MASTER’S THESIS

Multi-Processor
[.ook-Ahead
cheduling

Hannes Weisbach

February 3, 2016

Technische Universitat Dresden
Fakultit Informatik

Institut flir Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Hirtig
Betreuender Mitarbeiter: Dr.-Ing. Michael Roitzsch

Task

Atias, developed at the Operating Systems Chair, is an infrastructure
to assign CPU time. Central goal of Atras is to simplify development
of real-time applications by relieving the programmer of the burden of
providing period and execution time.

Currently, the implementation of Atras in the Linux operating sys-
tem only supports uni-processor operation. The goal of this thesis is
to add multi-processor support to the existing implementation.

The scientific question of this thesis lies in the design and imple-
mentation of a user space/kernel space interface for multi-processor
Atias. The programming paradigm of Atras and the goal of us-
ability should be maintained and, if necessary, extended with suitable
primitives to support parallel execution.

The evaluation should include a comparison of Atrras with an exist-
ing Linux multi-processor scheduler, as well as determine the cost of a
scheduling decision and the corresponding overhead for applications.

Selbststiandigkeitserklirung

I hereby declare, that I have authored this thesis independently, mak-
ing use only of the specified aids.

Hiermit erklire ich, dass ich diese Arbeit selbststindig erstellt und
keine anderen als die angegebenen Hilfsmittel benutzt habe.

Dresden, den 3. Februar 2016

Hannes Weisbach

To my parents,
Andrea and Udo Weisbach.

Contents

Background 13

ATrAS on Uni-Processor Systems 29
ATLAS on Multi-Processor Systems 41
Evaluation 55

Conclusion & Future Work 69

Bibliography 77

Introduction

12

After more than 40 years of research in real-time scheduling the
results of that research are predominantly applied to traditional control
applications. Poster children for soft-real-time applications such as
video decoding, video conferencing and multimedia applications
in general are still run as best-effort computations in mainstream,
general-purpose computing.

One of the reasons applications do not take advantage of real-time
scheduling is that mainstream operating systems" such as Microsoft®
Windows®, Apple® Mac OS®, Linux®, i0OS®, and Android™ have
no conveniently usable support for applications to communicate their
computation requirements. Another reason might be, that the rigid
periodic job model, which a large part of the real-time scheduling
theory is based on, is not a good fit for applications with large varia-
tions in computation requirement.

At least Linux and Mac OS allow applications to specify a recurring
computation requirement.> How should programmers know how
much CPU time the critical part of their application needs? To quote
from the Kernel Programming Guide of Mac OS:

“It is very important to make a reasonable guess about your thread’s
workload if it needs to run in the real-time band.”3

Just guessing seems easy, but it is really not. Consider the diversity of
hardware an application runs on and their difterent processing capabil-
ities. Regardless of whether the application is running on a powerful
desktop processor or an energy-efficient mobile processor, the time
requested from the system must be sufficient to complete the com-
putation. The result is gross over-estimation of computation require-
ment, which wastes resources and limits the number of concurrently
executing real-time applications.

This is the point where the Atras# infrastructure offers a solution.
Applications using Atras are not restricted to the periodic job model.
Atras offers an easy-to-use API inspired by GCD to submit arbitrary
collections of jobs. Instead of worst-case execution times, the abstrac-
tion of a workload metric is introduced to allow developers eftortless
specification of computation requirement in the application domain.

The existing implementation of Arias lacks support for load
balancing and migration. The Arras runtime is restricted to serial
queues. The goal of this thesis is to design, implement, and analyze
support for concurrent queues, load balancing and migration for the
Linux implementation of ATLAsS.

I give an introduction to uni- and multi-processor scheduling the-
ory, the Linux scheduling core, and Apple Inc’s Grand Central Dis-
patch in chapter Background. In chapter Atias on Uni-Processor Systems
I recapitulate the core ideas of Arras. Finally, in chapter Atras on
Multi-Processor Systems, I describe the design and implementation of
multi-processor support in Arras, including support for concurrent
queues, followed by a characterization of its performance in chapter

Evaluation.

' StatCounter Global Stats. Top 8 Op-
erating Systems from Dec 2014 to Dec 2015.
(Visited on o1/20/2016).

* Dario Faggioli et al. An EDF scheduling
class for the Linux kernel. In: Proceedings
of the Real-Time Linux Workshop. 2009.
Apple, Inc. Kernel Programming Guide.
2013. (Visited on 02/02/2016), chap-

ter “Mach Scheduling and Thread
Interfaces”.

3 Emphasis mine.

+ Michael Roitzsch, Stefan Wichtler,
and Hermann Hirtig. ATLAS: Look-
Ahead Scheduling Using Workload Metrics.
In: 19th Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS).
IEEE. 2013, pp. 1—10. Stefan Wichtler.
Look-Ahead Scheduling. Diploma Thesis.
Technische Universitit Dresden, 2012.

http://gs.statcounter.com/#all-os-ww-monthly-201412-201512
http://gs.statcounter.com/#all-os-ww-monthly-201412-201512
http://retis.sssup.it/people/faggioli/papers/RTLW-2009-edf_refined.pdf
http://retis.sssup.it/people/faggioli/papers/RTLW-2009-edf_refined.pdf
https://developer.apple.com/library/prerelease/mac/documentation/Darwin/Conceptual/KernelProgramming/About/About.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6531074
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6531074
http://os.inf.tu-dresden.de/papers_ps/waechtler-diplom.pdf

Background

14

Let me start this thesis with an introduction of the terminology I use
within this thesis, accompanied by an overview of uni- and multi-
processor real-time scheduling theory. I examine the Linux scheduler
as an example of a practical scheduler implementation and round off
this chapter by presenting the Grand Central Dispatch (GCD) parallel
programming model as an alternative to explicit thread-parallelism.

Schedulers

In contemporary, multi-programmed desktop operating systems,
multiple processes can be in the ready state at the same time. If more
than a single process is in the ready state, a decision has to be made
which processes to run next. The scheduler employs a scheduling
algorithms to make that decision.

A scheduling algorithm is selected to fit the requirements of a par-
ticular use case or type of operating system. The literature® discrim-
inates between three use cases: batch processing systems, interactive
systems and real-time systems.

‘When multiple processes are ready, selecting any process over any
other has both advantages and drawbacks? Thus, there is no “univer-
sally best” choice and hence no scheduling algorithm is universally
applicable.

A scheduling algorithm is designed to meet specific goals with its
process selection. Some goals, like fairness, are common to all system
types. Comparable processes should receive a comparable share of
CPU time, regardless of whether it is in a batch system, an interactive
desktop computer or an embedded real-time control system. System-
specific goals are, for example, throughput and minimal makespan
in batch systems, response time in interactive systems and to meet

deadlines or minimizing tardiness in real-time systems.

A SCHEDULE CAN BE COMPUTED AHEAD OF TIME and is only re-
enacted when the system is running. Such schedulers are called of-
fline schedulers. Using an offline scheduler is a robust way to schedule
real-time systems. When an offline schedule for a real-time system

is created, it also doubles as feasibility test. The fact that a schedule
could be found proves that the task set is feasible. Offline schedulers
are not suitable for any interactive system, where the set of running
programs changes either as a result of user input or some other exter-

nal event.

FOR INTERACTIVE SYSTEMS online schedulers have to be used. Online
schedulers construct a schedule during runtime, with the additional
hurdle of limited knowledge. In this thesis I only consider online
schedulers.

' Andrew S. Tanenbaum. Modern Operat-
ing Systems. 2nd Edition. Upper Saddle
River; NJ 07458: Prentice Hall, 2001.

