specification. [IEE08]

SCHED_FIFO implements a scheduler that executes tasks in first-in-first-out-order. Tasks
do not get preempted unless they voluntarily yield the CPU or block.

SCHED_RR uses time slices of a length specified by the sysctl-variable sched_rr_time-

slice_ms. After each task’s timeslice is used up, it switches to the next task of the
same priority in a round-robin (RR) fashion. Only when no tasks of higher priorities are
runnable, tasks of lower priorities are considered for execution.

Deadline The deadline scheduling class is an implementation of the CBS concept,
described by Abeni and Buttazzo [AB98]. It offers temporal isolation between its tasks
and against tasks of lower scheduling classes. To avoid starvation of the system by tasks
of this class, deadline tasks use at most 95 % of the available CPU bandwidth. The
remaining 5 % are used for lower scheduling classes and the Linux kernel itself.

2.4 ATLAS

The Auto-Training Look-Ahead Scheduler (ATLAS) was developed at TU Dresden’s op-
erating systems chair. ATLAS extends the Linux scheduler infrastructure by a soft real-
time scheduler for aperiodic jobs. Usually, an aperiodic real-time scheduler has to be
informed about the execution times and deadlines of its jobs. This might pose a prob-
lem, if the programmer only knows when the desired result needs to be available. To
find the execution time of a job, WCET analysis has to be performed. Even for simple
jobs, WCET analysis might not always be feasible16 [SA00, WEE+08]. Also, even if a
WCET can be found, it is dependent on the used hardware and thus highly unportable.

ATLAS takes another approach. It handles soft real-time jobs, so execution times do not
always need to be precise. This enables ATLAS to predict execution times for its jobs,
thus relieving the programmer of the need to do so. The prediction of execution times
is implemented in ATLAS’ runtime atlas-rt17.

ATLAS resides between the DL scheduling class and CFS in the Linux scheduler hier-
archy. Figure 2.3 shows the three different scheduling policies that ATLAS uses, which
will be described later on: ATLAS, EDF Recovery, and CFS Recovery.

The runtime provides a partial implementation of Apple’s Grand Central Dispatch (GCD)
queues. GCD exposes an interface that allows the programmer to express concurrency in
an application. If the used hardware supports concurrent execution, GCD makes use of
it in a sensible way. This includes issues like thread creation and placement of threads
onto specific CPUs. With ATLAS, the use of GCD-like queues hides the prediction of
execution times from the programmer.

16Finding the WCET of an arbitrary application is equivalent to the halting problem.
17Both the source code of ATLAS and atlas-rt can be found on Hannes Weisbach’s GitHub page: https:

//github.com/hannesweisbach. The repositories are named linux-atlas and atlas-rt respec-
tively.

21

https://github.com/hannesweisbach
https://github.com/hannesweisbach

Stop

Deadline

Realtime

CFS

Idle

DEADLINE

FIFO
RR

BATCH
NORMAL

IDLE

ATLAS
ATLAS
EDF
CFS

Figure 2.3: ATLAS in Linux’ scheduler hierarchy [Wei16]

ATLAS runtime provides wrappers for ATLAS’ system calls, like the libc provides wrap-
pers for most18 system calls of the vanilla Linux kernel. This allows the programmer
to issue the system call without having to utilize syscall() with the corresponding
system call number.

2.4.1 Kernel

The kernel component of the ATLAS framework offers several system calls that can be
used to inform the scheduler about new jobs, update already submitted ones, or cancel
them. The system calls are described after a short overview of how scheduling in ATLAS
works.

Scheduling

ATLAS schedules using a modified latest release time (LRT) scheduling algorithm. LRT
schedules jobs in a way that they are all started at the latest point in time at which they
can still meet their respective deadlines. This can be realized by treating the deadlines
of jobs as their release times and building a EDF schedule in reverse order. LRT, as well
as EDF, is optimal in finding a feasible schedule in a non-overloaded unicore system.

By using LRT, ATLAS also schedules jobs at the latest point in time at which all jobs’
deadlines can be met. ATLAS’ implementation thus builds its schedule beginning at the

18For example, in glibc there is no system call wrapper for the gettid() system call.

22

latest deadline to the current point in time. ATLAS first selects the job with the latest
deadline and schedules it to start at the latest time it can meet its deadline. Then the
job with the next to latest deadline is placed so that it can still meet its deadline, and
so on. If a new job arrives, it might be possible that jobs which have an earlier deadline
have to be moved to an earlier starting time.

When a job already received all of its reserved execution time, ATLAS has to decide how
to handle this job. If the job has not finished but also did not block, it gets demoted to
CFS.

If jobs block and thus miss their deadlines, ATLAS tries to help them to catch up with
their schedule. Jobs that have missed their deadlines due to blocking are scheduled in
EDF order in the EDF Recovery band of ATLAS. They stay there for at most the time
they have spent blocking. If a job has not finished when its time in EDF Recovery is
used up, it is demoted to CFS Recovery in the CFS scheduling policy of ATLAS. Also, if
a job missed its deadline not due to blocking but due to taking too long, it is demoted
to CFS.

In case the schedule is not overloaded19 and no job needs to recover from blocking,
ATLAS allows jobs to pre-roll. This means that the first job in ATLAS’ schedule is executed
in CFS, if it does not need to be started in ATLAS yet.

J1

0 2 4 6 8 10 12

(a) J1 is submitted

J1

J2

0 2 4 6 8 10 12

(b) J2 is submitted

J1

J2

J3J3

0 2 4 6 8 10 12

(c) J3 is submitted

J1

J2

J3J3

0 2 4 6 8 10 12

(d) J1 is allowed to pre-roll

Figure 2.4: Example of scheduling in ATLAS

This is exemplified in Figures 2.4(a) to 2.4(d). The current time in the example is 0:

• Figure 2.4(a): Job J1 arrives with its deadline20 at time 9 and a predicted execu-
tion time21 of 3 time units. The job is initially scheduled to start at time 6 and end

19An overloaded schedule in ATLAS is one in which the first job has negative slack.
20Deadlines are denoted by the triangles.
21Execution times are denoted by the width of the rectangle.

23

at time 9, just in time to meet its deadline.

• Figure 2.4(b): Another job, J2, arrives. As it has its deadline at 12 and an exe-
cution time of 4, it gets scheduled to start at time 8. As the new job would run
into J1’s reservation, J1 has to be rescheduled to start at an earlier point in time,
namely 5.

• Figure 2.4(c): A job, J3, with a deadline between the two scheduled jobs, ATLAS
already knows about, arrives. As ATLAS builds its schedule starting with the job
that has the latest deadline, first J2 is scheduled at the latest time possible. Then,
the new job, J3, is added to start at time 4, immediately preceding J2. Again, job
J1 has to be moved to an earlier starting point, at time 1.

• Figure 2.4(d): As no further jobs arrive and the first job J1 does not yet have
to start, ATLAS allows it to pre-roll. J1 is allowed to execute in CFS, along with
regular CFS tasks. If it receives CPU time while pre-rolling, this might lead to J1
finishing earlier22. The next job in the schedule, J3, would have slack and might
also be allowed to pre-roll. Depending on how much CPU time jobs that pre-roll
receive in CFS, the slack and thus the possibility to pre-roll can propagate to later
jobs.

To summarize, the scheduling policies used in ATLAS are as follows:

• ATLAS is used for regular jobs between their scheduled starting time and sched-
uled deadline.

• EDF Recovery schedules jobs that have overrun their deadlines due to blocking
of the job.

• CFS handles CFS Recovery and pre-rolling jobs.

System Calls

To interact with the scheduler part of ATLAS, several system calls are implemented that
are described in the following:

• atlas_submit(pid, id, exectime, deadline)

This system call informs ATLAS about a new job with ID id. id can be arbitrarily
chosen, while pid is supposed to be the thread ID of the thread that will execute
said job23. The exectime argument is the duration, which a job is expected to
run, while deadline is the absolute deadline of the job.

• atlas_next(next_id)

The ID of the next job to execute is written to where the parameter next_id points
to. In case there are no jobs scheduled to be executed next, this call blocked in
earlier versions of ATLAS. More recent versions do not block anymore, but always

22This assumes the submitted execution time was not too far off.
23That is the thread whose execution will be accounted to this job.

24

return the number24 of written job IDs or a negative error code, if the system call
failed.

• atlas_update(pid, id, exectime, deadline)

To update either the execution time, the deadline, or both, the atlas_update sys-
tem call can be used. If either exectime or deadline are not NULL, the value for
this job will be updated. This might be used by applications to adapt to overload
situations by reducing the amount of work they have submitted.

• atlas_remove(pid, id)

The atlas_remove system call removes a job from ATLAS that was previously
submitted to the system. This might be used by processes to cancel optional jobs
in high load situations.

Together, atlas_update and atlas_remove allow applications to react to high load
situations by updating or cancelling jobs they have already submitted.

For ATLAS to be aware of the thread pools used by concurrent queues, it also implements
system calls to manage thread pools.

• atlas_tp_create(id)

This creates a new thread pool with the given id, but doesn’t yet create any threads
as workers.

• atlas_tp_destroy(id)

Thread pools are destroyed using the atlas_tp_destroy system call. All worker
threads of the targeted thread pool need to have exited beforehand.

• atlas_tp_join(id)

To add a worker thread to a thread pool, the atlas_tp_join system call is exe-
cuted by the worker thread to join the pool with ID id. Worker threads need to be
pinned to one CPU and thus may not migrate. There is no system call to remove
a worker thread from a thread pool. Instead, worker threads are removed when
they exit.

• atlas_tp_submit(tpid, id, exectime, deadline)

By using atlas_tp_submit, a job is enqueued in the thread pool with ID tpid.
Like with atlas_submit, the execution time and deadline have to be passed as
arguments.

2.4.2 Userland

In addition to the kernel part, ATLAS includes a runtime—atlas-rt—that provides a
convenient application programming interface (API) to interact with the kernel compo-
nent. The runtime combines a predictor with an implementation of GCD-like queues to
automatically predict execution times for jobs queued in it and submit them to ATLAS.
The next sections will describe this API and the predictor.

24Currently, this can be 0 or 1.

25

Grand Central Dispatch

Apple’s Grand Central Dispatch (GCD) queues are a mechanism to use task level par-
allelism. In GCD, programmers encapsulate work into so called work items that are
enqueued in a dispatch queue and then started in first-in-first-out (FIFO) order. Work
items may be BlocksRuntime blocks or function pointers25. The way work items are
executed is determined by the type of dispatch queue at hand. Serial dispatch queues
sequentially execute jobs that are in the queue and only start the next job, after the
current one has finished; concurrent queues may start them in parallel. [App16]

Dispatch queues are implemented using the thread pool design pattern. This means,
that the GCD implementation creates an amount of worker threads that is appropriate
to the system at hand. For example, on a system containing four physical cores that
support hyperthreading, GCD might create eight worker threads. In contrast to creating
a new thread for every work item, this has the advantage of being less resource-heavy26.

ATLAS partially implements the GCD interface by providing the class atlas::dis-

patch_queue(label), that creates a named serial queue, as well as atlas::dis-

patch_queue(label,cpuset) for creating a named concurrent queue whose jobs are
allowed to run on the CPUs in cpuset. Instances of these classes can be used to dispatch
work items using the following methods:

• dispatch_async_atlas(deadline, metrics, metrics_cnt, fn, args...)

The metrics array is used for the prediction of the execution time for this job as
described in the next section. The predicted execution time and the deadline

are then used to submit the function fn as a job with arguments args to an ap-
propriate thread pool. The result27 of the computation is encapsulated into a
std::future that will yield the result when it is available.

• dispatch_sync_atlas(deadline, metrics, metrics_cnt, fn, args...)

This method works like the previous, except it blocks and returns the result di-
rectly.

Furthermore, dispatch queues in ATLAS also provide methods to enqueue work items as
non-ATLAS jobs:

• dispatch_async(fn, args...)

• dispatch_sync(fn, args...)

These methods behave like their *_atlas counterparts with respect to blocking. Due to
ATLAS’ scheduling, jobs submitted with the *_atlas methods are subject to reordering
according to their deadline, while non-ATLAS jobs are always processed in submission
order.

25The ATLAS runtime extends this by also allowing C++ lambdas.
26According to Apple, enqueuing a GCD work item only requires 15 instructions while creation of a thread

from userspace takes significantly longer. [App09]
27Currently, the only supported return type is void.

26

Prediction

One of the advantages of ATLAS is the prediction of execution times. As atlas-rt is
capable of predicting future execution times, the programmer is relieved of this burden
while still having the advantage of using a soft real-time scheduler.

The predictor uses workload metrics that are application specific. It is the program-
mer’s responsibility to provide a vector m = (m0 m1 · · · ml)

T of sensible metrics via
the dispatch_*_atlas runtime calls for each job that linearly correlate to the job’s
execution time. If the programmer fails to do so, the execution time predictions are
meaningless. Internally, a history of vectors of metrics is stored in a matrix M .28 [Roi13]

To actually predict future execution times, ATLAS uses a linear auto-regressive approach.
Additionally to the matrix M , the predictor stores a vector of measured execution times
t. If metrics would always directly correlate to the execution times, one could find a
vector of coefficients x = (x1 x2 · · · x l)

T such that

M x = t

holds. But as they usually are not, x has to be approximated:

M x ≈ t

Which may also be written as

m0,0 m0,1 . . . m0,l
m1,0 m1,1 . . . m1,l

... · · ·
mk,0 mk,1 . . . mk,l

x0
x1
...
x l

≈

t0
t1
...
tk

For each row of the matrix and thus each job, the error of the approximation can be
calculated as

ri = x0 ·mi,0 + x1 ·mi,1 + . . .+ x l ·mi,l − t i

The goal here is to minimize the error over all jobs29. The residual error of the overall
approximation is defined30 as √√√√ k∑

i=0

r2
i = ||M x − t||2

and should be minimized. This can be approximated by formulating it as a linear least
squares problem:

||M x − t||2→min
x

28Here, matrices are denoted by capital letters and vectors by lower case letters.
29The jobs are represented by rows of the matrix.
30||M x − t||2 denotes the Euclidean Norm of M x − t.

27

The solution31 to the linear least squares problem, i.e. the vector x , can then be used
with the newly provided metrics mk+1 to get an execution time prediction t̂ used to
submit the new job to ATLAS:

mk+1 x = t̂

As each call to dispatch_*_atlas would extend the matrix by one row, computation
of the coefficients x with the just presented model would be unbounded. Consequently,
to avoid each subsequent call to the dispatch-function taking longer than the previous
one, an updating solution is chosen32.

2.5 Usage

To illustrate the usage of ATLAS, the next sections will give two examples of how to
employ ATLAS from a programmer’s perspective. Section 2.5.1 shows how to submit a
job to ATLAS using plain C. Another example is given in Section 2.5.2, that shows usage
of a GCD-like concurrent queue that also predicts execution times using a given metric.