> For example fork(). Selecting the
parent saves context-switch overhead
but the child is not interactive. On the
other hand, assuming that the child
will perform an exec() may save copy-
on-write overhead, if the child runs
first.

http://books.google.com/books?vid=ISBN0130926418
http://books.google.com/books?vid=ISBN0130926418

Real-Time

As soon as computers were integrated in control loops, the point in
time a computation completed became critical. In contrast to non-
real-time systems, correctness in real-time system not only depends
on the logical value of the result, but also on the time the result is
available. For every real-time computation, there is a point in time
when the result has to be available. This point in time is called the
deadline. If the result of the computation is available before its deadline
passes, the computation is said to meet its deadline, otherwise it misses its
deadline.

DEPENDING ON THE CONSEQUENCES of a deadline miss, real-time
systems are categorized into soff-, firm-, and hard-real-time systems.

In hard-real-time systems all deadlines must be met. Missing even a
single deadline is considered an operational failure of the system with
possibly catastrophic consequences. Often-quoted examples for real-
time systems are digital controllers in process plants, flight controllers
in airplanes, radar signal processing,3 or engine control units in cars.4

Firm-real-time systems do not require each deadline to be met.

It suffices that a certain number of consecutive deadlines are met. A
result delivered after the firm deadline has passed has no use, the same
as in hard-real-time systems.

Soft-real-time systems allow for an arbitrary number of missed
deadlines, in the worst-case a soft-real-time system can miss all dead-
lines. Results are still useful, even if they are delivered after the dead-
line has passed. However, deadline misses cause a soft-real-time sys-
tem to degrade in performance. Typical soft-real-time systems include
multimedia applications such as video conferencing, video streaming,
and video decoding. Virtual reality applications also have real-time
constraints, moving to hard-real-time to prevent virtual reality sick-
ness.> But also non-virtual reality games can be considered real-time
applications.

TO COMPARE REAL-TIME SCHEDULING ALGORITHMS, | will select one
metric among four candidates I found in the literature.> The candidate
metrics under consideration are utilization bound, approximation ratio,
resource augmentation, and empirical measurement.

The utilization bound of a real-time scheduling algorithm A uy, is
the maximum number such that all task sets with utilization u < uy
can be feasibly scheduled by algorithm A7 The advantage of a uti-
lization bound over other metrics is that it can be used as a sufficient
feasibility condition which can be efficiently evaluated.

The notion of a utilization bounds extends naturally to multi-
processor systems. A system with m processors, each of unit-capacity,
can thus sustain a load of maximum m. No real-time multi-processor
scheduling algorithm can have a utilization bound better than m.

The approximation ratio compares the performance of an algorithm
A with an optimal, potentially hypothetical, scheduling algorithm.

BACKGROUND I3

3 Jane W. S. Liu. Real-Time Systems.
Prentice Hall, 2000.

+ Hermann Kopetz. Real-Time Systems:
Design Principles for Distributed Embedded
Applications. Springer Science & Business
Media, 2011.

5 Atman Binstock. Powering the Rift. May
2015. (Visited on 12/30/2015).

°Robert I. Davis and Alan Burns. A
Survey of Hard Real-Time Scheduling

for Multiprocessor Systems. In: ACM
Computing Surveys 43.4 (2011), p. 35.

7 Liu and Layland offer an alternate
definition in Chung Laung Liu and
James W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. In: Journal of the ACM 20.1
(1973), pp. 46—61. A task set is said to
fully utilize a processor under a priority
assignment, if any increase in execution
time of any task makes the priority
assignment infeasible. Over all task

sets that fully utilize a processor, the
minimum utilization is the least upper
bound of the utilization, or utilization
bound, of a static priority scheduling
algorithm.

http://books.google.com/books?vid=ISBN0130996513
http://books.google.com/books?vid=ISBN9781441982377
http://books.google.com/books?vid=ISBN9781441982377
http://books.google.com/books?vid=ISBN9781441982377
https://www.oculus.com/en-us/blog/powering-the-rift/
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
http://www.di.ens.fr/~pouzet/cours/systeme/bib/liu73.pdf
http://www.di.ens.fr/~pouzet/cours/systeme/bib/liu73.pdf
http://www.di.ens.fr/~pouzet/cours/systeme/bib/liu73.pdf

16

For example, let my be the number of processors required to feasibly
schedule a task set T using algorithm A and mg the minimal number
of processors required to feasibly schedule the same task set 7.8 Then,
as mg approaches infinity, the ratio of R, = ma/m, is called the approx-
imation ratio of algorithm A. If %, is finite, A is called approximate; if
Rq =1, A s called optimal.?

Instead of comparing the required number of processors, resource
augmentation compares the performance of an algorithm A with an
optimal scheduling algorithm by the required relative speed of the
same number of processors. Resource augmentation assumes a linear
relationship between the increase in processing speed and the decrease
in execution time. Assume task set T on an m-processor system with
unit-speed processors. Task set 7 is feasible on m processors using
scheduling algorithm A, if the processors are running with speed f (7).
The resource augmentation factor for algorithm A is now given by
fa = maxy, . (f(7)). Again, it f, = 1, A is optimal.™®

The performance of scheduling algorithms can be empirically mea-
sured using randomly generated task sets. If a feasibility test is known,
the number of generated task sets, that are feasible, can be compared
to the number of task sets deemed feasible by the scheduling algo-
rithm. Otherwise, the relative performance of two or more algorithms
can be evaluated using generated task sets. Additionally, simulation
can be a tool in determining the number of migrations and preemp-
tions required by an algorithm.™

I will use the utilization bound as a comparative metric for schedul-
ing algorithms. On multi-processor systems, the utilization bound is
often an expression depending on the number of processors m. For
complex expressions, the limit of the expression as m tends to infinity
allows an easy comparison of algorithms.

Uni-Processor Real-Time Scheduling

To guarantee that all deadlines in a hard-real-time system can be met,
it is analyzed and validated with formal methods. To that end, Liu and
Layland introduced in their seminal paper'? the periodic task model.

Computation demand is modelled with tasks executing periodically
recurring jobs. Jobs are characterized by a release time r, an execu-
tion time requirement e, and a deadline d. The time between release
times of subsequent jobs of a task is called the task’s period p. The
ratio of execution time and period ¢/p is called the utilization u of a
task. The utilization of a task system is the sum of the utilization of all
tasks in the system. To cope with variable execution time requirement
between successive jobs, a task is modelled with the maximum execu-
tion time requirement that can occur, the worst-case execution time
(WCET).

Often, the deadline is assumed to coincide with the end of the
period, forming implicit deadline task systems.

Furthermore, the Liu and Layland task model assumes a processor
has unit-capacity and no overload occurs. Jobs are preemptible at arbi-

% Sudarshan K. Dhall and Chung Laung
Liu. On a Real-Time Scheduling Problem.
In: Operations Research 26.1 (1978),

pp- 127—140.

o Davis and Burns, “A Survey of Hard
Real-Time Scheduling for Multiproces-
sor Systems”.

° Davis and Burns, “A Survey of Hard
Real-Time Scheduling for Multiproces-
sor Systems”

" Davis and Burns, “A Survey of Hard
Real-Time Scheduling for Multiproces-
sor Systems”

2 Liu and Layland, “Scheduling Al-
gorithms for Multiprogramming in a
Hard-Real-Time Environment”

http://dx.doi.org/10.1287/opre.26.1.127

trary points in time and such context-switches occur instantaneously,
i.e. require no CPU time. If the number of preemptions are bounded,
context-switch costs can be incorporated into the worst-case execu-
tion time.

Table 1 summarizes the notation used in this thesis.

Access to a shared resource can be arbitrated in a round-robin
fashion to provide equal shares or by using a notion of importance, a
priority. In real-time scheduling theory priorities are assigned to tasks
or jobs. The scheduler then only needs to pick the task with highest
priority or highest priority job to run next.

In the following recapitulation of uni-processor real-time schedul-
ing algorithms, I will use the task set listed in Table 2 as running ex-
ample to illustrate the delineating characteristics between the pre-
sented algorithms.

ONE OF THE MOST PROMINENT uni-processor scheduling algorithms is
Rate Monotonic Scheduling (RMS),!3 introduced with Liu and Layland’s
periodic task model, mentioned above. Tasks are assigned priorities
according to their period, with smaller periods having higher prior-
ity. Such an assignment is called a static priority assignment, because
priorities do not change during runtime.

The RMS algorithm is an optimal scheduling algorithm within the
class of static priority algorithms. This means that if any scheduling
algorithm using static priority assignment yields a feasible schedule,
then a schedule obtained from RM priority assignment will also be
feasible. A drawback of static priority assignment is that the resource
utilization depends on the periods of tasks. In the worst-case, the
utilization bound is In 2. The RM priority assignment achieves a
utilization bound of 1.0 only for task sets with harmonic periods.

Figure 1 shows the RM-schedule of the exemplary task set from
Table 2. With a utilization of ~0.93 the existence of a feasible RM-
schedule is not guaranteed for this task set. At time unit 1o task 7,
misses indeed a deadline.

To achieve a utilization bound of 1.0 for general task sets, a dynamic
priority scheduling algorithm, such as Eatliest-Deadline-First (EDF) 4
is required. Unlike static priority assignment, a task’s priority may
change during runtime. Priority assignment in EDF is quite intuitive:
a job with a close deadline has a higher priority than a job with a
deadline further in the future. A task is thus assigned the priority of its
current job. EDF is optimal with respect to schedulability in the class
of dynamic priority scheduling algorithms.

A necessary and sufficient feasibility test for EDF on uni-processor
systems is # < 1. With a utilization of 0.93, a feasible EDF schedule
is guaranteed to exist for the example task set. The EDF-schedule of
the example task set from Table 2 is depicted in Figure 2. Between
time unit 19 and 20 the processor is idle for one time unit.

The goal of a real-time scheduler is to meet all deadlines. But
there is no gain in completing jobs long before their deadline is up.
Latest-Release-Time-First (LRT)'S postpones execution of jobs until

BACKGROUND 17

Table 1: Summary of notation for Liu
and Layland tasks.

Symbol Meaning
m number of processors
n number of tasks
T set of tasks
T; i-th task
r;=r(T;) release time of task i
e;=e(T;) execution time of task i
pi =p(T;) period of task i
i =d(T;) deadline of task i
u;=u(t;) =5t utilization of task i
U= er i utilization of task set T

slack of task 7 at time 7

Table 2: Task set used as example for
uni-processor scheduling algorithms.

Task (e;,p;)
T (3,7)
To (5,10)

1 Liu and Layland, “Scheduling Al-
gorithms for Multiprogramming in a
Hard-Real-Time Environment”.

Figure 1: RMS schedule of task set from
Table 2 with deadline miss of J, at time

unit To.
v deadline miss

0 3 7 10

“W.A. Horn. Some Simple Scheduling
Algorithms. In: Naval Research Logistics

Quarterly 21.1 (1974), pp. 177-18s.

Figure 2: EDF produces a feasible
schedule for the task set from Table
2. Between time units 19 and 20 the
processor is idle.

0 3 8 11 16

20

5 Liu, Real-Time Systems.

http://onlinelibrary.wiley.com/store/10.1002/nav.3800210113/asset/3800210113_ftp.pdf;jsessionid=2398F7613706E99BEFF1183DB5AE23B4.f04t01?v=1&t=iiir6hm8&s=1f297bb66d5d3b32b54dcd0958fe30f525924d74
http://onlinelibrary.wiley.com/store/10.1002/nav.3800210113/asset/3800210113_ftp.pdf;jsessionid=2398F7613706E99BEFF1183DB5AE23B4.f04t01?v=1&t=iiir6hm8&s=1f297bb66d5d3b32b54dcd0958fe30f525924d74

18

the latest possible moment such that the deadline can still be met.
LRT interchanges release time and deadline of a job and uses EDF to
construct a schedule “backwards” from the future to the current time.
Hence, LRT is also known as “reverse EDF” or “backwards EDF”.
By pushing the execution of a job as far into the future as possible,

the slack of those jobs can be used to decrease the response time of
soft-real-time or best-effort jobs. Same as EDE LRT is optimal with
respect to schedulability, but unlike EDE, LRT requires the knowledge
of execution times. LRT is not a priority-driven algorithm since it is
non-work-conserving.

LRT has the same feasibility test as EDF does and so LRT produces
a feasible schedule for the example task set from Table 2. The resulting
schedule is visualized in Figure 3. In the LRT schedule the processor
is idle between time units o and 1, although there are active jobs.
Hence, LRT is non-work-conserving.

Yet another algorithm for real-time scheduling on uni-processors
is Least-Slack-Time-First (LST), also known as Minimum-Laxity-First
(MLF).'6 The laxity, or slack, of a job is, informally speaking, the
amount of time by which the job can “move around”. Consider a
job scheduled with EDF: the job is executed as early as possible, only
preceded by jobs with earlier deadlines. In LRT, the same job is exe-
cuted as late as possible, only superseded by jobs with later deadlines.
The difference between a job’s position in an EDF and LRT schedule
are part of the jobs laxity. More formally, at any time ¢, a job with
deadline d and and remaining execution time e has a laxity equal to
t —d — e.'7 Jobs with smaller laxity are given higher priority: the less
“wiggle room” a job has to meet its deadline, the more important it
becomes.

Like LRT, LST requires a-priori knowledge of a job’s execution
time. The continuous computation of laxity can be computationally
expensive. The main difference between LST and EDF/LRT is, that
LST has a “more dynamic” priority assignment. In EDE the pri-
ority of a task depends on the task’s current job. The task’s priority
changes only between jobs, but remains constant during execution of
any single job. In LRT, a job’s laxity (and hence it’s priority) remains
constant as long as the job is scheduled. When a job is preempted, its
laxity decreases linearly. At the same time, the priority of the job in-
creases. This additional dynamism has no advantage for uni-processor
scheduling, as EDF is already optimal with respect to schedulabil-
ity up to utilization 1.0, but it will be important for multi-processor
scheduling. This fully-dynamic priority assignment has the drawback
that LST can degenerate into time-slicing if two jobs with equal laxity
execute concurrently.

Figure 4 shows the LST schedule for the example task set from
Table 2. Between time units 1 and 5 as well as between 14 and 18 LST
degenerates into time slicing when both tasks reach a slack of 4. This
state only stops when either job has finished execution for the current
period. To prevent time-slicing, modified versions of LST have been
proposed, which allow laxity inversion.”® Laxity inversion describes

Figure 3: LRT schedule is similar to the
EDF schedule. The idle-time between
time units o and 1 shows that LRT is
non-work-conserving.

12 17

01 4 9 20

1 Yet another name is Least-Laxity-First
(LLF).

7 Liu, Real-Time Systems

Figure 4: LST schedule with degrada-
tion to time-slicing between time units
1to s and 14 to 18.

S22 S
1

01 3 5 8 1 14 18 20

% Sung-Heun Oh and Seung-Min
Yang. A Modified Least-Laxity-First
Scheduling Algorithm for Real-Time Tasks.
In: Proceedings of the sth International
Conference on Real-Time Computing
Systems and Applications. IEEE. 1998,
pp- 31-36.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=726348
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=726348

the situation where the task with least laxity is not scheduled to avoid

time-slicing.

Multi-Processor Real-"Time Scheduling

Having more processors to execute tasks on does not make real-time
scheduling easier. Liu notes: '

Few of the results obtained for a single processor generalize directly to
the multiple processor case; bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact that a task can
use only one processor even when several processors are free at the same
time adds a surprising amount of difficulty to the scheduling of multiple
processors.