2.5.1 ATLAS without its Runtime

Listing 2.1 shows how to use the system calls of ATLAS without help from the ATLAS
runtime33. The job we want to submit is an aperiodic soft real-time job (cf. Section 2.2)
with an execution time of 1 s which has its absolute deadline at 2 s. The work itself will
be done in the function do_work().

As we will not start a new thread (cf. Section 2.3) to execute the do_work() function
in this example, first we get the thread ID of the current thread34. This thread ID will
later on be submitted to ATLAS as the thread executing our job.

Also, we need an arbitrary job ID35 and two timeval structures, ex and dl. The execu-
tion time is represented by ex, which we chose to set to 1 s, if our fictional work would
execute for approximately one second. The deadline—given as an absolute deadline—is
represented by dl and set to be 2 s from the beginning of the clock of the system.

As all prerequisites for the atlas_submit() system call (cf. 2.4.1) are available, we
can now submit the new job to ATLAS. By calling atlas_submit with the arguments
thread ID tid, job ID jid, execution time ex, and deadline dl, a new job with those
parameters is created in ATLAS.

31The linear least squares problem can be solved by performing a QR decomposition.
32The matrix R of the QR decomposition is augmented by the new metrics, brought back into upper

triangular form, and then the last row is dropped.
33Using the ATLAS kernel component without the ATLAS runtime is not supported. Nonetheless, I will

show it here, as the ATLAS runtime was not used in this thesis.
34That is the process ID of the process executing the main() function.
35The jid was chosen to be 42 here.

28

1 #include <stdint.h>

2 #include <sys/time.h>

3 #include <sys/types.h>

4
5 #include "atlas/atlas.h"

6
7 void do_work ();

8
9 int main() {

10 pid_t tid = gettid ();

11 uint64_t jid = 42;

12 uint64_t next;

13
14 struct timeval ex = { 1, 0 };

15 struct timeval dl = { 2, 0 };

16
17 atlas_submit(tid , jid , &ex , &dl);

18 atlas_next (&next);

19
20 do_work ();

21
22 return 0;

23 }

Listing 2.1: Submitting an ATLAS-job from C

Next, a thread that wants to execute ATLAS jobs has to get the job ID of the job to
execute from ATLAS by means of the atlas_next() system call36. This procedure is
intended for worker threads that may execute multiple ATLAS jobs consecutively. As
jobs may be reordered by ATLAS according to their deadline, it is necessary for worker
threads to gain information on which job to execute. As no other job was submitted,
next receives the value 42 and execution of the do_work() function can begin.

Depending on what time t the clock of the system currently shows, the job is scheduled
differently:

• t < 1s: If the job is the only job in the system and still has time until it needs to
start, it is allowed to pre-roll. It gets scheduled in CFS and time received there is
not accounted to its received execution time.

• 1s ≤ t ≤ 2s: In this interval, the job is scheduled to execute as a regular ATLAS
job. If it has not yet finished, it is scheduled in the ATLAS band of ATLAS and
preempts any jobs of lower scheduling classes. Time received in this scheduling
band is accounted to the job.

• 2s < t: The current time is later than the deadline, so the job has overrun its
deadline. If the job already received the execution time it reserved, this is the job’s
fault and ATLAS demotes it to CFS until completion. If the job has not received its
reserved execution time, it must have blocked. In this case, ATLAS helps the job

36Usually, the value in next, as well as the return values atlas_next() and atlas_submit() should be
checked. For the sake of the brevity of this example, this is omitted here.

29

to catch up by scheduling it in the EDF Recovery band 37, until it has received
the scheduled execution time. If the job has not finished until then, it also gets
demoted to CFS.

2.5.2 ATLAS with Concurrent Queues

The next example shows how to submit multiple jobs to a concurrent queue (cf. 2.4.2).
First, in lines 7 to 12, the function to execute is defined. It is supposed to just busy wait
until it has received ms_cnt seconds of CPU time 38.

Line 19 declares and instantiates an atlas::dispatch_queue that is named “a queue”
and is allowed to execute work items on CPUs 0 and 1. Thus, the queue will create two
worker threads that will execute the work items later on.

As a metric for ATLAS’ predictor, we will use the amount of time that the function
busy waits in seconds, set in lines 22, 25, and 28. After we have set the metric, we
dispatch the work item (our function with its argument) onto the concurrent queue.
Furthermore, we have to pass the deadline of this job, the metrics, number of metrics
(in this case only one), and then the callable object and its arguments. As we use the
dispatch_async_atlas() method and allow it to run on multiple CPUs, the queue
may potentially allow the jobs to be executed in parallel.

In the dispatch_* calls, the concurrent queue will take care of predicting the execution
time that is submitted to ATLAS. Also it decides on a worker thread to execute this work
item. Then, using the predicted execution time, it submits the jobs to ATLAS using the
atlas_tp_submit system call with the assigned worker thread’s ID as the executing
task.

When leaving the main function at line 32, the concurrent queue q will be destructed.
dispatch_queue’s destructor will wait for unfinished jobs to finish.

37The job still preempts tasks and jobs in CFS but not jobs in the ATLAS band.
38In a working example, one would want to use clock_gettime() here to get the time of

CLOCK_THREAD_CPUTIME_ID, as this clock measures the time a thread received.

30

1 #include <iostream >

2 #include <chrono >

3 #include <thread >

4
5 #include "runtime/dispatch.h"

6
7 void foo(std:: chrono :: milliseconds dur) {

8 using namespace std:: chrono;

9 auto end = steady_clock ::now() + dur;

10 while (steady_clock ::now() < end)

11 continue; // Busy loop

12 }

13
14 int main() {

15 using namespace atlas;

16 using namespace std:: chrono_literals;

17 using sc = chrono :: steady_clock;

18
19 dispatch_queue q("a queue", { 0, 1 });

20 double metrics;

21
22 metrics = 4.2;

23 q.dispatch_async_atlas(sc::now() + 6s, &metrics , 1, foo , 4200ms);

24
25 metrics = 2.3;

26 q.dispatch_async_atlas(sc::now() + 12s, &metrics , 1, foo , 2300ms);

27
28 metrics = 6.5;

29 q.dispatch_async_atlas(sc::now() + 18s, &metrics , 1, foo , 6500ms);

30
31 return 0;

32 }

Listing 2.2: Submitting an ATLAS-job using execution time prediction

31

3 Overload

For real-time scheduling algorithms, many properties like optimality only hold under
the assumption that the system is not overloaded. For example, for EDF to be optimal,
it has to be possible to construct a feasible schedule. In the case of overload, there is no
possible schedule that allows all tasks to finish before their respective deadlines.

The utilization Ui of a periodic task τi is defined as the ratio of its execution time Ci
divided by its period Ti: Ui = Ci/Ti. The utilization Up of a system1 of periodic tasks
can be derived by summing up the utilization of all n tasks in the system: Up =

∑n
i=1 Ui.

If Up exceeds 1, the schedule is definitely overloaded and no feasible schedule exists.
Liu and Layland showed [LL73] that periodic task sets can be scheduled, if the system
utilization does not exceed 1. In case Up ≤ 1, the schedulability of the task set depends
not only on the parameters of the tasks but also on the used scheduling algorithm.

A system with is called overloaded, if an optimal scheduler, like EDF, does not find
a feasible schedule, i.e. a schedule in which all deadlines are met. Many scheduling
algorithms, like EDF, are not intended for overloaded systems. Consequently, their
performance rapidly degrades under conditions of overload. Section 3.1 shows the
performance of EDF under conditions of overload.

Buttazzo categorizes hard [But11] and soft [But05b] real-time scheduling algorithms
into three classes, depending on how they cope with an overloaded task set:

• Best Effort scheduling algorithms do not reject tasks in the case of an overloaded
system. The system performance can only be controlled by priority assignment.
Policies for best effort scheduling were examined, for example, by Locke [Loc86].

• Guarantee-based2 scheduling algorithms incorporate an acceptance test. This test
verifies, whether the current task set still yields a feasible schedule when a new
task is added. The acceptance test uses worst-case assumptions to determine the
schedulability of the task set. If the new task set fails the acceptance test, the new
task is rejected.

• Robust scheduling algorithms, like guarantee-based scheduling algorithms, make
use of an acceptance test to determine whether enqueueing a new task still yields a
feasible schedule. In addition to timing constraints, robust scheduling algorithms
also take the priorities of the scheduled tasks into account. When the task set,
extended by the new task, is found to not be feasible, a rejection policy is used to
determine which task(s) the scheduler has to give up to maximize the system per-
formance. By rejecting tasks based on the value of the task to the system, robust

1In this chapter, a system will always be a uniprocessor system.
2For soft real-time systems, Buttazzo calls such schedulers “scheduling algorithms with simple admission

control”.

32

scheduling algorithms are able to achieve a better overall system performance in
the case of overload. Buttazzo and Stankovic implemented a robust scheduling
algorithm for sporadic hard real time tasks called Robust Earliest Deadline with
single task rejection (RED) [BS93, BS95]. When a new task arrives, RED reeval-
uates the feasibility of the schedule. In the overloaded case, the schedule is not
feasible and the system will reject the task with the least value to the system.

The cumulative value ΓA of a scheduler A is defined as the sum over the values3 of all
tasks in the system:

ΓA =
n∑

i=0

v(τi)

The cumulative value of an optimal, clairvoyant scheduler is referred to by Γ ∗. Using ΓA
and Γ ∗, the competitive factor ϕA of a scheduling algorithm A can be calculated as

ΓA ≥ ϕAΓ
∗

The value of ϕA is in the interval [0;1]. If ϕA > 0, a scheduling algorithm A is said to be
competitive. [But05b]

Baruah et al. showed [BKM+91,BKM+92], that no on-line uniprocessor task scheduling
algorithm A can achieve a competitive factor ϕA greater than 1/4 for an arbitrary task set
with a loading factor greater than 2. The more general form,

1

(1+
p

k)2

considers the ratio k between highest and lowest value density4. For uniform value
densities, i.e. all tasks being equally valuable to the system, the density k is 1, thus the
bound for the scheduler is 1/4.

3.1 EDF and RMS in Overload

EDF’s optimality only holds under certain assumptions. One of those assumptions is,
that it is possible to produce a feasible schedule. For example, with aperiodic tasks, this
assumption might not hold, if jobs’ deadlines are aligned such that not all jobs can meet
them. A feasible schedule is a schedule in which all tasks included in the task set meet
their deadlines. In the case of overload, this is not possible. As EDF is not designed to
handle such situations, the performance may suffer due to the domino effect.

The domino effect describes a situation, in which a scheduler accepts a new task that
causes a previously feasible schedule to become unfeasible. Figure 3.15 shows this effect
for the EDF scheduling algorithm. In Figure 3.1(a), the schedule is not yet overloaded.

3In this context, value does not describe the result of the computation, but the value to the system as a
whole, as described in Section 2.2.1.

4The value density of a task is the task’s value to the system divided by its execution time.
5Release times are denoted by upward pointing triangles, deadlines by downward pointing triangles, and

the time a job is executed by the length of the block.

33

Jobs would be scheduled in order of increasing deadline. That is, first J2 arrives and is
immediately scheduled for execution. While J2 executes, J3 and J4 arrive. As J3’s and
J4’s deadlines are later than the deadline of J2, EDF does not need to preempt J2. Next,
J1 arrives. As J1’s deadline is earlier than that of J2, J2 is preempted and J1 executed
instead. After J1 finishes, J2 is continued till completion. Finally, J3 and J4 are executed
in full.

As EDF itself does not incorporate an acceptance test, new tasks are always accepted
the system when they arrive. This can be seen in Figure 3.1(b): J0 arrives while J1 is
still executing. As the deadline of J0 is earlier than J1’s deadline, J0 preempts J1 and is
executed to completion. After that, all other jobs miss their deadlines.

Buttazzo compared the EDF algorithm to fixed priority scheduling with rate monotonic
priority assignment (better known as RMS) for overloaded systems of periodic tasks.
In case the system was permanently overloaded, tasks in EDF behave as if they were
executed at a lower rate. In RMS, tasks of lower priority, i.e. tasks with longer periods,
get blocked under overload. Though both scheduling algorithms behave predictably,
which one is preferable is application dependent.

Transient overload describes a situation, in which a system is overloaded for a certain
amount of time, but may recover and transition to a state of being non-overloaded
again. In transient overload, any task in EDF may miss its deadline. In RMS, all tasks
except the highest priority one may miss their deadlines. Though this may seem to offer
an advantage over EDF, in practice, for most applications this is not relevant. [But05a]

Due to EDF’s sub par performance under overload, Buttzzo and Stankovic implemented
different schedulers [BS93] that are conceptually derived from EDF but incorporate
acceptance and/or rejection policies. Tasks in the following models are described by the
tuple Ji = (Ci , Di , mi , vi), where Ci and Di denote the WCET and deadline of the task
respectively. The value mi represents the task’s deadline tolerance and vi the explicitly
stated importance of the task Ji, relative to other tasks in the task set. By using the
deadline tolerance mi, the scheduling algorithms presented here compensate for the
pessimistic estimate by the WCET. The following scheduling algorithms split real-time
tasks into the classes HARD and CRITICAL. HARD tasks are guaranteed to complete in a
non-overloaded system. CRITICAL tasks are ones that are guaranteed at runtime, that a
certain portion of tasks will finish within their deadline:

• The Guaranteed Earliest Deadline (GED) algorithm uses an acceptance test to
verify before accepting a new task, whether the new task set is schedulable. If it
is not schedulable, the new task is rejected.

• The Robust Earliest Deadline with single task rejection (RED) algorithm, like GED,
uses an acceptance test to ensure, that the new task set is schedulable. If it is, the
new task gets accepted. Otherwise, RED finds the task with the least value to the
system and tests, whether the task set would be schedulable if the task with the
least value was rejected. In this case, the least value task is rejected and the new
task accepted. If not, the new task is rejected. RED also keeps a list of rejected
tasks. When a task finishes, the previously rejected task that can still meet its
deadline with the greatest value may be reaccepted.

34

t

J1

J2 J2

J3

J4

(a) A non-overloaded schedule

t

J0

J1 J1

J2 J2

J3

J4

(b) Job J0 is accepted, causing the domino effect

Figure 3.1: The domino effect [But05b]

35

• The Robust Earliest Deadline with multiple task rejection (MED) algorithm is the
same as the RED algorithm, but might reject more than one lower value task, if
the new task is critical.

3.2 TAFT scheduler

The Time-Aware Fault-Tolerant (TAFT) scheduler [BG01,GN02] is based on Version 3.0
of RTLinux. Tasks in TAFT are defined as a TaskPair (TP) that comprises two parts: the
MainPart (MP) and the ExceptionPart (EP). The MP represents the regular execution
of the program, in which execution times might not be known a priori. Thus, the MP
is characterized by the expected case execution time (ECET) which is comparable to
ATLAS’ execution time prediction6. An MP’s ECET may be found by online analysis of
the program. The EP represents a critical component of a TP, characterized by a WCET.
TAFT is a hard real-time scheduler in the sense that it guarantees either one of the
components to complete within the given deadline of a TP.