The new dimension mentioned by Liu is the spatial dimension. A uni-
processor only schedules in the femporal dimension, selecting the next
process to run. A multi-processor scheduler not only has to answer
the question of which process to run next, but “Which process to
run next on which CPU?” For the rest of this thesis, let m denote the
number of processors in a multi-processor system. I will use processor,
core, or processor core interchangeably to denote a hardware resource
suitable for program execution. I will only consider systems with
homogeneous resources. As with uni-processor systems, I assume
preemption occurs instantaneously, as does migration.

A straightforward extension from uni-processor priority-driven
real-time scheduling to multi-processor scheduling would be to ex-
ecute the highest priority task on any free processor. If, during run-
time, a job arrives with higher priority than any currently scheduled
job, the currently running task with the lowest priority is preempted
and the newly arrived task is executed. This scheme is called global
scheduling, because all tasks are kept in a global run queue.

Using global scheduling, task sets with utilization 1.0 are trivially
feasible using a dynamic priority, uni-processor scheduling scheme on
a single processor. As Dhall and Liu showed, the minimum achievable
utilization using either RMS or EDF on a system with more than one
processor may be as low as 1.0.2°

Consider the task set from Table 3, with the RMS and EDF sched-
ule depicted in Figure s as an example for m = 2 processors. This
example can be extended to a system with m processors with m tasks
having the characteristics of 7| and 7, and one task with the char-
acteristics of 3. Letting ¢ tend to zero, the utilization tends towards
1.021 This is also known as Dhall’s eftect.

Dhall’s effect causes a task with high utilization to experience in-
terference from a task with low utilization.>*> Realizing the cause of
Dhall’s eftect, global, static-priority scheduling algorithms with guar-
anteed utilization bounds were devised, based on the idea of utilization
separation. Ultilization separation algorithms divide a task set into heavy
and light tasks, according a utilization value ¢, which is a parameter
of the algorithm. This threshold is often expressed in the number of
available processors, m. All tasks in the heavy set are given the highest

BACKGROUND 19

¥ Chung Laung Liu. Scheduling Al-
gorithms _for Multiprocessors in a Hard
Real-Time Environment. In: Space Programs
Summary. Vol. II. The Deep Space Net-
work. 37-60. Jet Propulsion Laboratory,
1969. Chap. 3, pp. 28—31.

Table 3: Task set exhibiting Dhall’s effect
when scheduled using RMS or EDF on
a two-processor system.

Task (e;,p;)
T (2e,1)
To (26,1)
T3 (1,1+¢)

Figure 5: Example of Dhall’s effect
when using RMS or EDE

P, B

! deadline miss ¥

Po
0 2¢ T+e

20 Dhall and Liu, “On a Real-Time
Scheduling Problem”

>t The actual utilization of such a task set
for m processors is u =2em + %{ Dhall
and Liu, “On a Real-Time Scheduling
Problem”

2 Cynthia A. Phillips et al. Optimal
Time- Critical Scheduling Via Resource
Augmentation. In: Proceedings of the 29th
annual ACM Symposium on Theory of
Computing. ACM. 1997, pp. 140—149.
Shelby Funk, Joel Goossens, and Sanjoy
Baruah. On-line Scheduling on Uniform
Multiprocessors. In: Proceedings of the 22nd
Real-Time Systems Symposium. IEEE.
2001, pp. 183—192.

https://ia800302.us.archive.org/18/items/nasa_techdoc_19700013503/19700013503.pdf
https://ia800302.us.archive.org/18/items/nasa_techdoc_19700013503/19700013503.pdf
https://ia800302.us.archive.org/18/items/nasa_techdoc_19700013503/19700013503.pdf
http://www.cs.unc.edu/~baruah/Teaching/2001S/Papers/extra-resources.pdf
http://www.cs.unc.edu/~baruah/Teaching/2001S/Papers/extra-resources.pdf
http://www.cs.unc.edu/~baruah/Teaching/2001S/Papers/extra-resources.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/funkGB2001.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/funkGB2001.pdf

20

priority. The tasks in the light set are assigned priority according to a
secondary algorithm.

RM-US[m/3m-2]23 uses RMS to prioritize light tasks. Its utilization
bound 1s %, and approaches 33 % for large m. The algorithm is
parameterized with a utilization threshold of ¢ = 3" to separate light
from heavy tasks. Lundberg proved the optimal utilization threshold
for RM-US isin fact ¢ = 0.374 as m tends to infinity>4 Andersson
and Jonsson showed that the upper bound on the utilization bound is
V2 - 1 ~ 0.41 for global static priority-driven scheduling algorithms s

SM-US|[2/3+5] 20 uses the slack monotonic priority assignment
scheme for light tasks. With a utilization bound of 0.382 SM-US
improves upon RM-US, not yet achieving the optimal utilization
bound of 0.41. Andersson, Baruah, and Jonsson showed that there can
be no static-priority multi-processor scheduling algorithm, global or
otherwise, with utilization bound better than 0.5.27

Unlike on uni-processor systems, using dynamic priority assign-
ment for multi-processor scheduling does not yield a stronger utiliza-
tion bound over optimal static-priority based algorithms. Srinivasan
and Baruah showed that no priority-driven multi-processor schedul-
ing algorithm can achieve a utilization bound better than mTH.ZS

Consider a task system of m + 1 identical tasks, each of which has an
execution time requirement of 1 + ¢ and a period of 2, ¢ being an ar-
bitrarily small, positive number. A dynamic priority-driven algorithm
must assign each job a priority. Remember that, once a priority has
been assigned to a job, the priority remains fixed for the duration of
the job2? Which ever job is assigned the lowest priority will miss its
deadline. Figure 6 depicts a possible schedule for m = 2.

A dynamic priority algorithm achieving the upper bound on
the utilization bound of Srinivasan and Baruah of mT” is FPEDF 3°
rPEDF is an improvement upon the utilization separation-based EDF-
US|[m/2m-1] 3! Baruah was able to prove EDF-US worked correctly
with a utilization threshold ¢ of 0.532

ANOTHER APPROACH TO SCHEDULE A TASK SET on a multi-processor
is to assign tasks to processors and then schedule each processor lo-
cally. This approach is called partitioned scheduling. Scheduling each
processor locally is appealing, because efficient, well-known, and op-
timal scheduling algorithms can be used. Optimally assigning tasks
to processors can be reduced to the bin packing problem, which is
NP-complete. An optimal assignment of items, the tasks, to bins, the
processors, requires a minimal number of bins. Since the number of
processors in a machine is usually fixed, a task system is not feasible if
the minimal number of bins of an assignment exceeds the number of
available processors.

Task sets are usually small, which makes solving the bin-packing
problem optimally easier. Although efficient algorithms, to solve the
pin-packing problem optimally, are known,3? those algorithms are still
too slow to apply them on-line. Heuristics are employed to find a
near-optimal solution. To perform partitioning, tasks are first sorted,

3 Bjorn Andersson, Sanjoy Baruah, and
Jan Jonsson. Static-priority scheduling on
multiprocessors. In: Proceedings of the 2znd
Real-Time Systems Symposium. IEEE.
2001, Pp. 193—202.

2 Lars Lundberg. Analyzing Fixed-
Priority Global Multiprocessor Scheduling.
In: Proceedings of the Eighth Real-Time

and Embedded ‘Technology and Applications
Symposium. IEEE. 2002, pp. 145—153.

» Bjorn Andersson and Jan Jonsson. The
utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are
50%. In: Proceedings of the 15th EuroMicro
Conference on Real-Time Systems. July
2003, pp. 33—40.

20 Bjorn Andersson. Global Static-Priority
Preemptive Multiprocessor Scheduling with
Utilization Bound 38%. In: Principles

of Distributed Systems. Springer, 2008,

pp- 73-88.

*7 Andersson, Baruah, and Jonsson,
“Static-priority scheduling on multipro-
cessors”

> Anand Srinivasan and Sanjoy Baruah.
Deadline-based scheduling of periodic task
systems on multiprocessors. In: Information
Processing Letters 84.2 (2002), pp. 93—98.

» Otherwise the algorithm is referred
to as fully dynamic, for example LST in
the uni-processor case.

Figure 6: The maximum utilization
bound for priority-driven multi-

. . . mtl
processor scheduling algorithms is “5—.

P
! 2 deadline miss ¥
Po

0 T+e 2

3 Sanjoy Kumar Baruah. Optimal
Utilization Bounds for the Fixed-priority
Scheduling of Periodic Task Systems on Iden-
tical Multiprocessors. In: IEEE Transactions
on Computers 53.6 (2004), pp. 781—784.

3t Srinivasan and Baruah, “Deadline-
based scheduling of periodic task
systems on multiprocessors”.

32 In my opinion, FPEDF should have
been called EDF-USJ[0.5], showing that
it is an existing algorithm with improved
parametrization.

33 Richard E. Kort. A New Algorithm
for Optimal Bin Packing. In: AAAI-02
Proceedings. 2002, pp. 731—736

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990610
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990610
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1137389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1137389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
http://www.springerlink.com/index/7226g6t22k778j87.pdf
http://www.springerlink.com/index/7226g6t22k778j87.pdf
http://www.springerlink.com/index/7226g6t22k778j87.pdf
http://www.sciencedirect.com/science/article/pii/S0020019002002314
http://www.sciencedirect.com/science/article/pii/S0020019002002314
http://www.cs.unc.edu/techreports/03-022.pdf
http://www.cs.unc.edu/techreports/03-022.pdf
http://www.cs.unc.edu/techreports/03-022.pdf
http://www.cs.unc.edu/techreports/03-022.pdf

most commonly in order of decreasing utilization, and subsequently
assigned to a processor using a bin-packing heuristic such as First-Fit,
Next-Fit, Best-Fit, or Worst-Fit.34

A task fits on a processor if the sum of the utilization of the new
task and the utilization of all tasks already placed on the processor does
not exceed the capacity of the processor.

First-Fit allocation places a task on the first processor where it fits.
If no such processor exists, the task is assigned to a new processor.

Next-Fit allocation remembers the processor to which the last
task was assigned. Next fit assigns tasks to the same processor as long
as they will fit, allocating to an empty processor if a task does not
fit. The Next fit strategy does not revisit processors once they were
considered at capacity and a new processor is allocated.

The Best-Fit strategy places a task on a processor such that the
capacity remaining after the task is assigned to the processor is min-
imized. If more than one such assignment exists, the processor with
the smallest index is chosen. If the task does not fit on any processor,
a new processor is allocated.

The Worst-Fit strategy is the opposite of Best fit. Instead of mini-
mizing the remaining capacity after the task 1s placed on a processor,
the remaining capacity is maximized.

For arbitrary task sets, the underlying bin-packing problem limits
the maximal utilization bound to 0.5 for partitioned scheduling.3s

BEING ABLE TO USE ONLY HALF of the processing capability of a ma-
chine is unsatisfactory and inefficient. As Funk et al. note, under the
assumption that migration and context switching are free° a task set is
theoretically feasible if (1) the load of the task set does not exceed the
total machine capacity, (2) each task’s period or deadline is larger than
it’s execution time requirement, and (3) preemption and migration is
allowed 37

Using this model, Funk et al. argue that it is possible to reschedule
jobs after time €. As ¢ — 0, each task appears to be running contin-
uously at a rate necessary to meet its deadline. This model has been
termed fluid scheduling model3® With the fluid scheduling model, a
task set is feasible, if the capacity of the machine m is less than the sum
of the rates of all jobs. In other words, in order to achieve a utilization
bound of m, migration at arbitrary points in time and a fully dynamic
priority scheme is necessary.39

Fluid scheduling is impractical because of its infinite number of
preemptions and migrations. However, real algorithms, tracking the
fluid schedule closely, exist and they are capable of constructing feasi-
ble schedules for task sets with utilization up to and including m.

To date, the only algorithms solving multi-processor real-time
scheduling optimally are based on proportional fairness.4° Proportional
fairness forces a task’s progress to be very close to its fluid rate. The
first algorithm was PFai1r, proposed by Baruah et al#' PFair chops
the time into quanta, requiring each task to be within one quantum of

BACKGROUND 2I

3 Dhall and Liu, “On a Real-Time
Scheduling Problem”; Yingfeng Oh and
Sang H. Son. Tight Performance Bounds of
Heuristics for a Real-Time Scheduling Prob-
lem. Tech. rep. CS-93-24. 1993. Almut
Burchard et al. New Strategies for Assigning
Real-Time "lasks to Multiprocessor Systems.
In: IEEE Tiansactions on Computers 44.12
(1995), pp- 1429—1442. Omar Ulises
Pereira Zapata and Pedro Mejia Alvarez.
EDF and RM Multiprocessor Scheduling
Algorithms: Survey and Performance Evalua-
tion. In: Seccion de Computacion Av. IPN
2508 (2005).

35 Karthik Lakshmanan, Ragunathan
Raj Rajkumar, and John P. Lehoczky.
Partitioned Fixed-Priority Preemptive
Scheduling for Multi-Core Processors. In:
215t Euromicro Conference on Real-Time
Systems. IEEE. 2009, pp. 239—248.

3¢ 1.e. they occur instantaneously

37 Shelby Funk et al. DP-Fair: a unifying
theory for optimal hard real-time multiprocessor
scheduling. In: Real-Time Systems 47.5
(2011), pp. 389—429.

® Anand Srinivasan et al. The Case

for Fair Multiprocessor Scheduling. In:
Proceedings of the International Parallel and
Distributed Processing Symposium. IEEE.
2003, 10—pp.

 John Carpenter et al. A Categorization
of Real-Time Multiprocessor Scheduling
Problems and Algorithms. In: Handbook
of Scheduling: Algorithms, Models and
Performance Analysis. Ed. by Joseph Y-T.
Leung. CRC Press LLC, 2000 N.W.
Corporate Blvd., Bocy Raton, Florida
33431.: Chapman & Hall/CRC, 2004.
Chap. 30, pp. 30.1-30.30.

* Funk et al., “DP-Fair: a unifying
theory for optimal hard real-time
multiprocessor scheduling”

Sanjoy K. Baruah et al. Proportionate
Progress: A Notion of Fairness in Resource
Allocation. In: Algorithmica 15.6 (1996),
pp. 600—625.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1535&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1535&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1535&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=477248
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=477248
http://delta.cs.cinvestav.mx/~pmalvarez/multitechreport.pdf
http://delta.cs.cinvestav.mx/~pmalvarez/multitechreport.pdf
http://delta.cs.cinvestav.mx/~pmalvarez/multitechreport.pdf
http://varma.ece.cmu.edu/SysWeaver/Partitioned.pdf
http://varma.ece.cmu.edu/SysWeaver/Partitioned.pdf
http://link.springer.com/article/10.1007/s11241-011-9130-0#/page-1
http://link.springer.com/article/10.1007/s11241-011-9130-0#/page-1
http://link.springer.com/article/10.1007/s11241-011-9130-0#/page-1
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5391&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5391&rep=rep1&type=pdf
https://cs.unc.edu/~anderson/papers/multibook.pdf
https://cs.unc.edu/~anderson/papers/multibook.pdf
https://cs.unc.edu/~anderson/papers/multibook.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.5163&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.5163&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.5163&rep=rep1&type=pdf

22

its fluid rate. However, the drawback of an unnecessarily large number
of scheduling decisions and context switches remains.

A number of improvements to PFair have been proposed. ER Fa1r
is a work-conserving variant, improving job response times, especially
in light-load situations#* EK G, proposed by Andersson and Tovar,
offers a trade-off between utilization bound and a bounded number of
preemptions.43

Real-World Case: Linux

After the treatment of real-time scheduling theory in the previous
section, I will examine how a real-world, commodity operating sys-
tem implements (real-time) scheduling. As an example I chose Linux,
because Arras is implemented in Linux. Hence, this section will
double-feature to explain the mechanics used in the Linux schedul-
ing core to understand the implementation of Arras as explained in
chapters Atras on Uni-Processor Systems and Atras on Multi-Processor
Systems.