The scheduler treats the MP and EP as separate scheduling entities. MPs and EPs are
scheduled in different scheduling bands. The scheduling band for EPs uses an LRT
approach to schedule EPs at the latest point in time possible. MPs are scheduled using
the EDF scheduling policy. If an MP exceeds its ECET, its priority is set lower than
that of all other MPs to avoid a domino effect that is inherent when scheduling with
EDF otherwise. Whenever an EP becomes runnable, it preempts any MP that might be
running. Also the MP, that corresponds to this EP, is removed from the schedule. By
this scheduling strategy, an MP is always preempted by its EP, if the MP would not finish
before the EP needs to begin execution.

For the TAFT scheduler, a TP τi is defined as a tuple (Ti , Di , Ci , Ei) with the activation
period Ti, the deadline Di, the ECET Ci of the MP, and the WCET Ei of the EP.

For accepting new tasks, the TAFT scheduler uses an acceptance test, that works on
an ordered set Π of n tasks

�
τi , i = 1 to n,∀i, j :

�
Ti ≤ T j ⇒ Ti|T j

�	
. The acceptance test

employs the maximum utilization factor (MUF) Ωi for each task τi. Ωi is defined as

Ωi =
i∑

j=1

C j + E j

T j
+

1
Ti

∑
i< j≤n

E j

The TAFT scheduler can schedule a set Π if Ωi ≤ 1 for all tasks τi.

3.3 ROBUST

The Resistance to Overload By Using Slack Time (ROBUST) scheduling algorithm [BH93]
handles tasks with hard deadlines on uniprocessor systems in an on-line and preemptive
fashion.

6Except, that the ECET is not automatically predicted.

36

Tasks in ROBUST are defined as a set of arrival time T.a, relative deadline T.d, and
execution time requirement T.e. T.er denotes the remaining execution time the task
requires. The slack factor of a task T is defined as T.d/T.e.

Baruah and Haritsa measure the performance of a system using the Effective Processor
Utilization (EPU). The EPU in an interval [ts; t f [is defined as:

EPU =

∑
i∈C x i[ts ;t f [

t f − ts

Here, C is the set of all tasks in the system and x i[ts ;t f]
denotes the amount of processor

time received by task i in the interval [ts; t f [, if it finishes within the interval.

The ROBUST scheduling algorithm is able to achieve an EPU of at least 50 % if all sub-
mitted tasks are guaranteed to have a slack factor of at least 2. In contrast, other sched-
ulers without this restriction can at most achieve an EPU of 25 % [BKM+91,BKM+92].

In an overloaded interval, ROBUST schedules tasks by dividing the interval into 2i
phases (Phase-1 to Phase-2i). Each even-numbered phase’s length is the same as the
length of the preceding (odd-numbered) phase. Scheduling is handled differently, de-
pending on whether currently an even- or odd-numbered phase is executed:

• odd-numbered phase (2i − 1): The task with the longest execution time require-
ment Tmax .e is selected and scheduled non-preemptively. If a new task Tnew arrives
in this phase, two possibilities exist:

1. Tnew.e < Tmax .e: The new task’s execution time requirement is less than that
of the currently scheduled task. Thus, ROBUST values it less.

2. Tnew.e ≥ Tmax .e: Due to the requirement of tasks’ slack factor being at least
2, the new task can still be scheduled in the next phase.

• even-numbered phase (2i): Again, the task with the longest execution time re-
quirement Tmax .e is selected and executed preemptively. If a new job Tnew arrives
with an execution time requirement Tnew.e that is longer than Tmax .e, Tmax is pre-
empted and Tnew is executed instead.

After an even-numbered phase, the task that was executed last is Tmax for the next odd-
numbered phase. The length of the next phase and the phase after that is set to Tmax .er
and the task is scheduled non-preemptively in the odd-numbered phase.

Using this scheduling algorithm, ROBUST can guarantee that the processor is utilized
with a task that finishes in each odd-numbered phase. Depending on whether jobs finish
in the following even-numbered phase, the EPU might increase, thus

EPU≥
∑i

j=1 [length of Phase- (2 j − 1)]∑2i
k=1 [length of Phase-k]

=
1
2

holds.

37

3.4 Dover

With Dover , Koren and Shasha presented an on-line scheduler [KS92], that reaches the
best possible bound for the competitive factor for arbitrary task sets of 1

(1+
p

k)2
. It sched-

ules firm and soft real-time tasks preemptively.

When the system is underloaded, Dover schedules tasks like EDF would. Tasks are split
into sets: privileged and waiting tasks. Whenever a task is preempted, it becomes priv-
ileged. A task’s Latest Start Time (LST) can be calculated by subtracting its remaining
computation time from the task’s deadline.

In case the system is overloaded, Dover schedules in a different manner: When a task
reaches its LST, Dover checks, whether

vnex t >
�
1+
p

k
��

vcur rent + Vpriv

�
where vnex t is the value of the task reaching its LST, vcur rent the value of the task that
is currently being executed, and Vpriv the sum over all values of privileged tasks. If
the comparison evaluates to true, the LST-task is executed and all other tasks become
waiting tasks. Otherwise, the task is abandoned.

3.5 CBS

Abeni and Buttazzo [AB98] introduced CBS as a method for scheduling soft real-time
tasks alongside hard real-time tasks. The work combines the concepts of the Dynamic
Sporadic Server (DSS) and the Total Bandwidth Server (TBS) while aiming to enhance
the performance of the system in overload situations by reclaiming unused CPU time
caused by early completions for jobs of the same task. It distinguishes two types of
tasks7:

• Hard real-time tasks are scheduled using the EDF algorithm based on their WCET
and period.

• Soft real-time tasks are assigned to a CBS and scheduled using their mean execu-
tion times instead of the WCET and the desired activation period.

For CBS, a hard real-time task is defined as τi = (Ci , Ti) where Ci is the WCET of each
job and Ti is the task period. For soft real-time tasks, Ci denotes the mean execution
time of jobs and Ti is the desired activation period. Each task τi emits jobs Ji, j that
are associated with the following parameters: arrival time ri, j, finishing time fi, j, and
dynamic deadline di, j. The dynamic deadline is assigned to the task by a CBS instance8.

7Actually, CBS distinguishes three types of tasks: hard, soft, and non real-time tasks. However, throughout
the paper, non real-time tasks are not mentioned anymore.

8Note, that CBS is used in two different contexts here: on the one hand as the concept of CBS and on the
other hand as concrete CBS instances in the system. I will call the concept always just “CBS” and the
instance “CBS instance”.

38

A CBS instance s is defined by s = (Qs, Ts) where Qs is the maximum server budget and
Ts is the server period. The server bandwidth is calculated as Us = Qs/Ts. At runtime,
each CBS instance holds the parameters cs and ds,k. cs is the server’s remaining budget
and ds,k the k-th deadline of the server.

CBS utilizes a global EDF schedule, that schedules hard real-time tasks that are not
handled by a CBS instance and all CBS instances that are in the system. A CBS instance
in turn can schedule jobs of either one hard real-time task or multiple soft real-time
tasks.

When scheduling jobs of a task that is assigned to a CBS instance, the CBS instance
reacts to different types of events:

• When the server budget reaches zero, it is replenished to the maximum budget Qs
and a new server deadline is generated that is one server period Ti later than the
last one.

• When a job is executed, the server budget is decreased by the corresponding amount
of time.

• When a new job arrives, it is enqueued in the server queue.

• When a job finishes, it is dequeued and the next job in the queue is served.

• When a job is served, the server decides, whether the remaining server budget is
sufficient to serve that job. If it is, it is executed using the old server deadline and
budget. Otherwise, a new deadline is generated that is one server period Ti later
than the current one and the budget is restocked to the maximum budget Qs.

CBS is able to give different guarantees. The isolation property holds for a system
scheduling multiple hard real-time tasks and a CBS instance. It guarantees that iff.
Up+Us ≤ 1 holds9, all hard real-time tasks and the CBS instance can be scheduled. Con-
sequently, if the parameters of the CBSes instance are chosen such that the condition
holds, soft real-time task cannot influence the scheduling of hard real-time tasks and
temporal isolation exists between hard real-time tasks and the CBS instance.

If a hard real-time task τi = (Ci , Ti) is scheduled by a CBS instance with parameters
(Qs, Ts) and the parameters are chosen such that Ci ≤ Q i and Ti = Ts holds, the CBS
instance schedules the hard real-time task just as the EDF algorithm would.

If the distribution of computation times over the set of jobs of a soft real-time task is
known, CBS is able to give statistical guarantees for jobs, i.e. the probability of jobs
meeting their deadlines.

3.6 Adaption to Overload

In “Soft Real-Time Systems: Predictability vs. Efficiency”, Buttazzo describes [But05b]
multiple ways for systems to cope with overload, if the system does not want to, or
cannot, reject incoming tasks:

9Up is the processor utilization of the hard real-time tasks and Us the bandwidth of the CBS instance.

39

• Service adaption

• Job skipping

• Period adaption

3.6.1 Service Adaption

Some algorithms allow the results of computations to be refined the longer that al-
gorithm runs. This allows a scheduling algorithm to trade precision for computation
time in the case of overload. Lin et al. [LNL87] explored this possibility for the Con-
cord project and generalized the concept of imprecise calculations. Buttazzo proposes
a model for imprecise calculations, that splits each task Ji into a mandatory subtask
Mi and an optional subtask Oi with their respective computation times mi and oi. The
arrival time ai and deadline di are the same for both subtasks. The mandatory subtask
must be executed and calculates a minimal result. This result is then improved by the
optional part if it is scheduled. The longer the optional part is executed, the more pre-
cise the result becomes. For such a task model, a suitable metric is to use the average
error

ε̄=
n∑

i=1

wi(oi −σi)

where wi denotes the relative importance of Ji and σi the processor time allocated to
Oi. In a system that schedules tasks split in such a way, a schedule is called feasible, if
every mandatory subtask Mi is completed within its deadline. If all optional parts are
executed in full, i.e. the average error ε̄ is 0, the schedule is said to be precise.

For tasks that cannot be split into a mandatory and an optional subtask, Buttazzo pro-
poses supplying multiple versions of the task. Here, higher quality versions and thus
longer ones may be replaced by the scheduler with lower quality ones in case of over-
load.

3.6.2 Job Skipping

For periodic task sets, Koren and Shasha presented a model [KS95], in which the sched-
uler is allowed to skip a certain amount of jobs. By not having to execute every job of
a task, the scheduler gains flexibility to better cope with overload. In this model, task
definitions include a skip parameter si with 2≤ si ≤∞ that gives the minimum distance
between skipped jobs. Every job is either red or blue. A red job is mandatory and needs
to be executed in full. Blue jobs may be aborted at any point in their execution if the
need arises. If a blue job is aborted, the next job must be red, as the minimum inter-skip
distance is 2. If a blue job completes, the next job will also become a blue job, as the
job was not aborted. Koren and Shasha propose two on-line scheduling algorithms:

• Red Tasks Only (RTO)10 schedules red jobs using the EDF algorithm and always

10The term “task” here comes from the fact, that Koren and Shasha talk about task instances instead of
jobs.

40

rejects, i.e. aborts, blue tasks.

• Blue When Possible (BWP) also schedules red jobs using the EDF algorithm but
allows blue jobs to run, when no red job is runnable. As the overall system perfor-
mance is calculated based on all jobs, BWP performs better than RTO according
to this metric.

Buttazzo extended this concept by using a CBS (cf. Section 3.5) to utilize the compu-
tation time that might be gained by skipping blue jobs when RTO is used. The CBS
uses its computation time to advance aperiodic jobs. Koren and Shasha showed that the
problem of determining, whether a set of periodic, skippable jobs is schedulable by EDF
is NP-hard.

For a given task set Γ = {Ti(pi , ci , si)}ni=1 of n tasks with period pi, execution time ci, and
skip parameter si to be feasibly schedulable,

L ≥
n∑

i=1

D (i, [0, L])

has to hold for all L ≥ 0. L represents an arbitrary point in time. The equation checks
whether the schedule requires less time than available within the interval [0; L]. In this
equation, the required time of a task Ti in the interval [0, L] is defined by

D (i, [0, L]) =
��

L
pi

�
−
�

L
pisi

��
ci

From this, the definition of the processor utilization follows:

U∗p =max
L≥1

�∑
i D(i, [0, L])

L

�
If a CBS is used in conjunction with RTO, a sensible schedulability test might be

U∗p + Us ≤ 1

where Us denotes the utilization of the CBS as described in Section 3.5.

3.6.3 Period Adaption

Another option for handling overload with periodic task sets is the “elastic model”. In
this model, the periods of tasks are considered flexible within a certain range. The
model is adapted from a spring model, that augments each task by a minimum and a
maximum period as well as an elasticity coefficient. Tasks are described by:

• Ci computation time

• Ti0 minimum period

• Timax
maximum period

• Ei elasticity coefficient

41

The elasticity coefficient describes the ability of the task to adapt its period at runtime.
An elasticity coefficient of 0 means that the scheduler may chose an arbitrary but fixed
period within the interval

�
Ti0; Timax

�
. If Ei is greater than 0, the period may change. The

relation of different tasks’ elasticity coefficients determines, how much a task’s period
changes, when the load situation in the system changes. The greater Ei is, the more the
task can change. A periodic hard real-time task may be modelled by choosing Ti0 equal
to Timax

.

42

4 Design & Implementation

To cope with overloaded situations, I extended the kernel part of ATLAS as well as
the userland part. The kernel part was implemented in C, while the userland part uses
C++14 with help from the Standard Template Library (STL). In the following I will first
describe the kernel component, design decisions and the different methods for detecting
and handling overload in ATLAS. Thereafter, the load manager, which is implemented
in userland, will be presented.

4.1 Formalism

To ease the description of the different policies used, this section introduces some for-
malisms that are used throughout this chapter.

An ATLAS-job Ji is defined by the tuple (ei , di). The parameter ei denotes Ji ’s registered
execution time, while di represents the absolute deadline of the job. At runtime, the
job furthermore holds parameters êi, d̂i, and ri. The parameters êi and d̂i represent the
scheduled execution time and scheduled deadline respectively. The received execution
time of a job is given by ri.

The current point in time will be denoted by t. Using it, the slack si of a job Ji is defined
as si = d̂i − ri.

An ATLAS-run queue R j is defined as a set of n j ATLAS-jobs scheduled on it. The set is
ordered by the value of d̂i.

From the current point in time t, the available time on the run queue can be calculated
as

a j = maxJi∈R j
(di)− t

and the run queue demand as

w j =
∑
Ji∈R j

(ei − ri)

.

The required cutback of a run queue R j is denoted by c j, and calculated using

c j = w j − a j

43

1 ...

2 [function modifies atlas_job_tree]

3 ...

4 if (is_overloaded(rq))

5 handle_overload(rq);

6 ...