THE LINUX OPERATING SYSTEM takes a layered approach with its
scheduling framework. Each layer has a lower priority than the layer
above. Figure 7 depicts the five layers present in a Linux 4.0 vanilla
kernel. Whenever a scheduling decision has to be made, the layers are
called in order of decreasing priority until a task is returned.

The layer with the highest priority is the Stop layer. It cannot be
selected to run user processes. Only a single process is running with
Stop-priority on each run queue. In normal operation, this process
is blocked and not considered during scheduling. Once unblocked,
the stop-process preempts any running process. This property is used
for migration, since a process cannot be migrated when it is currently
running. The Stop-process then executes the code to migrate a pro-
cess.

The Deadline scheduling class provides an implementation of the
EDF scheduling algorithm for Linux44 The Deadline scheduling
class enforces temporal isolation*S between tasks by using the Constant
Bandwidth Server-Algorithm4° CBS allows to reserve a fraction of
the CPU time for a task whose computing requirement does not
easily fit with periodic task models but whose mean requirement
tor CPU time is known. Consequently, soft-real-time tasks can be
scheduled alongside hard-real-time tasks. Under default configuration
the Deadline scheduling class uses at most 9s% of CPU time of the
root_domain, leaving at least s% for lower scheduling classes.#7

The Realtime scheduling class implements the POSIX First-In-First-
Out (FIFO) and Round-Robin (RR) policies4® A process running
with the FIFO policy will never be preempted, except when exe-
cuting a synchronous blocking system call or voluntarily yielding the
CPU. A process running with the RR policy will share CPU time
equally with other processes running with RR policy. Both poli-
cies, FIFO and RR, are global static priority scheduling algorithms,

James H. Anderson and Anand
Srinivasan. Early-Release Fair Scheduling.
In: 12th Euromicro Conference on Real-Time
Systems. IEEE. 2000, pp. 35—43.

Bjorn Andersson and Eduardo To-
var. Multiprocessor Scheduling with Few
Preemptions. In: Proceedings of the 12th
International Conference on Embedded

and Real-Time Computing Systems and
Applications. IEEE. 2006, pp. 322—334.

Figure 7: The five scheduling classes in
the Linux scheduling framework and the
scheduling policies they implement.

Deadline DEADLINE

RR
FIFO

Realtime

BATCH
NORMAL
IDLE

Faggioli et al., “An EDF scheduling
class for the Linux kernel”

+ Temporal isolation prevents tasks from
influencing other tasks ability to meet
their deadlines. In other words, no

task can cause another task to miss a
deadline.

+ Luca Abeni and Giorgio Buttazzo.
Integrating Multimedia Applications in Hard
Real-Time Systems. In: Proceedings of the
19th Real-Time Systems Symposium. IEEE.
1998, pp. 4—13.

4 Dario Faggioli, Luca Abeni, and Juri
Lelli. Deadline Task Scheduling. Linux
kernel documentation.

8 Standard for Information Technology
Portable Operating System Interface
(POSIX®) Base Specifications, Issue 7.
In: IEEE Std 1003.1, 2013 Edition (incor-
porates IEEE Std 1003.1-2008, and IEEE
Std 1003.1-2008/Cor 1-2013) (Apr. 2013),
pp. 1—3906. poI: 10.1109/IEEESTD.
2013.6506091.

http://www.cs.unc.edu/~anderson/papers/euro00.pdf
https://www.artemis-emmon.eu/docs/multiprocessor_scheduling_with_few_preemptions/259/view.pdf
https://www.artemis-emmon.eu/docs/multiprocessor_scheduling_with_few_preemptions/259/view.pdf
http://www.itmexicali.edu.mx/posgrado/str/abeni98integrating.pdf
http://www.itmexicali.edu.mx/posgrado/str/abeni98integrating.pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://dx.doi.org/10.1109/IEEESTD.2013.6506091
http://dx.doi.org/10.1109/IEEESTD.2013.6506091

but can be restricted to partitioned scheduling by adjusting a process’
affinity mask 49

User processes are usually scheduled by the Normal scheduling pol-
icy. The Normal policy corresponds to the POSIX scheduling policy
SCHED_OTHER. The algorithm currently used for the Normal policy is
the Completely Fair Scheduler (CFS). “CFS [...] models an ‘ideal, precise
multi-tasking CPU’ on real hardware.”5° Ideal multi-tasking describes
a model in which each process runs at equal speed, i.e. if there are
n processes running, each process receives an equal share of 1/n-th of
CPU time. With this construction, CFS is based on the principle of
fair quening 5 originally invented for network scheduling. The share
of received CPU time of a process is represented by the virtual runtime
metric in CFS. Thus, CFS always picks the process with the lowest
virtual runtime.

The concept of virtual runtime is also used by the Borrowed Vir-
tual Time (BVT) scheduling algorithm.5> BVT also aims at equally
distributing CPU time across all applications as well as providing low-
latency for interactive and real-time applications.

The scheduling policies Batch and Idle, also implemented by CFS,
are Linux specific. The Batch policy trades decreased interactivity for
increased throughput. The Idle policy is used to schedule background
processes. Processes scheduled by the Idle policy only run when no
other process is ready.

THREADS AND PROCESSES are equivalent entities for the Linux schedul-

ing framework. Threads are implemented in Linux as light-weight
processes (LWP). Both, processes and threads, are represented by an in-
stantiation of struct task_struct. The scheduling framework refers
to tasks and processes as scheduling entities, embodied by a struct
sched_entity embedded in each task_structs3 A scheduling layer
may add additional sched_entity structures to hold per-task informa-
tion relevant to the scheduling algorithm implemented in that layer.

LINUX USES A HYBRID SCHEDULING scheme when running on multi-
processor machines. Linux maintains a run queue for each CPU core,
which is a feature of partitioned scheduling algorithms. Tasks on each
run queue are scheduled independently from tasks on all other run
queues in the system. While this approach eliminates contention on
global data structures, it does not balance load between CPU cores.
While one core might be idle another core might have two or more
ready processes.

To mitigate such imbalances, whenever a CFS run queue has no
ready processes it tries to steal work from other run queues’# by mi-
grating processes to itself until the load is balancedss Additionally,
load balancing is initiated in fixed intervals within a scheduling do-
main. Dynamic task migration is a feature of global scheduling algo-
rithms. Migrations are not fully dynamic as in real-time scheduling
algorithms nor are they only performed on tasks joining the system,

BACKGROUND 23

By setting the affinity mask to a subset
of the available cores, a hybrid between
global and partitioned scheduling can be
created.

5° Ingo Molnar. CFS Scheduler. Linux
kernel documentation.

st John Nagle. On Packet Switches with
Infinite Storage. In: Transactions on Commu-
nications 35.4 (1987), pp. 435—438.

52 Kenneth J. Duda and David R.
Cheriton. Borrowed-Virtual-Time (BVT)
scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In:
SIGOPS Operating Systems Review.

Vol. 33. 5. ACM. 1999, pp. 261—276.

3 sched_entity structures are also used
to implement group scheduling in
Linux. In that case, they are used to
form a hierarchy of processes. Jonathan
Corbet. CFS group scheduling. In: LWN
(July 2007).

s+ Actually, balancing only takes place
within a scheduling domain and between
CPU groups.

5s Migration is further constrained by
CPU-affinity of threads.

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1096782
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1096782
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
http://lwn.net/Articles/240474/

24

leading to the conclusion that Linux uses a hybrid approach between
global and partitioned scheduling.

Strictly partitioned scheduling is not suitable for Linux because of
its primary use as non real-time operating system. As a desktop op-
erating system the applications run on Linux do not fit the stringent
scheme of real-time scheduling models. Instead, desktop and mul-
timedia applications are reactive and alter between CPU-intensive
phases, 170, and idle times.

ConTrARY TO CFS, the Realtime and Deadline scheduling classes in
Linux also perform load balancing during normal scheduling decisions
and operations. During normal operations, there are two mechanisms
by which tasks can be migrated. A task can be pushed away by its
current run queue, or it can be pulled by its new run queue. The
difference is in which run queue initiates the migration.

Load balancing and migration in the Realtime scheduling class has
the goal that no task is blocked while another task with lower priority
is scheduled on another CPU. Put differently, the m currently running
tasks are in fact the m currently ready tasks with the highest priorities.

Similarly, for the Deadline scheduling class this means that no
task should run when a task with an earlier deadline is ready but not
scheduled on any other processor. Or, more formally, the m currently
running tasks are in fact the m tasks in the systems with the earliest
deadlines which are also currently ready.

When either scheduling class violates its precondition to run the m
tasks which are both ready and have the highest priority according to
the respective scheduling class, the system is unbalanced and migration
is initiated. By allowing such fine grained migrations the schedule
constructed by the partitioned Linux scheduler approaches the sched-
ule constructed by a global scheduler. The implementation of the
Linux scheduling framework might cause unnecessary migration as
well as fail to perform necessary migrations.’¢

In an unbalanced system, a run queue has free capacity when it runs
a task with low priority while a task with higher priority, but on
another run queue, is not scheduled. Conversely, a run queue is over-
loaded when a high priority task has to wait while on another run
queue a task with lower priority is running.

Consider Figure 8. Let’s assume that each job is assigned a priority
corresponding to its number, i.e. Job 1 has priority 1 and so forth.

Let priority 1 be the highest priority. Considering each run queue
separately — partitioned — Figure 8 shows a priority-driven schedule.
Reconsidering the system under a global schedule, J;, with low pri-
ority, is scheduled before J,. Under a global perspective the system

is not priority-driven. In this case the run queue of processor P has
free capacity and the run queue of processor Py is overloaded. An
overloaded run queue does, in this context, not necessarily imply that
the tasks exceed the processing capacity of the CPU. Conversely, free
capacity does not necessarily imply that idle time exists in the schedule
of a run queue.

56 Bjorn B. Brandenburg. Scheduling
and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis. 2011.
Chapter 3, page 175

Figure 8: An unbalanced system, be-
cause low priority job J3 executes
before a job with higher priority, J,.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf

BACKGROUND

A pull balancing operation is initiated by a run queue which has
free capacity. Capacity can be generated by a task dropping from its
real-time or EDF priority back to the normal priority level. Other
reasons are that a task has finished or has been migrated to another
CPU, possibly on a user’s request.

Load balancing via push operation is initiated by a run queue
which is overloaded. Unblocking a previously blocked task is a possi-
ble source of overload. The Realtime and Deadline scheduling classes
additionally check for overload and initiate pushing on every schedul-

ing decision.

A PER-CPU RUN QUEUE PERFORMING LOAD BALANCING during
scheduling decisions has the caveat of having to acquire a second run
queue lock. The problem this creates is that resources, the run queue
locks, can be acquired in multiple orderings. Maintaining a consistent
order of acquiring locks is important, because improper lock ordering
may cause deadlocks.

The solution is to potentially drop the lock of the current run
queue, so that both locks can be acquired in a consistent order. This
solution has the drawback that dropping a lock introduces a race con-
dition in a critical section. After the balancing operation is complete,
the preconditions of the critical section have to be re-checked if they
still hold. For run queue locks this entails checking that no schedul-
ing layer of higher priority has now a ready task. If so, the scheduling
decision has to be aborted and the selection of the next task has to be
re-started from the beginning.

Linux uses the addresses of locks to define a locking order. Locks
with lower addresses have to be taken first, i.e. when holding lock L,
at memory location my, lock L, at memory location m, may only be
acquired if and only if my < my.

A SCHEDULING CLASS IN THE LINUX SCHEDULING FRAMEWORK
implements an interface consisting of 24 functions}7 half of which are 57 As at Linux 4.2

optional 3 Merely seven functions are documented.s I recapitulate s Seven functions deal with SMP
support; six of them are optional.

callbacks necessary for general scheduling classes and those important
9 Molnar, CFS Scheduler.

for Atras in particular.

enqueue_task puts the scheduling entity which is passed as argu-
ment in the run queue of the scheduling class. enqueue_task is usually
called when a blocked thread or process becomes ready, but it is also
called when changing a tasks scheduling class or migrating a task.

dequeue_task is the inverse operation of enqueue_task. It removes a
blocked task from the run queue. Additionally, it also used switching a
scheduling class and during migration.

yield_task is called when a task is voluntarily giving up the CPU.
Conceptually, the scheduling entity is put at the end of the run queue.

check_preempt_curr determines if a task that just unblocked should
preempt the currently running task.

pick_next_task returns the next task to run during scheduling
decisions. This function is called for each scheduling class until a

25

26

valid task_struct is returned. A return value of NULL indicates that
a scheduling class has no ready tasks. A return value of RETRY_TASK®
is used to signal the scheduling framework that the selection process
should be restarted.

put_prev_task stops a running task. This function is used when a
new task is selected, during migration, and when the scheduling class
of a task is changed.

select_task_rq returns the CPU on which a task should run.
This is only done to place a task after wake up or when a new task is
spawned.

migrate_task_rq informs the scheduling class that the task_struct
passed as argument is about to be migrated to another CPU. The
CPU number is also passed as an argument.

set_cpus_allowed notifies the scheduling layer that a process’ affin-
ity mask has changed.

set_curr_task updates the run queue’s current task in case of mi-
grations and changes of scheduling class.

task_tick is the point where Linux feeds a time base into schedul-
ing classes. task_tick is called for the scheduling class of the currently
running scheduling entity.

switched_from is called when a process changed its scheduling class.
It is called for the previous scheduling class.

switched_to is called when a process changed its scheduling class.
It is called for the new scheduling class. The new scheduling class can
determine if it is necessary to preempt the currently running task.

update_curr updates the runtime statistics of the currently running
task. Updates to statistics are performed only if up-to-date values are
required.

Grand Central Dispatch

In the last 10 years parallel computing became available in all major

form factors,’!

even tablets and smartphones are featuring quad- and
octa-core processors.®? At the same time, software cannot make ef-
fective use of this increase in parallelism. Flautner et al. found that
“using more than two processors is not likely to yield great improve-
ments”, when analyzing response times of desktop application on
multi-processor machines.®3 Flautner et al. note that most applica-
tion had thread-level parallelism of under 1.4. 10 years later, Blake

et al. conducted a similar study finding that 2 to 3 cores “are more
than adequate for most applications and that the GPU often remains
under-utilized” %+ Blake et al. conclude that threads are rather used to
structure programs than gaining parallelism.

Desktop and office applications do not lend themselves well for
parallelization using the fork-join model found, for example, in
OpenMP or Cilk. In the task parallel model, applications are de-
composed in self-contained work items, which are then distributed
and executed by threads or processes.

% RETRY_TASK is a macro expanding

to ((void*)-1UL). It is used when a
scheduling class detects the precondition
of calling pick_next_task no longer
hold. This happens, for example, when
the scheduling class dropped the run
queue lock to preserve proper lock
ordering. After reacquiring the run
queue lock, a higher priority scheduling
class now has a ready task.

° Herb Sutter. Welcome to the Parallel
Jungle. In: Dr. Dobb’s Journal. (2012).
(Visited on 10/29/2015)

2 Qualcomm Technologies, Inc. Snap-
dragon 810. (Visited on 10/29/2015)

% Kristian Flautner et al. Thread-level
Parallelism and Interactive Performance
of Desktop Applications. In: SIGOPS
Operating Systems Review 34.5 (2000),
pp- 129—138.