Listing 4.1: Calls to is_overloaded and handle_overload

4.2 Kernel

The kernel component of ATLAS was extended by facilities for detecting and handling
overload. For this, the functions is_overloaded and handle_overload were imple-
mented.

• is_overloaded(struct atlas_rq *rq) checks, whether the given ATLAS run
queue is overloaded. It does so using different methods that are shown in Sec-
tion 4.2.1.

• handle_overload(struct atlas_rq *rq) assumes there is overload and mod-
ifies the scheduled execution times of jobs on the ATLAS run queue to transition
the schedule into a state of being non-overloaded again.

Earlier versions of overload management for ATLAS looked at all places where the AT-
LAS schedule, represented by the structure atlas_job_tree, is modified. Namely these
are:

• insert_job_into_tree: Here new jobs get inserted into the corresponding AT-
LAS job tree. This might happen, when a new job arrives, but also when a job is
moved from, for example, the ATLAS to the CFS scheduling band.

• remove_job_from_tree: Similar to insert_job_into_tree, this function is
called when a job either changes scheduling policies within ATLAS or finishes and
is thus removed from the atlas_job_tree.

• update_curr_atlas: This function is ATLAS’ implementation of the function
pointer update_curr in the structure sched_class. As such, it is regularly called
when the scheduler timer expires and updates statistics of the currently running
job. As this might modify the schedule, I also check here for overload and handle
it if necessary.

All calls in those functions looked basically like shown in Listing 4.1. First, the imple-
mentation checked for overload, and after that handled the overload if needed.

To allow the user to easily disable overload management for ATLAS, a design like in
Listing 4.1 allows the programmer to just surround the code snippet with #ifdef. If no
overload management is needed, there exists no runtime overhead. Also all of the code
for overload management1 is contained in atlas_overload.h and atlas_overload.c.

1All except the calls to is_overloaded, handle_overload and the system call get_load_stats.

44

So, when ATLAS’ overload management is not built into the kernel, the code also uses
no space in memory.

Unfortunately, this approach proved too unstable to be usable. The overload handling
only considers jobs in the ATLAS band. As during the execution of the schedule, jobs
are moved between scheduling bands, the schedule looks less loaded, when jobs have
already moved to the EDF Recovery or CFS band. This caused the overload handling
to assign the remaining jobs a larger portion of the remaining time than originally in-
tended. Thus, only the call to handle_overload remained in insert_job_into_tree.
This call is only performed, if the atlas_job_tree that the job is inserted into is the
one used by the ATLAS band.

Though is_overloaded is used no more from the scheduler part of the ATLAS kernel,
its results are still available from userspace via the atlas_getload system call.

4.2.1 Overload Detection

To evaluate the load situation of the system, two methods are available. Both were
proposed by Weisbach [Wei16]. These methods are:

• Slack-based overload detection uses the slack of the first job in the schedule of
ATLAS. If this slack is negative, overload exists and also the amount of time that
is needed in the schedule is given by the negative slack.

• The Interval Load Function gives a measurement of how much time is used by the
schedule in a given window. In the current implementation it can be used in two
different modes. In the Interval Load Function mode, the window size is fixed and
can be configured via sysctl2. In the Horizon Load Function mode, the window is
automatically set to the time span from the current time to the latest deadline in
the schedule (a.k.a. the horizon).

The different types of overload detection can be selected by the privileged user via
sysctl. The sysctl-variable to control, which overload detection was used is called
kernel.sched_atlas_overload_detection. Possible values for this variable are
listed in Table 4.1.

Detection name Value Overload Detection
OL_DET_NONE 0 No overload detection
OL_DET_SLACK 1 Slack-based
OL_DET_ILF 2 Interval Load Function-based
OL_DET_HLF 3 Horizon Load Function-based

Table 4.1: Possible values for kernel.sched_atlas_overload_detection

2For specific configuration variable names and defaults, see Section 4.2.3.

45

Slack-based Overload Detection

The Figures 4.1(a) and 4.1(b) show a schedule both in a non-overloaded and in an
overloaded situation. In Figure 4.1(a), the jobs are arranged in the schedule in order of
increasing deadline with the last job finishing exactly at its deadline. Each job’s starting
time is the previous job’s finishing time. The first job still has one time unit left until it
needs to start. When scheduling with ATLAS this time is used to allow the job to pre-roll
and by that possibly reduce the time, the job needs to execute in the ATLAS band.

If job J1 had reserved 5 time units of execution time instead of 3, the schedule would
be overloaded. This situation is depicted in Figure 4.1(b), where job J1 has a negative
slack of -1.

J1

J2

J3

0 2 4 6 8 10 12

(a) Non-overloaded schedule

J1

J2

J3

0 2 4 6 8 10 12

(b) Overloaded schedule

Figure 4.1: Slack-based overload detection

An interval is said to be tightly-packed, if at every time in this interval, a job is scheduled
to execute, i.e. there exist no gaps in the schedule.

To reliably detect a situation, in which the schedule is overloaded, using the slack of the
first job is sufficient. ATLAS builds its schedule by aligning the jobs’ scheduled finishing
times with their deadline or the latest release time of the following job, depending on
which one is earlier.

If the remaining execution time of a job is greater than the time until its deadline, this
job cannot finish in time and all jobs in the interval from this job to the end of the
tightly-packed interval are in the overloaded interval.

Overload at a point in time later than the first overloaded interval cannot exist. If it
would, jobs would be moved closer to the overloaded interval and eventually reach it,
thus also belonging to the tightly-packed and overloaded interval at the beginning.

Consider the example in Figure 4.1. If there were further jobs J4 =
�
e4 : 1, d4 : 14
�

and
J5 = (e5 : 2, d5 : 15), J4 would be scheduled to start at time 13 and J5 at 14. The system
would still be overloaded due to the jobs J1 to J3. If e4 and e5 would be set to 2 instead,
they would reach the first overloaded interval (including jobs J1 to J3) and move it to
an earlier starting point. This would only increase the negative slack of job J1, but not
produce an overloaded interval at a later point in time.

46

Interval/Horizon Load Function-based Overload Detection

The Interval Load Function (ILF) and the Horizon Load Function (HLF) both give a
measurement of how utilized an interval is. As I only use the ILF with an interval starting
at the current point in time t until an arbitrary point in time, u, and only consider jobs,
the definition can be simplified from the definition given by Weisbach [Wei16]:

li(u) =

¨
ei − ri d̂i ≤ u

0 otherwise

This definition can be extended to run queues as

∑
Ji∈R j

li(u)

The interval [t; u] used by the ILF is bound by the current point in time and the time
u. For the ILF, the window size can be configured. The window used by the HLF is
determined by the latest deadline in the schedule.

As the ILF and HLF are not able to detect overload, they might only be used to detect
whether enqueueing a new job would overload the schedule. Even this cannot be done
reliably with the ILF/HLF, as false-positives might occur, when there are gaps in the
schedule. However, they could be used as an admission criterion when submitting jobs.
As ATLAS currently does not reject jobs, I did not examine these options any further.
Instead, the HLF is used with the load manager to determine how much time is available
in the schedule.

4.2.2 Overload Handling

As explained in Section 4.2, the function handle_overload is called to transition the
ATLAS run queue back into a state of being non-overloaded. To achieve this, first the
required cutback has to be determined. Then, the cutback is applied to a run queue
using a given policy. The policy determines how the cutback is distributed among all
jobs on the run queue.

When the required cutback has been determined, it is applied to the run queue by a
given policy. The available policies are listed in Table 4.2 and described next. If no
overload handling is needed or wanted, OL_POL_NONE should be chosen. In this case,
the handle_overload function is still called but returns early without calculating the
required cutback.

The available policies are:

• Equal cutback: By using the policy OL_POL_FIXED, the required cutback

c j = w j − a j

47

Handling Name Value Overload Handling
OL_POL_NONE 0 No overload handling
OL_POL_FIXED 1 Fixed cutback
OL_POL_PROP 2 Proportional cutback
OL_POL_LAXITY 3 Laxity-proportional cutback
OL_POL_FAIR 4 Cutback to fair share
OL_POL_DROP 5 Cutback is applied to the last job

Table 4.2: Possible values for kernel.sched_atlas_overload_policy

is split equally among all jobs on the run queue. This allows for an easy calculation
of the per-job-cutback, but has the drawback, that short jobs are proportionally cut
back more than longer jobs. Each job’s cut back is thus

c̄ j =
c j

n j

and the scheduled execution time of each job calculates as

êi =

¨
ei − c̄ j if c̄ j < ei

0 otherwise

• Proportional cutback: This policy avoids the previous jobs drawback by distributing
the required cutback proportionally to the scheduled execution time of each job.
The drawback in this case is, that jobs still can register more execution time than
they need. Therefore, it should only be used in a system in which the submitted
execution times relate to the actual need of the job, for example when using ATLAS
with its predictor. A job’s scheduled execution time is set to

êi =
ei · a j∑
Jk∈R j

ek

i.e. the job receives an amount of execution time that is directly proportional to
the fraction of the job’s submitted execution time and the sum over all execution
times.

• Laxity-based cutback: For transient overload, it might be beneficial to cut back
later jobs more than earlier ones, as the load might still decrease while the jobs
in the schedule are executed. This might happen due to jobs finishing early or
because of applications that are able to adapt in overload and reduce the load
they generate by using the atlas_update() and atlas_remove() system calls.
For this situation, OL_POL_LAXITY cuts jobs back proportional to their laxity. A
job Ji ’s laxity at time t is defined as

laxityi(t) =

¨
slacki(t) if slacki(t)> 0

0 otherwise

The slack of a job Ji in turn is given by

slacki(t) = (di − (ei − ri))− t

48

Jobs with a high laxity get cut back more, while jobs that have little or no laxity get
cut back less or not at all. For each job, the scheduled execution time is calculated
by

êi = ei − c j · laxityi(t)∑
Ji∈R j

laxityi(t)

If êi would be set to a negative value, it is set to 0 instead.

• Cutback to fair share: This policy guarantees each job a minimum amount of ex-
ecution time in the ATLAS scheduling band of ATLAS. Jobs’ scheduled execution
times are set to the fair share that is available until the latest deadline in the
schedule. This is currently implemented by just dividing the time until the latest
deadline by the number of jobs. As jobs might have reserved less time than the
fair share, the difference should be available for other jobs. In the performed ex-
periments, this does not pose a problem, as the jobs that work less than the fair
share donate this time as slack to other jobs. A job’s scheduled execution time is
calculated the following way:

êi =
a j

n j

• Cutback last jobs: The OL_POL_DROP policy applies the whole cutback to the last
job, if its execution time is long enough. Otherwise the job’s scheduled execution
time is set to 0, effectively scheduling it in the EDF Recovery band of ATLAS. In
case the required cutback is longer than the last job’s scheduled execution time,
the remaining required cutback is applied to the next to last jobs, until the required
cutback is distributed. Let

sx(i) =
n j∑

k=i

ek

be the sum over all submitted execution times from job Ji to the end of the sched-
ule. Then, a job’s scheduled execution time is calculated as:

êi = ei −

ei c j ≥ sx(i)
c j − sx(i + 1) sx(i)> c j > sx(i + 1)
0 sx(i)≥ c j

The implementation for this policy iterates over all jobs in reverse order. At each
job, the algorithm checks, if the remaining required cutback is larger than the
submitted execution time of this job. If it is, this jobs scheduled execution time is
set to zero and the submitted execution time subtracted from the required cutback.
If it is not, the jobs scheduled execution time is set to the difference between its
submitted execution time and the required cutback and the required cutback to
zero. After the required cutback is set to zero, the algorithm sets the scheduled
execution time of jobs to their submitted execution time.

The next sections show examples of how the different scheduling policies apply a re-
quired cutback of 2 time units to a given schedule. The current time t is always 0 for
these examples.

49

Equal cutback

t

J1

J2

J3

(a) An overloaded schedule

t

J1

J2

J3

(b) The non-overloaded schedule after applying a fixed cutback to it

Figure 4.2: Application of a fixed cutback to the schedule

Figure 4.2(a) shows a system that has 3 jobs J1 = (e1 : 3, d1 : 4.5), J2 = (e2 : 5, d2 : 7),
and J3 = (e3 : 2, d3 : 8). The resulting schedule is overloaded by two time units that are
distributed among the jobs using the policy OL_POL_FIXED. Each job’s portion of the
cutback, in the image shown as the red pattern, on the run queue R j is c j/n j. In this case,
each per-job-cutback is 2/3 time units, resulting in scheduled execution times of ê1 = 7/3

for job J1, ê2 = 13/3 for job J2, and ê3 = 4/3 for job J3. The schedule after applying the
cutback to all jobs is depicted in Figure 4.2(b).

50

Proportional cutback

t

J1

J2

J3

(a) An overloaded schedule

t

J1

J2

J3

(b) The non-overloaded schedule after applying a proportional cutback to it

Figure 4.3: Application of a proportional cutback to the schedule

The schedule is again overloaded by two time units in Figure 4.3(a). The jobs present
in the schedule are J1 = (e1 : 1, d1 : 4.5), J2 = (e2 : 7, d2 : 7), and J3 = (e3 : 2, d3 : 8). Each
job’s cutback on run queue R j is calculated as

ei · a j∑
Jk∈R j

ek

Thus, J1’s resulting scheduled execution time ê1 is 8/10, ê2 is 56/10, and J3 receives a
scheduled execution time of ê3 = 16/10. Figure 4.3(b) shows the non-overloaded schedule
after applying the respective cutbacks.

51

Laxity-based cutback

t

J1

J2

J3

(a) An overloaded schedule

t

J1

J2

J3

(b) The non-overloaded schedule after applying a laxity-based cutback to it

Figure 4.4: Application of a laxity-based cutback to the schedule

In Figure 4.4(a) and 4.4(b), a scenario is given that has jobs J1 = (e1 : 2, d1 : 2),
J2 = (e2 : 5, d2 : 8), and J3 = (e3 : 3, d3 : 8). The respective laxity for each job is thus
laxity1(0) = 0, laxity2(0) = 3 and laxity3(0) = 5. Each job’s cutback on run queue R j
can be calculated as c j · laxityi(0)/

∑
Jk∈R j

laxityk(0). Thus, the cutback for job J1 is 0, as it has no
laxity. J2 is cut back by 6/8, resulting in a scheduled execution time of ê2 = 34/8 and J3 by
10/8, yielding ê3 = 14/8. After applying each cutback, the schedule looks like depicted in
Figure 4.4(b).

52

Cutback to fair share

t

J1

J2

J3

(a) An overloaded schedule

t

J1

J2

J3

(b) The non-overloaded schedule after applying a cutback to fair share to it

Figure 4.5: Application of a cutback to a fair share to the schedule

An example for the OL_POL_FAIR policy is given in Figure 4.5(a). Jobs J1 = (e1 : 1, d1 :
4.5), J2 = (e2 : 5.5, d2 : 8), and J3 = (e3 : 4.5, d3 : 9) exist in the system. The resulting fair
share for three jobs and a latest deadline at time point 9 would be 3. As job J1 already
reserved less than the fair share, it can be subtracted from the available time and be left
unmodified. Thus, for the remaining jobs J2 and J3, 8 time units are available, resulting
in a fair share of 4. The required cutback for J2 is therefore 3/2 and for J3

1/2. Note, that
in the current implementation, all jobs scheduled execution times are set to 3 instead.
For the given experiments, this does not pose a problem, as jobs actually execute for the
amount of time they reserved. J1 would thus only execute for one time unit and then
donate the remaining execution time as slack to job J2.

53

Cutback applied to the last jobs

t

J1

J2

J3

(a) An overloaded schedule

t

J1

J2

J3

(b) The non-overloaded schedule after applying a cutback to the last job

Figure 4.6: Application of a cutback to the last job

The application of the last policy, OL_POL_DROP, is depicted in Figures 4.6(a) and 4.6(b).
Here jobs J1 = (e1 : 1, d1 : 4.5), J2 = (e2 : 6, d2 : 8), and J3 = (e3 : 3, d3 : 9) are known
to the system. The required cutback of 2 is applied solely to the last job J3, reducing its
scheduled execution time to 1.

4.2.3 Configuration

The policies for overload detection and overload handling can be configured via sysctl
parameters. Setting them can be done with the following variables:

• kernel.sched_atlas_overload_detection sets the used policy for overload
detection as shown in Table 4.1. When using the ILF, the used window can be
specified in microseconds by kernel.sched_atlas_overload_ilf_window_us.
Though overload detection is used no more for overload handling, its type can still

54

1 struct atlas_load_stats {

2 bool has_ol;

3 struct timeval ol_slack;

4 struct timeval ol_ilf;

5 struct timeval ol_hlf;

6 int nr_jobs;

7 struct timeval rq_demand;

8 struct timeval rq_demand_all;

9 struct timeval rq_avail;

10 bool has_jobs;

11 struct timeval this_rexectime;

12 struct timeval this_exectime;

13 int this_class;

14 struct timeval this_rem;

15 };

Listing 4.2: The structure atlas_load_stats

be set and the result used from userspace with the atlas_getload() system call.
The overload detection policy influences which policy is used to indicate overload
with the has_ol field. The default is to use slack-based overload detection.

• kernel.sched_atlas_overload_handling determines, which policy is used to
handle overload situations. Possible values are given in Table 4.2.

4.3 System Call

For communicating the current load situation from kernel to userspace, the system call
atlas_getload() was implemented. This system call enables userland applications
to get information on the schedule of ATLAS and about the currently executing job.
It takes a pointer to a structure atlas_load_stats in userspace and fills it with the
current values. The structure is depicted in Listing 4.2.

The fields of the structure represent the following:

• has_ol: A boolean value indicating, whether the system is in a state of overload.
Whether the system is in overload is determined by the overload detection policy
set by the sysctl variable kernel.sched_atlas_overload_detection.

• ol_slack: The amount of (possibly negative) slack of the first job.

• ol_ilf: The load returned by the ILF-based overload detection.

• ol_hlf: The load returned by the HLF-based overload detection.

• nr_jobs: The number of jobs currently enqueued in the atlas run queue of the
calling process.

• rq_demand: The sum over all remaining execution times on the current atlas run
queue.

55

1 template <typename Ret , typename ... Args >

2 struct load_manager {

3 load_manager(detection det = simple , operation op = alternative);

4
5 void register_alternative(weightType weight ,

6 packaged_task <Ret(Args ...)> &&f);

7
8 void register_iterative(packaged_task <Ret(checkFn , Args ...)> &&f);

9
10 Ret run(deadlineType dl , Args ... args);

11 ...

12 };

Listing 4.3: The class load_manager

• rq_demand_all: The sum over all remaining execution times and sum_exec_run-

times on the current run queue. Note that the sum_exec_runtime might be
counted multiple times, if one thread executes multiple jobs. If jobs have separate
threads executing them, this indicates how much computation time a job received
in all scheduling bands of ATLAS and not just in the ATLAS band of ATLAS.

• rq_avail: This available time on the current run queue. This is equal to the time
until the latest deadline on the current run queue.

• has_jobs: This boolean value indicates, whether the calling thread has jobs reg-
istered with ATLAS. The following values are all set to zero, it the thread does not
have any jobs. Otherwise, they refer to the first job of the thread.

• this_rexectime: The received execution time in the ATLAS scheduling band.

• this_exectime: The submitted execution time.

• this_class: The scheduling band, this job is currently executed in. The value
corresponds to the enumeration atlas_classes as defined in kernel/sched/

atlas.h in the source tree of ATLAS.

• this_rem: The remaining execution time of this job. This also subtracts the time
received while pre-rolling and if the job is in the CFS recovery band.

4.4 Userland

To avoid overload in the first place and to be able to react to overload situations from
userland when they occur, a load manager was implemented. It makes use of the
atlas_getload() system call presented in Section 4.3. The templated class load_man-
ager<Ret, Args...> is defined as a header-only implementation. The interface to use
the load manager is given in Listing 4.3 and will be described next.

As the load manager returns the result of the calculation when run() finishes, it needs
to be instantiated with the correct template arguments. Those arguments are the return

56

type Ret and the argument types Args... of the functions that will be registered
with the load manager. After it has been instantiated, callable objects such as function
pointers, C++ lambdas, or block from the BlocksRuntime, can be registered with it.
One of the registered callables will be executed when calling the run() method.

4.4.1 Modes of Operation

The load manager knows two different modes of operation, one of which has to be
specified when instantiating it. The possible values are:

• lm::operation::alternative specifies that the load manager should handle
different alternative functions. All these functions have to have the same signa-
ture. The functions are registered using the register_alternative method. In
addition to the function object, this method takes a weight parameter, that is cur-
rently used as the predicted execution time. When calling the run() method, the
function most suitable for the current load situation is chosen and executed as an
ATLAS job.

• lm::operation::iterative allows the user to register one function that can
iteratively refine its result via register_iterative. This function has to take a
function of type lm::load_manager::checkFn as its first argument. The checkFn
is provided by the load manager, takes no arguments, and returns a bool that in-
dicates, whether the system is currently overloaded and the iterative refinement
function should cease iteration.

Internally the function objects are stored as packaged_task<Ret(Args...)> and pack-

aged_task<Ret(checkFn, Args...)> respectively.

4.4.2 Execution Times and Deadlines

When executing run(), a deadline has to be specified that is used as the absolute dead-
line for the job that is submitted to ATLAS. For functional alternatives, currently the
weightType is a std::chrono::duration that is used as the job’s submitted execu-
tion time. For iterative refinement functions, 97.5 % of the available time until the
deadline is used as the submitted execution time.

4.4.3 Example—Functional Alternatives

Listing 4.4 shows how different callables can be registered with the load manager. First,
in line 5, an instance of load_manager is instantiated that handles functional objects
that have the return type int and take a reference to a std::string as their only
argument.

In line 6, the function fn that was declared in line 1 is registered with a weight of
2 ms. Internally, the passed function pointer is encapsulated within a packaged_task<

int(std::string&)> and moved to a list. As a packaged task can hold different types

57

1 int fn(std:: string &s);

2
3 int main() {

4 std:: string s("Razupaltuff");

5 ...

6 load_manager <int , std:: string&> lm(simple , alternative);

7 lm.register_alternative (2ms, fn);

8 lm.register_alternative (3ms, [](std:: string &s){ ... });

9 lm.register_alternative (4ms, ^(std:: string &s){ ... });

10 int ret = lm.run (10ms, s);

11 ...

12 }

Listing 4.4: An example of using functional alternatives with the load manager

of callable objects, it is possible to register lambdas with the load manager. In line 7, a
lambda is passed as an r-value reference to the function with a weight of 3 ms. Similarly,
in line 8, a BlocksRuntime block registers with the load manager using the weight 4 ms.

After registering the three callable objects with the load manager, the run method is
called with an absolute deadline of 10 ms. This call causes the load manager to look
up the current load situation using the atlas_getload system call and decide which
callable fits best. The load manager then submits a job to ATLAS using the provided
deadline and the execution time of the callable it selected. When the job has been
submitted, the load manager executes it and waits for it to finish. After execution has
stopped, the value returned by the callable object is returned as run()’s return value.

4.4.4 Example—Iterative Refinement

The skeleton of an iterative refinement function can be seen in Listing 4.5. Lines 1 to 8
define a function that takes two arguments, one of type checkFn and one of type int.
The function then initializes the return value with a value of 42 in line 2. Thereafter,
the function uses a while loop to iteratively refine the return value ret. The while
loop stops when either stopCond or a call to the checkFn evaluate to true: either the
function decides so itself via the stopCond; or, the load manager indicates with the
checkFn(), that the system is overloaded or near to overload and the function should
stop execution. After the loop has stopped, the function has to return the result as soon
as possible to avoid further delay.

In the main function first the load manager is instantiated. The constructor sets the
load managers mode of operation to handle iterative refinement functions. Next, in line
13, the iterative refinement function it_fn, that was just described, is registered with
the load manager. In this case, no weightType is needed. Either the function will be
executed until it terminates regularly or the system is overloaded and the function needs
to stop to reduce the load on the system. In line 14, the load manager is instructed to
execute the function with an absolute deadline of 42 ms and the argument 23. Like in
the mode of operation for functional alternatives, an ATLAS job will be submitted and
then executed by the load manager. The ATLAS job will have the provided deadline

58

1 double it_fn(lm:: checkFn cfn , int arg) {

2 double ret = 42;

3 ...

4 while (! stopCond && !cfn()) {

5 ... refine ret ...

6 }

7 return ret;

8 }

9
10 int main() {

11 ...

12 load_manager <double , int > lm(simple , iterative);

13 lm.register_iterative(it_fn);

14 double res = lm.run (42ms, 23);

15 ...

16 }

Listing 4.5: An example of using iterative refinement functions with the load manager

and an execution time of 97.5 % of the available time until its deadline to account for
overhead before and after the loop.

59

5 Evaluation

To evaluate the modifications made to the ATLAS kernel, this chapter presents the results
of the experiments that were run. First, to achieve reproducibility, Section 5.1 will give
an overview of how the kernel part was developed and how experiments where run.
Then, in Section 5.2, the experiments and results for the load manager will be shown.
Last, Section 5.3 presents the evaluation of the in-kernel overload handling.

5.1 Setup

To allow the results in Section 5.2.1 and 5.2.2 to be reproduced, this section will give
an overview of the used hardware and software components. It will include the setup
while developing as well as the setup used to run experiments.

5.1.1 Development

Development was done using the QEMU emulator. QEMU offers the possibility to boot
a Linux kernel by appending -kernel to the QEMU command line. Furthermore it is
possible to specify the kernel command line with the -append option. This was used to
instruct the kernel to output to the serial terminal, so the output can be directly output
by the terminal emulator used.

The complete command line used for starting QEMU can be seen in Listing 5.1. BZIMAGE
holds the path of the ATLAS kernel. Also, as this work only focuses on unicore sys-
tems, QEMU was instructed to only emulate a single CPU. The -nographics switch
disables graphical output as only text output to the serial console was used. Last,
-enable-kvm was set to make use of the host system’s Kernel-based Virtual Machine
(KVM)-capabilities and speed up emulation.

1 qemu -system -x86_64 \

2 -nographic \

3 -enable -kvm \

4 -s \

5 -m 1G \

6 -smp 1 \

7 -kernel "${BZIMAGE}" \

8 -append "console=ttyS0"

Listing 5.1: QEMU invocation

60

1 #!/bin/busybox sh

2
3 export PATH=’/bin:/sbin:/code ’

4
5 dmesg -n1

6
7 /bin/busybox --install -s /bin

8
9 # Mount the needed filesystems.

10 mount -nt proc proc /proc

11 mount -nt sysfs sysfs /sys

12 mount -nt debugfs debugfs /sys/kernel/debug

13 mount -nt devtmpfs devtmpfs /dev

14
15 # we are connecting via serial console , so redirect all I/O

16 exec 1>/dev/ttyS0 2>/dev/ttyS0 </dev/ttyS0

17
18 # set up atlas ’ debugfs

19 /bin/debug overload ol_detection ol_handling ol_stats

20
21 dmesg -c >/dev/null

22
23 exec /bin/init

Listing 5.2: /init script in the initramfs

For development, as well as for testing, the kernel was build using an initramfs built
into the kernel. This can be achieved by setting the CONFIG_INITRAMFS_SOURCE kernel
option to a path relative to the source directory, that holds the initramfs to build into
the kernel.

This offers two advantages. First, it removes the need for a separate root file system. As
the initramfs is packed every time the kernel is build, there is also no risk of persistently
modifying data on the root file system which may influence the behaviour of the system.
And second, this removes the possibility of disk I/O influencing the measurements1. As
the initramfs is part of the kernel, it is loaded together with the kernel into memory at
startup.

Instead of a fully-fledged init system like System V Init or systemd, I used the init system
provided by busybox. Busybox offers many of the utilities, GNU fileutils, shellutils and
others usually installed on Linux systems provide while itself being only a single binary
that may be statically linked.

I placed the compiled binary for busybox as well as the binaries to run experiments in
the initramfs to be packed and included in the Linux kernel. After the system booted,
they were executed from the shell, that busybox init presents to the user.

Listing 5.2 shows the init script used to set up the system, that I used for development
as well as the experiments.

1While caches also influence the measured result, those influences are orders of magnitude smaller than
latencies introduced by disk read/seek.

61

First, the PATH variable is set to where the binaries are located. Line 6 causes only
emergency messages to automatically appear on the console. Then, busybox installs
symlinks for the applications it includes into the /bin directory. As some programs re-
quire /proc, /sys, and /dev to be mounted, those are set up in lines 10 to 13 along
with /sys/kernel/debug that is used to control ATLAS’ debug output. When /dev is
ready, all input as well as output to stdout and stderr are redirected to the serial con-
sole /dev/ttyS0. In line 19, a script is called, that was written to set up ATLAS’ debugfs
to only the values given as arguments. In the following, dmesg -c >/dev/null is used
to clear the kernel message ringbuffer and not display it. Finally—in line 23—control is
handed to busybox’ init system that starts a shell.

5.1.2 Experiments

Experiments were performed on an Intel Core i7 CPU that is clocked at 2.67 GHz. I
turned off frequency scaling and Hyper-Threading in the BIOS. The machine has 4 GiB
of DDR3 random access memeory (RAM) running with a clock frequency of 1067 MHz.

To start experiments and for debugging purposes, I connected to this machine via its
serial port. As can be seen in Section 5.1.1, everything needed is already included in the
kernel image generated in the build process. Thus, I only needed to provide this kernel
image to the machine2 by Preboot Execution Environment (PXE).

PXE is a feature of certain basic input/output systems (BIOS). It starts by acquiring an
Internet Protocol (IP) address via the Dynamic Host Configuration Protocol (DHCP).
The DHCP server also provides information, about where the host can find the ker-
nel image to load and how it is called. Then, the kernel image is retrieved from this
address via the File Transfer Protocoll (FTP). For this thesis, I used dnsmasq as a DHCP-
server and tftp-hpa as the FTP-server that provides the kernel image that was built as
described in Section 5.1.1. Furthermore, I specified the kernel command line options
console=ttyS0,115200 maxcpus=1 to instruct Linux to output to the serial console
and only use a single CPU.

5.2 Overload Avoidance

To give userspace applications the ability to avoid overload in the first place, I implement
a userspace component, the load manager. The next sections will take a closer look at
both of the load manager’s modes of operation. Section 5.2.1 will look at the mode
for functional alternatives, while Section 5.2.2 will shine light on how the iterative
refinement mode performed.

2Actually, the hard drive was even physically disconnected.

62

5.2.1 Functional Alternatives

This section will first describe the setup of the experiment used for functional alterna-
tives and then the results, this experiment yielded.

Experiment Setup I used the bodytrack benchmark from the Princeton Application
Repository for Shared-Memory Computers (PARSEC) [BL11] benchmarking suite to
evaluate functional alternatives. JouleGuard [Hof15] uses approximate computing to
trade accuracy for battery lifetime. One of their experiments also leverages the body-
track benchmark. They use PowerDial [HSC+11], that uses “knobs” in applications to
change their accuracy. For bodytrack, those “knobs” are the number of particles and the
number of annealing layers used by its algorithm. To emulate PowerDial’s behavior, I re-
named the main()-function of the bodytrack benchmark to bodytrack_main(), added
a header that declares this function and built bodytrack as a static library. Then, I added
a new executable, that links against the bodytrack library, constructs an argument vec-
tor, and calls the bodytrack_main()-function with this argument vector. As seen in
Figure 5.1, the bodytrack benchmark scales linearly to the used number of layers and
particles respectively.

12345678910

layers
0

2000

4000

6000

8000

10000

particles

0

2

4

6

8

10

12

14

16

w
al

l c
lo

ck
 ti

m
e

Figure 5.1: Influence of the parameters on the wall clock time of bodytrack

To test the load managers functional alternative mode, a background load is required to
see how an adaptive application fares with different levels of background load. There-
fore, the experiment starts a single periodic task. The period is set to 100 ms and the
utilization it generates varies. The utilization had values in the range from 0.1 to 0.9 in

63

Layers Particles Execution time
0 - - <0.01 s
1 1 100 0.21 s
2 5 500 0.56 s
3 10 500 0.96 s
4 3 2300 1.29 s
5 6 1600 1.70 s
6 6 2000 2.04 s
7 2 7100 2.58 s

Table 5.1: Parameters and execution times used with the functional alternatives experi-
ment

steps of 0.1 that determine the execution time of jobs of this task as

ei = Up · period

Additional to the load generated by the task, a load manager is instantiated, and the
eight different parameter combinations in Table 5.1 for the bodytrack benchmark regis-
tered with it.

As the latest relative deadline in the job set is be 2.5, I chose those alternatives with
execution times up to 2.5 s. The alternatives used in the experiment are shown in Ta-
ble 5.1. The experiment first checks, whether the file /etc/bodytrack_params exists.
If not, the different alternatives are measured and the results written to this file. If the
file exists, the values stored there are used as the weight parameter3 for the load man-
ager. The setup of the load manager and measuring/loading of bodytrack’s execution
times is done prior to starting the task. After the task is started, the load manager’s
run() function is called with the latest deadline used by the task, causing it to select
an alternative and run the bodytrack benchmark. The measured execution times for
the different alternatives, that the experiment uses as weight parameters for the load
manager are also listed in Table 5.1.

For this setup, I measured the tardiness of each job of the task as well as for the load
manager. Also, I recorded the functional alternative used by the load manager.

Results In Figures 5.2(a) to 5.2(d) the dots show the tardiness of the periodic set of
background jobs that is scheduled together with a functional alternative chosen by the
load manager. The vertical red line represents the shared deadline of the functional
alternative and the last background job. The triangle represents the load manager that
always finishes after the other jobs if it chose an alternative other than the shortest
one. The shortest option is just a call to a function that immediately returns, which
can be executed in the slacktime present in the schedule. As the load manager shares
its deadline with the last job, which job finishes last depends on the submission order.
Subscribed under the triangle and shown in Table 5.2 is the execution time of the chosen

3The weight parameter is currently used as the submitted execution time for the chosen alternative. In
future versions it might be used to train ATLAS’ predictor.

64

Up Alternative Available Time Execution Time
0.1 #6 2.25 s 2.04 s
0.2 #5 2.00 s 1.70 s
0.3 #4 1.75 s 1.29 s
0.4 #4 1.50 s 1.29 s
0.5 #3 1.25 s 0.96 s
0.6 #2 1.00 s 0.56 s
0.7 #2 0.75 s 0.56 s
0.8 #1 0.50 s 0.21 s
0.9 #0 0.25 s <0.01 s

Table 5.2: Alternatives chosen by the load manager with different utilizations

alternative used by the load manager. As can be seen in Figure 5.2(a), with a utilization
of Up = 0.1, the load manager has 90 % of the time until its own and the deadline
of the latest job at time 2.5 s. As seen in Table 5.2, the load manager thus chooses
an alternative with an execution time of approximately 2.04 s and executes it. For a
utilization of Up = 0.2, the available time is 2.0 s and the load manager chooses the
alternative with an execution time of 1.70 s. The same holds for the utilization 0.5. For
a utilization of 0.9, the load manager chose to execute the shortest alternative that just
calls a function that returns immediately.

These exemplary runs show that the load manager does not cause jobs that are already
scheduled to miss their deadlines. Also, it achieves to choose an alternative, that fits the
schedule, so that itself does not miss its deadline. The only influence on the background
jobs is that they finish at a lower rate than without the adaptive application, but still
prior to their deadline.

The current implementation uses the load calculated by the Horizon Load Function
(HLF). Because the last deadline of the job set and the load manager coincide, the HLF
is accurate. If the deadline of the load manager were later than the latest deadline,
the HLF would overestimate the load and could cause the load manager to not chose
the optimal alternative. Another possibility—though a suboptimal one—would have
been to set the interval used by the ILF to the time until the load manager’s deadline
via sysctl. A better option would be to extend the atlas_getload system call to take
a second parameter that represents the timespan, the calling process is interested in.
If this parameter is NULL, as a default value the latest deadline in the schedule could
be used. As the levels for the load managers alternatives were chosen too coarsely, its
execution in some of the examples ends a long time prior to the deadline. A better
result would be achieved, if there were more alternatives and if they were more evenly
spread.

65

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

2.04s

−2.0

−1.5

−1.0

−0.5

0.0

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.1

●

●

●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●

●

●

1.70s

−1.5

−1.0

−0.5

0 1 2
Finishing Time

Ta
rd

in
es

s

(b) Up = 0.2

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.96s

−1.00

−0.75

−0.50

−0.25

0 1 2
Finishing Time

Ta
rd

in
es

s

(c) Up = 0.5

● ●

0.00s

−2

−1

0

0 1 2
Finishing Time

Ta
rd

in
es

s

(d) Up = 0.9

Figure 5.2: The load manager using functional alternatives

66

5.2.2 Iterative Refinement Functions

Next to functional alternatives, a method to avoid overload provided by the load man-
ager are iterative refinement functions. In this section I will first describe the performed
experiment and then evaluate the results this experiment produced.

Experiment Setup To evaluate the iterative refinement mode of the load manager,
I adapted an algorithm from one of the examples provided with Mitch Richling’s GNU
Multiple Precision Arithmetic Library (GMP) examples [Ric99] to iteratively calculate
π. While this algorithm is not very efficient, a single iteration does not take very long,
so the algorithm can stop its refinement and yield a result with low overhead when
determined by the load manager.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

er
ro

r

ex
ec

ut
io

n
tim

e
[s

]

iterations

error vs. execution time when calculating π

wall clock time

error

Figure 5.3: Error and wall clock time of the iterative π calculation

In Figure 5.3, the x-axis shows the number of iterations performed. The left y-axis along
with the purple graph shows the wall clock time, a run with this number of iterations
took. The green graph—with its axis on the right side—represents the error to the real
value of π. As can be seen, the error asymptotically approaches zero the more iterations
are calculated while the wall clock time rises exponentially. This is due to the arithmetic
operations of GMP taking longer, the more precision is required.

This experiment also needs a competing load. I chose a periodic task that submits and
executes 25 jobs. The period is again set to 100 ms. After the task is created, the load
manager is started in its own thread. Then, the function for iteratively calculating π
is registered with it. Finally, the run() method of the load manager is called with a

67

relative deadline of 2.5.

In this experiment, I measured the tardiness of jobs of the task and of the load manager.
Furthermore, I recorded the number of iterations performed by the iterative refinement
function.

Results The experiment for using iterative refinement functions with the load man-
ager, shown in Figures 5.4(a) to 5.4(d), tested how the load manager performs in front
of a background load generated by one ATLAS task. The plots depict the tardiness of
the jobs of the background task and of the iterative refinement function. The jobs of the
periodic task are depicted by the dots while the load manager is again represented by
the triangle. The number of performed iterations is written below the load manager’s
triangle. The vertical red line represents the deadline of the last back job and the load
manager.

For a utilization of Up = 0.1, the iterative refinement function can use 0.9 ·2.5 s= 2.25 s.
In this time, it is able to perform 21 557 iterations. When the utilization is increased, the
number of iterations performed decreases and the rate at which the background jobs fin-
ish drops. In the heavily loaded system shown in Figure 5.4(d), the iterative refinement
function can only achieve 8355 iterations. The number of iterations performed does not
decrease linearly, as the function for iteratively calculating π scales exponentially (cf.
Figure 5.3).

This experiment shows, that like with the load managers mode of operation for func-
tional alternatives, the background jobs are only affected in the rate at which they finish.
Calculation of the iterative refinement function does not interfere with the execution of
the background jobs. Also the load manager finished just before its own deadline, thus
maximizing the amount of time available for execution of its function.

5.3 Overload Handling

As overload cannot always be avoided, I extended the kernel with overload handling
facilities. For evaluating the in-kernel overload handling, an experiment was written
that is described in Section 5.3.1. Thereafter, Section 5.3.2 will present the results of
this experiment.

5.3.1 Setup

The experiment for testing overload handling consists of one or two periodic tasks. Each
task starts 25 jobs with a period of 100 ms. The task is implemented as a thread that
submits all jobs in the beginning and then executes them in the order ATLAS tells it to
via the atlas_next() system call. The jobs in each task have monotonically increasing
deadlines that are one period apart, so the order in which jobs of a task are executed is
deterministic. Over this task set I varied the generated processor utilization Up at levels
that are shown in Table 5.3.

68

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

21557

−2.0

−1.5

−1.0

−0.5

0.0

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.1

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20415

−2.0

−1.5

−1.0

−0.5

0.0

0 1 2
Finishing Time

Ta
rd

in
es

s

(b) Up = 0.2

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

16469

−1.0

−0.5

0.0

0 1 2
Finishing Time

Ta
rd

in
es

s

(c) Up = 0.5

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

8355

−0.3

−0.2

−0.1

0.0

0.1

0 1 2
Finishing Time

Ta
rd

in
es

s

(d) Up = 0.9

Figure 5.4: The load manager using an iterative refinement function

69

Up\ratio 0 0.05 0.1 0.25 0.4 0.5
0.95 0/95 4.75/90.25 9.5/85.5 23.75/71.25 38/57 47.5/47.5
0.99 0/99 4.95/94.05 9.9/89.1 24.75/74.25 39.6/59.4 49.5/49.5
1.0 0/100 5/95 10/90 25/75 40/60 50/50
1.05 0/105 5.25/99.75 10.5/94.5 26.25/78.75 42/63 52.5/52.5
1.1 0/110 5.5/104.5 11/99 27.5/82.5 44/66 55/55
1.2 0/120 6/114 12/108 30/90 48/72 60/60
1.5 0/150 7.5/142.5 15/135 37.5/112.5 60/90 75/75
2.0 0/200 10/190 20/180 50/150 80/120 100/100

Table 5.3: e1/e2 in ms for each configuration

To test how jobs with different execution times affect the system, another dimension of
the experiment is the ratio of execution times of the jobs to each other. Among the two
tasks, the total utilization is split by the ratio of the execution times of the jobs. Thus,
the execution times for jobs of the first task is calculated by

e1 = Up · ratio · period

and as
e2 = Up · (1− ratio) · period

for jobs of the second task. The tested levels for the ratio are also shown in Table 5.3.
So, for example, a period of 100 ms, a total utilization of 1.5, and a ratio of 0.25 result
in an execution time of 37.5 ms for jobs J1,i of the first task and 112.5 ms for jobs J2,i of
the second task.

For all those combinations, the experiment was run 25 times for each overload handling
policy. In each run, I measured the tardiness of each job.

5.3.2 Results

This section presents the results that the experiment for overload handling yielded.
First, I will show the experiment for a single task and then the experiment for two
tasks with a different ratio of execution times in an underloaded system. Finally, I show
how two tasks with a ratio of execution times of e1/Up = 0.25 behave when they are
scheduled by the different policies implemented in the ATLAS kernel.

A Single Task

Figure 5.5 shows the tardiness of 25 jobs of a single task with a period of 100 ms.
Beginning with Figure 5.5(a) to Figure 5.5(f), the system’s utilization is increased from
0.95 to 2.0. In the first Figure, the tardiness of the jobs decreases over time. As the
system has a utilization of Up = 0.95 and is therefore underloaded, slack accumulates.
Jobs can use this slacktime to start earlier and finish before their deadline. Even in
Figure 5.5(b), the tardiness still decreases over time. This is due to the jobs only working

70

about 97.5 % of their submitted execution time to account for overhead. As the jobs’
tardiness decreases over time, this margin was obviously chosen too broad.

Starting from Figure 5.5(c), the system is definitively overloaded, as even though jobs
work only for 97.5 % of their submitted execution time, in this example they at least
require 105ms · 97.5%≈ 102ms of execution time to finish.

For a utilization of Up = 1.05, the total demand of all jobs is 25 · 105ms = 2625ms.
The available time until the latest deadline is 2500 ms. This means, that the schedule is
overloaded by 125 ms. As explained in Section 2.4.1, the schedule is constructed from
the latest deadline in reverse order. In case of an overloaded system, this causes jobs
to be scheduled in the past. Therefore, jobs at the beginning of the schedule have their
scheduled deadline in the past. The first job would, for example, be scheduled from
−125 ms to −20 ms. As the scheduled deadline is in the past, ATLAS moves this job to
EDF Recovery. The first job would actually be executed on the time of the second job,
which is still in the ATLAS band. This continues until the point in time, at which the
current time passes the scheduled deadline of the currently executing job. After that,
the remaining jobs are moved to CFS and executed there.

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.0

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(c) Up = 1.05

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(d) Up = 1.1

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(e) Up = 1.5

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(f) Up = 2.0

Figure 5.5: A system with a single task in different load situations

Two Tasks in an Underloaded System

The Figures 5.6(a) to 5.6(f) show a system with a load of Up = 0.95. The system
schedules two tasks that have a different ratio of execution times. On the left, the ratio

71

of task 1 is 0.05, in the middle 0.25, and on the right both tasks have the same execution
time. The top row shows the system with no overload handling, the bottom row when
using the fair policy. All policies, except the fair policy, check whether overload exists
before modifying the schedule. If not, they just return. Therefore, the top row is also
representative for all other policies.

For no overload handling, long jobs finish at about their period. The short jobs finish
at a higher rate, as they can actually finish in the available slacktime generated by the
schedule. In each period, the generated slack is 5 ms and short jobs in Figure 5.6(a) are
only 4.75 ms, one to two jobs can finish in slack. After all jobs of task 1 have finished, the
rate for jobs of task 2 increases until all have finished. With a ratio between execution
times closer to one, this effect decreases, as seen in Figure 5.6(b) and 5.6(c), and the
tardiness of jobs of each task equalizes.

● ●
●
● ●

● ●
● ●

●
● ●

● ●
●
● ●

● ●
●
● ●

●
● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) e1/Up = 0.05

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(b) e1/Up = 0.25

● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(c) e1/Up = 0.5

● ●
●
●
●
●
●
●●

●
●
●●

●
●
● ●

●
● ●

●
● ●

● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(d) e1/Up = 0.05

● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(e) e1/Up = 0.25

● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(f) e1/Up = 0.5

Figure 5.6: A system with two tasks using no policy (top row) and the policy
OL_POL_FAIR (bottom row) with a different ratio of execution times

The only exception is the policy OL_POL_FAIR, which sets the scheduled execution times
of jobs to their fair share regardless of the utilization of the system. As the jobs of
task 1 only require 4.75 ms, slack of 45.25 ms is generated. Jobs of task 2 require
an execution time of 90.25 ms but only receive 50 ms, they cannot finish within the
scheduled execution time and are moved to EDF Recovery. There, they gain the slack
generated by the jobs of task 1. So, even with the job of task 2 in EDF Recovery, two
to three jobs of task 1 can finish per period. After the jobs of task 1 have finished, the
rate at which jobs of task 2 finish increases. Thus the tardiness of those jobs decreases.

72

Two Tasks in an Overloaded System

As seen in the previous sections, most policies do not change the schedule in an under-
loaded system. For an overloaded system, this section shows the effects that occur with
the different policies for three utilization levels. For all experiments in this section, the
ratio of execution times is 0.25.

No overload handling For scheduling two tasks with a skew (e1/Up = 0.25) of execu-
tion times and a total utilization Up = 1.2 without overload management, Figure 5.7(b)
shows the tardiness of each job. Jobs of the task 1 have an execution time of 30 ms, job
of task 2 execute for 90 ms.

The schedule is constructed by ATLAS from the latest deadline. As the system is over-
loaded, some jobs are scheduled at a point in the past. Those jobs are directly moved to
EDF Recovery.

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ●●●●●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(c) Up = 2.0

Figure 5.7: Policy: OL_POL_NONE

The jobs of each task alternatingly receive execution time in the ATLAS band. The
jobs start execution on the first job that is still in the ATLAS band. When a job cannot
finish in time, it executes the remainder of its execution time on its successors reserved
execution time when it is scheduled. After the last deadline at time 2.5 s has passed,
the remaining jobs are moved to CFS and finish execution there. As tasks in CFS receive
time independent of their deadlines and submitted execution times, the shorter jobs
are able to finish in quick succession while the longer jobs finish after them. This can
both be seen in Figures 5.7(b) and 5.7(c) for a utilization of 1.2 and 2.0 after the last
deadline at time 2.5 s.

Policy: OL_POL_FAIR When scheduling with the fair policy, both tasks receive a fair
share of 50 ms in the ATLAS band. This produces a schedule that alternatingly assigns
50 ms to jobs of each task. The modified schedule is not overloaded, but jobs of task 2
cannot finish, as they require an execution time of 90 ms for a total utilization of 1.2
and of 150 ms for Up = 2.0. The short jobs can always finish on their timeslice, as they
require at most 50 ms for a utilization of 2.0.

73

● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●●●●●●●●●●●●●●●●●●●●●●●●●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(c) Up = 2.0

Figure 5.8: Policy: OL_POL_FAIR

This can be seen in Figure 5.8(b) where one job of task 1 finishes per period. As the
short job does not require the 50 ms assigned to it, slack is generated. The job of the
other task executes the full 50 ms, but does not finish. Therefore, it is moved to EDF

Recovery, where it can use the 20 ms of slack generated by the job of task 1. In total,
the job of task 2 can execute for 70 ms, which is not sufficient for it to finish. Thus, the
completion of jobs of task 2 is not monotonic, which can be seen as gaps, for example
shortly after time 1 s.

After the last deadline, all jobs of task 1 have finished, while jobs the remaining jobs of
task 2 are moved to CFS. There they finish at a higher rate, as the competing load from
jobs of task 1.

Figure 5.8(c) shows the situation for a higher utilization, causing jobs of task 2 to ini-
tially finish at a lower rate than with Up = 1.2.

Policy: OL_POL_FIXED The fixed policy cuts back each job’s execution time reserva-
tion in the ATLAS scheduling band by the same amount of time. Up = 1.2 requires the
overload handling to cut back 20 ms per period which is distributed among the jobs in
every period by 10 ms each. Every short job is cut back from 30 ms to 20 ms and every
long job from 90 ms to 80 ms.

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ●● ● ●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(c) Up = 2.0

Figure 5.9: Policy: OL_POL_FIXED

74

In Figure 5.9(b), jobs execute on their scheduled execution time. As the scheduled
execution is not sufficient for jobs of either task to finish, they continue execution on
the next job’s time. This continues until the latest deadline, when all remaining jobs are
moved to CFS, where they are scheduled independent from their deadline and execution
time. The steps that can be seen in Figure 5.9(b) can currently not be explained and
require more research.

Policy: OL_POL_PROP The policy OL_POL_PROP cuts back jobs proportionally to their
reserved execution times. Thus, with a ratio of execution times of 0.25 the short jobs
get cut back from 30 ms to 25 ms and long jobs from 90 ms to 75 ms.

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ●● ● ●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s
(c) Up = 2.0

Figure 5.10: Policy: OL_POL_PROP

Like with the policy OL_POL_FIXED, this causes all jobs to be scheduled on their succes-
sors time. When the scheduled deadline of the current job has passed, the remaining
jobs are again moved to CFS and executed there.

Policy: OL_POL_DROP The drop policy removes the required cutback from the last
jobs in the schedule. For a utilization of Up = 1.2 this would cut back the last 4 jobs of
each task, resulting in a cutback of 4 · (30ms+90ms) = 480ms and the last 8 jobs in the
schedule set to zero scheduled execution time. The remaining 20 ms would be cut back
from the job previous to the 8 jobs that were cut back to zero.

Depending on the submission order, this might either be a long or a short job, resulting
in the short job being cut back to 10 ms or the long job to 70 ms. This does effectively
shorten the sum of execution times in the schedule to the available amount of time.
When ignoring deadlines, this would yield a feasible schedule, but as jobs are still bound
by their deadline, they can only be moved so they finish at their deadline.

This causes the schedule, in case of Up = 1.2, to only be cut back by one period or
100 ms. The remaining 400 ms are still in front of the schedule in an interval that is
already in the past.

75

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●●●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(c) Up = 2.0

Figure 5.11: Policy: OL_POL_DROP

The jobs in the beginning of the schedule shown in Figure 5.11(b) are moved to EDF

Recovery. The jobs then execute on the scheduled execution time of the remaining
jobs in the ATLAS band. At some point in time, they reach the jobs that were cut back to
zero. At this point, they are moved to EDF Recovery and execute in EDF Recovery in
order of increasing deadlines. When the latest deadline has passed, all jobs are moved
to CFS and continue their execution there.

Policy: OL_POL_LAXITY With the laxity-based policy, the required cutback is dis-
tributed proportional to jobs’ laxity. Jobs with a higher laxity get cut back more than
jobs with a lower laxity. For example, a system with only two jobs J1 = (e1 : 3, d1 5) and
J2 = (e2 : 4, d2 : 5) would be overloaded by 2 time units. job J1 would have a laxity of
2 and job J2 a laxity of 1. The sum over all laxities would thus be 3. Therefore, job J1
would be cut back by 2 · 2/3 and job J2 by 2 · 1/3, resulting in scheduled execution times
of ê1 = 12/3 and ê2 = 31/3.

A problem with this policy is that shorter jobs are inherently disadvantaged by it. If a
short job and a long job have the same deadline, the short job will always be cut back
more than the long job, as it has a higher laxity.

Also, the same problem as with the drop policy exists: later jobs are cut back more, as
they have a higher laxity. This ignores that jobs just cannot be moved far enough into
the future, as they are bound by their deadline.

76

● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●●

−2

−1

0

1

2

0 1 2
Finishing Time

Ta
rd

in
es

s

(a) Up = 0.95

● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ●

● ● ●
● ● ● ●

●
●

−2

−1

0

1

2

0 1 2 3
Finishing Time

Ta
rd

in
es

s

(b) Up = 1.2

●
● ● ●

●

●
●

●
●

●●●●●
●

●
●

●
●

●
●

●
●

●
●

−2

−1

0

1

2

0 1 2 3 4 5
Finishing Time

Ta
rd

in
es

s

(c) Up = 2.0

Figure 5.12: Policy: OL_POL_LAXITY

Those shortcomings explain the results in Figures 5.12(b) and 5.12(c). Jobs are cut
back more the later they appear in the schedule. While the first jobs can still finish in
the time assigned to them in the ATLAS band, later jobs have to use their successors
time to finish. The short jobs at the end of the schedule are cut back to zero scheduled
execution time and can thus only execute in EDF Recovery.

That shorter jobs are inherently disadvantaged, can be seen as the jobs of task 1 having
a higher tardiness compared to jobs of task 2. After the latest deadline, all jobs are
scheduled in CFS.

77

6 Conclusion

In this work, I presented different methods for handling overload with the ATLAS real-
time scheduler. As one part of this work, policies for handling overload when it has
already occurred were examined. As the other part, facilities for preventing a system
from becoming overloaded in the first place were implemented.

In the kernel infrastructure, different policies were implemented that cut back an over-
loaded schedule to transition it back into a state of being non-overloaded. Furthermore,
a system call was realized, that exports information about the current load situation
from the kernel to userspace.

The in-kernel infrastructure uses an overloaded schedule, calculates by how much it is
overloaded and distributes this overload as a cutback among all jobs on the run queue.
How this distribution is done can by controlled by selecting one of five different policies.

These policies represent different heuristics for valuing jobs in a system. While the fixed
policy is mostly of theoretical nature, the proportional policy might prove beneficial with
jobs that work less than submitted. The drop policy does not work well with a periodic
task set, but might be suited when many jobs have a shared deadline. The laxity based
policy did also not work too well with periodic tasks but could work better in a system
that is only transiently overloaded. Lastly, the fair policy showed to be well applicable
to prioritize short jobs of a periodic task over longer ones.

In the ATLAS runtime, I implemented a load manager, that is able to use the informa-
tion provided by the aforementioned system call to enqueue work into ATLAS without
overloading the schedule. It provides a convenient interface, that might in the future be
combined with ATLAS’ work queues. The load manager can make use of two different
modes of operation: functional alternatives and iterative refinement.

Functional alternatives might for example be used when applications can start alterna-
tive workloads with different execution times. The load manager can choose an alter-
native, that fits the current schedule, execute it, and return the delivered result to the
calling task.

Iterative refinement functions can be used, when an application knows, that it needs
a result at a certain point in time but can handle different levels of precision for this
result. The load manager then runs the iterative refinement function for as long as
possible until the deadline. In this period, it adapts the submitted execution time of the
iterative refinement function via the system call atlas_update.

The load manager was evaluated and showed, that it does not cause other jobs, that are
already in the system to miss their deadlines. This holds for the functional alternatives
as well as the iterative refinement mode. Work started in either of the two modes of

78

operation are themselves able to meet their given deadlines. The load manager is thus
suitable to prevent a system from becoming overloaded in the first place.

79

Glossary

aperiodic An aperiodic task emits only one job. 15, 16, 21, 28, 33

clairvoyant A scheduling algorithm is called clairvoyant if, at time 0, it knows about all
tasks that will be scheduled 11

feasible A schedule is said to be feasible if all tasks that are schedueled complete within
their respective deadline. 32, 33

on-line A scheduling algorithm is called on-line, if it is given no information about tasks
before they are submitted/released. 11, 36

optimality “[. . .] an algorithm is said to be optimal if it may fail to meet a deadline
only if no other algorithms of the same class can meet it.” [But11] 33

overloaded See underloaded. 38

periodic A periodic task emits jobs regularly, with a given period. 15, 16

sporadic A sporadic task emits jobs irregularly, with a given minimum inter-arrival time.
15, 16

underloaded “A system is underloaded if there exists a schedule that will meet the dead-
line of every task and overloaded otherwise.” [KS92] 38, 81

81

List of Acronyms

API application programming interface 25

APIC advanced PIC 13, 84

ATLAS Auto-Training Look-Ahead Scheduler 11–13, 21–30, 36, 43–49, 55–58, 60, 62,
64, 68, 70, 71, 73, 78, 86

BIOS basic input/output system 62

BWP Blue When Possible 41

CBS Constant Bandwidth Server 19, 21, 38, 39, 41

CFS Completely Fair Scheduler 18–21, 23, 24, 29, 30

CPU central processing unit 11, 13, 14, 17–21, 24–26, 30, 60, 62

DHCP Dynamic Host Configuration Protocol 62

DSS Dynamic Sporadic Server 38

ECET expected case execution time 36

EDF earliest deadline first 16, 22, 23, 32–34, 36, 38–41

EP ExceptionPart 36

EPU Effective Processor Utilization 37

FIFO first-in-first-out 21, 26

FTP File Transfer Protocoll 62

GCD Grand Central Dispatch 21, 25, 26, 28

GED Guaranteed Earliest Deadline 34

GMP GNU Multiple Precision Arithmetic Library 67

GPL GNU General Public License 16

HLF Horizon Load Function 47, 55, 65

IC integrated circuit 13

83

ILF Interval Load Function 47, 54, 55, 65

IP Internet Protocol 62

ISA instruction set architecture 16

KVM Kernel-based Virtual Machine 60

LAPIC local APIC 13

LRT latest release time 22, 36

LST Latest Start Time 38

MED Robust Earliest Deadline with multiple task rejection 36

MMU memory management unit 13

MP MainPart 36

MUF maximum utilization factor 36

OS operating system 11, 13, 14, 16

PARSEC Princeton Application Repository for Shared-Memory Computers 63

PIC programmable interrupt controller 13, 83

PIT programmable interrupt timer 13

POSIX Portable Operating System Interface 19, 21

PXE Preboot Execution Environment 62

QoS Quality of Service 11, 12, 15

RAM random access memeory 62

RED Robust Earliest Deadline with single task rejection 33, 34, 36

RMS rate monotonic scheduling 16, 34

ROBUST Resistance to Overload By Using Slack Time 36, 37

RR round-robin 21

RTO Red Tasks Only 40, 41

SMP symmetric multiprocessing 19

STL Standard Template Library 43

TAFT Time-Aware Fault-Tolerant 36

84

TBS Total Bandwidth Server 38

TP TaskPair 36

WCET worst case execution time 11, 16, 21, 34, 36, 38

85

List of Figures

2.1 Different types of real-time jobs . 15
2.1(a) hard . 15
2.1(b) firm . 15
2.1(c) soft . 15

2.2 Scheduling classes implemented in Linux [Wei16] 20
2.3 ATLAS in Linux’ scheduler hierarchy [Wei16] 22
2.4 Example of scheduling in ATLAS . 23

2.4(a) J1 is submitted . 23
2.4(b) J2 is submitted . 23
2.4(c) J3 is submitted . 23
2.4(d) J1 is allowed to pre-roll . 23

3.1 The domino effect [But05b] . 35
3.1(a) A non-overloaded schedule . 35
3.1(b) Job J0 is accepted, causing the domino effect 35

4.1 Slack-based overload detection . 46
4.1(a) Non-overloaded schedule . 46
4.1(b) Overloaded schedule . 46

4.2 Application of a fixed cutback to the schedule 50
4.2(a) An overloaded schedule . 50
4.2(b) The non-overloaded schedule after applying a fixed cutback to it . 50

4.3 Application of a proportional cutback to the schedule 51
4.3(a) An overloaded schedule . 51
4.3(b) The non-overloaded schedule after applying a proportional cut-

back to it . 51
4.4 Application of a laxity-based cutback to the schedule 52

4.4(a) An overloaded schedule . 52
4.4(b) The non-overloaded schedule after applying a laxity-based cut-

back to it . 52
4.5 Application of a cutback to a fair share to the schedule 53

4.5(a) An overloaded schedule . 53
4.5(b) The non-overloaded schedule after applying a cutback to fair share

to it . 53
4.6 Application of a cutback to the last job . 54

4.6(a) An overloaded schedule . 54
4.6(b) The non-overloaded schedule after applying a cutback to the last

job . 54

86

5.1 Influence of the parameters on the wall clock time of bodytrack 63
5.2 The load manager using functional alternatives 66

5.2(a) Up = 0.1 . 66
5.2(b) Up = 0.2 . 66
5.2(c) Up = 0.5 . 66
5.2(d) Up = 0.9 . 66

5.3 Error and wall clock time of the iterative π calculation 67
5.4 The load manager using an iterative refinement function 69

5.4(a) Up = 0.1 . 69
5.4(b) Up = 0.2 . 69
5.4(c) Up = 0.5 . 69
5.4(d) Up = 0.9 . 69

5.5 A system with a single task in different load situations 71
5.5(a) Up = 0.95 . 71
5.5(b) Up = 1.0 . 71
5.5(c) Up = 1.05 . 71
5.5(d) Up = 1.1 . 71
5.5(e) Up = 1.5 . 71
5.5(f) Up = 2.0 . 71

5.6 A system with two tasks using no policy (top row) and the policy OL_POL_FAIR
(bottom row) with a different ratio of execution times 72
5.6(a) e1/Up = 0.05 . 72
5.6(b) e1/Up = 0.25 . 72
5.6(c) e1/Up = 0.5 . 72
5.6(d) e1/Up = 0.05 . 72
5.6(e) e1/Up = 0.25 . 72
5.6(f) e1/Up = 0.5 . 72

5.7 Policy: OL_POL_NONE . 73
5.7(a) Up = 0.95 . 73
5.7(b) Up = 1.2 . 73
5.7(c) Up = 2.0 . 73

5.8 Policy: OL_POL_FAIR . 74
5.8(a) Up = 0.95 . 74
5.8(b) Up = 1.2 . 74
5.8(c) Up = 2.0 . 74

5.9 Policy: OL_POL_FIXED . 74
5.9(a) Up = 0.95 . 74
5.9(b) Up = 1.2 . 74
5.9(c) Up = 2.0 . 74

5.10 Policy: OL_POL_PROP . 75
5.10(a)Up = 0.95 . 75
5.10(b)Up = 1.2 . 75
5.10(c)Up = 2.0 . 75

5.11 Policy: OL_POL_DROP . 76
5.11(a)Up = 0.95 . 76
5.11(b)Up = 1.2 . 76
5.11(c)Up = 2.0 . 76

87

5.12 Policy: OL_POL_LAXITY . 77
5.12(a)Up = 0.95 . 77
5.12(b)Up = 1.2 . 77
5.12(c)Up = 2.0 . 77

88

List of Listings

2.1 Submitting an ATLAS-job from C . 29
2.2 Submitting an ATLAS-job using execution time prediction 31

4.1 Calls to is_overloaded and handle_overload 44
4.2 The structure atlas_load_stats . 55
4.3 The class load_manager . 56
4.4 An example of using functional alternatives with the load manager 58
4.5 An example of using iterative refinement functions with the load manager 59

5.1 QEMU invocation . 60
5.2 /init script in the initramfs . 61

89

List of Tables

4.1 Possible values for kernel.sched_atlas_overload_detection 45
4.2 Possible values for kernel.sched_atlas_overload_policy 48

5.1 Parameters and execution times used with the functional alternatives ex-
periment . 64

5.2 Alternatives chosen by the load manager with different utilizations 65
5.3 e1/e2 in ms for each configuration . 70

90

Bibliography

[AB98] Abeni, L. and Buttazzo, G. Integrating multimedia applications in hard real-
time systems. In: Real-Time Systems Symposium, 1998. Proceedings., The 19th
IEEE, pp. 4–13. IEEE (1998).

[App09] Apple, Inc. Grand Central Dispatch (2009).
https://web.archive.org/web/20090920043909/http://images.

apple.com/macosx/technology/docs/GrandCentral_TB_brief_

20090903.pdf

[App16] Apple, Inc. Dispatch (2016).
https://developer.apple.com/reference/dispatch

[BC05] Bovet, D. P. and Cesati, M. Understanding the Linux Kernel. O’Reilly Media, 3
edition (2005). ISBN 0596005652,9780596005658.

[BG01] Becker, L. B. and Gergeleit, M. Execution environment for dynamically
scheduling real-time tasks. REPORT-UNIVERSITY OF YORK DEPARTMENT OF
COMPUTER SCIENCE YCS, pp. 13–16 (2001).

[BH93] Baruah, S. and Haritsa, J. R. ROBUST: a hardware solution to real-time over-
load, volume 21. ACM (1993).

[BKM+91] Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., and Shasha,
D. On-line scheduling in the presence of overload. In: Foundations of Com-
puter Science, 1991. Proceedings., 32nd Annual Symposium on, pp. 100–110.
IEEE (1991).

[BKM+92] Baruah, S., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.,
Shasha, D., and Wang, F. On the competitiveness of on-line real-time task
scheduling. Real-Time Systems, volume 4(2):pp. 125–144 (1992).
http://dx.doi.org/10.1007/BF00365406

[BL11] Bienia, C. and Li, K. Benchmarking modern multiprocessors. Princeton Univer-
sity USA (2011).

[BS93] Buttazzo, G. C. and Stankovic, J. A. RED: Robust earliest deadline scheduling.
University of Massachusetts, Department of Computer Science (1993).

[BS95] Buttazzo, G. C. and Stankovic, J. A. Adding robustness in dynamic preemptive
scheduling. In: Responsive Computer Systems: Steps Toward Fault-Tolerant
Real-Time Systems, pp. 67–88. Springer (1995).

[But05a] Buttazzo, G. C. Rate Monotonic vs. EDF: Judgment Day. Real-Time Sys-
tems, volume 29(1):pp. 5–26 (2005). ISSN 1573-1383. doi:10.1023/B:

91

https://web.archive.org/web/20090920043909/http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
https://web.archive.org/web/20090920043909/http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
https://web.archive.org/web/20090920043909/http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
https://developer.apple.com/reference/dispatch
http://dx.doi.org/10.1007/BF00365406

TIME.0000048932.30002.d9.
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9

[But05b] Buttazzo, G. C. Soft real-time systems: predictability vs. efficiency. Series in
computer science (New York, N.Y.). Springer, 1 edition (2005). ISBN 0-387-
23701-1,9780387237015,9780387281476,0387281479.

[But11] Buttazzo, G. Hard real-time computing systems: predictable scheduling al-
gorithms and applications, volume 24. Springer Science & Business Media
(2011).

[Ces14] Cesati, M. Overview of the Linux Scheduler Framework (2014).
http://retis.sssup.it/rts-like/cesati.pdf

[GN02] Gergeleit, M. and Nett, E. Scheduling transient overload with the taft sched-
uler. GI/ITG specialized group of operating systems (2002).

[Hof15] Hoffmann, H. JouleGuard: energy guarantees for approximate applications.
In: Proceedings of the 25th Symposium on Operating Systems Principles, pp.
198–214. ACM (2015).

[HSC+11] Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., and
Rinard, M. Dynamic knobs for responsive power-aware computing. In: ACM
SIGPLAN Notices, volume 46, pp. 199–212. ACM (2011).

[IEE08] IEEE Standards Association and others. IEEE Standard for Information Tech-
nology - Portable Operating System Interface (POSIX(R)). IEEE Std 1003.1,
2004 Edition The Open Group Technical Standard. Base Specifications, Issue
6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-2002 and
IEEE Std 1003.1-2001/Cor 2-2004. Shell, pp. 1–3874 (Dec 2008). doi:
10.1109/IEEESTD.2008.7394902.

[KS92] Koren, G. and Shasha, D. Dover : an optimal on-line scheduling algorithm for
overloaded real-time systems. In: Real-Time Systems Symposium, 1992, pp.
290–299. IEEE (1992).

[KS95] Koren, G. and Shasha, D. Skip-over: Algorithms and complexity for over-
loaded systems that allow skips. In: Real-Time Systems Symposium, 1995.
Proceedings., 16th IEEE, pp. 110–117. IEEE (1995).

[Lee15] Leemhuis, T. Die Neuerungen von Linux 4.0 (2015).
https://heise.de/-2600242

[LL73] Liu, C. L. and Layland, J. W. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. J. ACM, volume 20(1):pp. 46–61 (January
1973). ISSN 0004-5411. doi:10.1145/321738.321743.
http://doi.acm.org/10.1145/321738.321743

[LNL87] Lin, K.-J., Natarajan, S., and Liu, J. W.-S. Imprecise results: Utilizing partial
computations in real-time systems. In: IEEE Real-Time Systems Symposium,
San Jose, CA (1987).

92

http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://retis.sssup.it/rts-like/cesati.pdf
https://heise.de/-2600242
http://doi.acm.org/10.1145/321738.321743

[Loc86] Locke, C. D. Best-effort decision making for realtime scheduling. Ph. D. thesis,
Department of Computer Science, Carnegie Mellon University (1986).

[Ric99] Richling, M. Approximate Pi via a beautiful, but inefficient, formula. (1999).
https://www.mitchr.me/SS/exampleCode/GMP/piWallis.c.html

[Roi13] Roitzsch, M. Practical Real-Time with Look-Ahead Scheduling. Ph.D. thesis, TU
Dresden (2013).

[SA00] Stappert, F. and Altenbernd, P. Complete worst-case execution time
analysis of straight-line hard real-time programs. Journal of Systems
Architecture, volume 46(4):pp. 339–355 (2000). ISSN 1383-7621. doi:
http://dx.doi.org/10.1016/S1383-7621(99)00010-7.
http://www.sciencedirect.com/science/article/pii/

S1383762199000107

[See13] Seeker, V. Process Scheduling in Linux (12 2013).
https://criticalblue.com/news/wp-content/uploads/2013/12/

linux_scheduler_notes_final.pdf

[TB14] Tanenbaum, A. S. and Bos, H. Modern Operating Systems. Pearson, 4th edition
(2014). ISBN 013359162X, 9780133591620.

[Tor15] Torvalds, L. Linux (2015).
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.

git/?h=v4.0

[van11] van Riel, R. [patch -v8 4/7] sched: add yield_to(task, preempt) functionality.
(2011).
https://lkml.org/lkml/2011/1/31/423

[W3T16] W3Techs. Usage statistics and market share of Unix for websites (11 2016).
https://w3techs.com/technologies/details/os-unix/all/all

[WEE+08] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., and Stenström, P. The Worst-case Execution-time
Problem—Overview of Methods and Survey of Tools. ACM Trans. Embed.
Comput. Syst., volume 7(3):pp. 36:1–36:53 (May 2008). ISSN 1539-9087.
doi:10.1145/1347375.1347389.
http://doi.acm.org/10.1145/1347375.1347389

[Wei16] Weisbach, H. Multi-Processor Look-Ahead Scheduling. Master’s thesis, TU Dres-
den (2016).

93

https://www.mitchr.me/SS/exampleCode/GMP/piWallis.c.html
http://www.sciencedirect.com/science/article/pii/S1383762199000107
http://www.sciencedirect.com/science/article/pii/S1383762199000107
https://criticalblue.com/news/wp-content/uploads/2013/12/linux_scheduler_notes_final.pdf
https://criticalblue.com/news/wp-content/uploads/2013/12/linux_scheduler_notes_final.pdf
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/?h=v4.0
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/?h=v4.0
https://lkml.org/lkml/2011/1/31/423
https://w3techs.com/technologies/details/os-unix/all/all
http://doi.acm.org/10.1145/1347375.1347389

	Motivation
	Scheduling
	A Primer on Scheduling
	Real-Time
	Soft, Firm, and Hard Real-Time
	Aperiodic, Periodic, and Sporadic Tasks

	Linux
	Processes
	Schedulers

	ATLAS
	Kernel
	Userland

	Usage
	ATLAS without its Runtime
	ATLAS with Concurrent Queues

	Overload
	EDF and RMS in Overload
	TAFT scheduler
	ROBUST
	Dover
	CBS
	Adaption to Overload
	Service Adaption
	Job Skipping
	Period Adaption

	Design & Implementation
	Formalism
	Kernel
	Overload Detection
	Overload Handling
	Configuration

	System Call
	Userland
	Modes of Operation
	Execution Times and Deadlines
	Example—Functional Alternatives
	Example—Iterative Refinement

	Evaluation
	Setup
	Development
	Experiments

	Overload Avoidance
	Functional Alternatives
	Iterative Refinement Functions

	Overload Handling
	Setup
	Results

	Conclusion
	Glossary
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	Bibliography