% Geoftrey Blake et al. Evolution of
Thread-Level Parallelism in Desktop Ap-
plications. In: SIGARCH Computer
Architecture News. Vol. 38. 3. ACM. 2010,
pp. 302—313.

http://www.drdobbs.com/parallel/232400273
http://www.drdobbs.com/parallel/232400273
https://www.qualcomm.com/products/snapdragon/processors/810
https://www.qualcomm.com/products/snapdragon/processors/810
http://web.eecs.umich.edu/~tnm/trev_test/papersPDF/2000.8.Thread-level_parallelism_ASPLOS-IX.pdf
http://web.eecs.umich.edu/~tnm/trev_test/papersPDF/2000.8.Thread-level_parallelism_ASPLOS-IX.pdf
http://web.eecs.umich.edu/~tnm/trev_test/papersPDF/2000.8.Thread-level_parallelism_ASPLOS-IX.pdf
http://web.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_ISCA2010.pdf
http://web.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_ISCA2010.pdf
http://web.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_ISCA2010.pdf

BACKGROUND

When implemented by application code, both systems have the
drawback of not knowing the effectively available amount of CPU
cores. For one, a general desktop application can be run on a wildly
diverse set of hardware. But even if the type and number of processors
in the system can be ascertained, the application has no knowledge
about the computing requirements of other software running concur-
rently.

Consequently, the execution contexts used to perform the com-
putation represented by work items have to be under the control
of a system component which both has knowledge of the hardware
configuration as well as of computation requirements of other applica-
tions. This system component is the operating system itself.

With Grand Central Dispatch% (GCD) Apple Inc. presented an 5 Apple, Inc. Grand Central Dispatch
approach to shift the responsibility of managing threads away from (GCD) Reference.
applications to the operating system. As a result application developers
need to write less code and can more efficiently and eftectively utilize
a multi-processor systems. GCD i1s based on the thread pool design
pattern. The number of active worker threads in the pool of each
application is continuously adapted for optimal performance of the
whole system.

Work items, called blocks by Apple, are expressed using a language
extension to C, C++, and Objective-C which makes code and asso-
ciated data a first-class citizen of the language, much like lambdas in
C++11.

Figure 9 shows how a block is defined and used. A block is initi-
ated by a caret », followed by a compound statement containing the
code of the block. Variables available in the lexical scope where the
block is defined are available inside the block; this is called capturing
a variable. When a variable is captured, a copy of it is created and
associated with the block, so that the original value can be changed
without affecting the copy contained in the block.

Figure 9: Block object example.
#include <dispatch/dispatch.h>

#include <iostream>
void invoke(void (~block)()) { block(); }

int main() {
int a = 5;
auto block = ~{
std::cout << a << std::endl;
};
a += 1;
std::cout << a << std::endl; // prints ‘6’
invoke(block); // prints ’5’

27

https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/

28

When the value of the variable a is changed in line eleven, the copy
of a captured by creation of the block block remains unchanged.

A block’s type is spelled similar to the type of a function pointer,
exchanging the asterisk * for the caret ~. Similar to functions and

function pointers, a block can have arguments. Line four shows how a

block can be invoked using the conventional C function call syntax.

Queues are used to structure execution of work items by developers.

GCD offers queues in two flavours: serial and concurrent. Work
items submitted to global concurrent queues are dequeued by GCD
in FIFO order to be processed by a thread pool concurrently. Work
items submitted to a concurrent queue can finish execution in any
order. Serial private queues can be used to serialize access to shared
data, because work items execute in FIFO order, one at time.

A block is submitted for asynchronous execution using the dis-
patch_async function. The synchronous pendant dispatch_sync re-
turns only after the submitted work item has completed execution.

Figure 10 shows how a block is submitted to GCD for asyn-
chronous execution. In line six a reference to a concurrent dispatch
queue with DEFAULT priority is acquired %% In lines seven to nine the
block is submitted to the queue.

#include <dispatch/dispatch.h>

#include <iostream>

int main() {

int a = 5;

* GCD offers four priority levels which
are in descending order: HIGH, DEFAULT,
LOW, and BACKGROUND.

Figure 10: A simple GCD example.

auto queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_async(queue, ~{

std::cout << a << std::endl;
}); // prints ’5’ before or after ’6’ is printed.
a += 1;
std::cout << a << std::endl; // prints ’6’
dispatch_barrier_sync(queue, ~{});

In line twelve a barrier is added to the queue, so that the queue is
drained before the main thread, and hence the application, exits.

Because the block submitted to GCD is executed asynchronously by a
GCD worker thread no assumptions can be made regarding the order

of execution or completion of the block submitted to GCD and lines
ten and eleven of the main thread.

ATLAS on Uni-Processor Systems

30

This chapter provides background information about Arras and
highlights major design changes which emerged during porting Atras
to Linux 4.0. I focus the description primarily on changes to the
original implementation, but I also elaborate on details which are
important when considering multi-core support for Atras in the
following chapters. Most of Arras’ design has been presented before!
and this chapter draws heavily from this previous work.

The Atras Task Model

In Atras a GCD block corresponds to a job of a real time task. A
real time task, in turn, is represented by a serial GCD queue. The first
Atras prototype had no support for concurrent queues. Formally,
ATtias schedules a finite task set = of n tasks: T = {7,li =0,...,n}. The
task set 7 is not fixed, but may change over the runtime of the system,
because the user can start and stop applications at her discretion.

Each task 7, in Atras is a set of k jobs: 7; = {J;;1j =0,...,k}.

I will continue to use i to denote a task and j to denote a job of a
task. Atras does not use a periodic task model, so the scheduler does
not have knowledge of future jobs in form of per-task utilization

or otherwise. Atras does not assume a minimal inter-arrival time
either. Atras processes jobs in deadline order;? therefore inter-job
dependencies can be described within Atras by proper selection of
deadlines.

For non-CPU-bound work, such as I/O, Atras supports non-
real-time jobs. Non-real-time jobs are handled completely in user
space by the Arras runtime. The idea of non-real-time jobs is to help
programmers express jobs, that do neither have a deadline as such nor
have useful metrics. Without non-real-time jobs programmers would
have to invent deadline and metrics for such jobs, which stands in
contrast to Arras’ principle of helping programmers. Non-real-time
jobs are not subject of this thesis.

THE NOTATION FOR THE L1U AND LAYLAND TASK MODEL, introduced
in the Background chapter, is not suitable for the Atras task model.
Therefore, I introduce a new notion of execution time and utilization
compatible with jobs and tasks as defined by the Atras task model. A
summary of the notation is given in Table 4.

Since Atiras jobs are non-periodic, a job is only characterized
by its execution time and deadline. The Arras task model does not
presume jobs of a task 7; have a common execution time. Let J; ;
denote the j-th job of task 7;. e¢;; denotes the execution time and d;
the deadline of job J; ;. A job is released when it is submitted to the
ATtras scheduler at time r; ;.

The limited knowledge of Arras makes it hard to calculate execu-
tion times or utilizations of Atras tasks. The only feasible solution is

' Roitzsch, Wichtler, and Hirtig,
“ATLAS: Look-Ahead Scheduling
Using Workload Metrics”; Michael
Roitzsch. Practical Real-Time with
Look-Ahead Scheduling. PhD thesis.
Technische Universitat Dresden, 2013.
Wichtler, “Look-Ahead Scheduling”.

2 Previously, Atras processed jobs in
FIFO order, like GCD. I discuss why
this behaviour was unsuited for Atras
in section Concurrent Queues of chapter
Artras on Multi-Processor Systems.

Table 4: Summary of notation for Atras
tasks.

Symbol Meaning
Ji: Jj-th job of task ;
i submission time of job J; ;
e execution time of job J; ;
d;j=d(J;;) deadline of job J; ;
5;4(1) slack of job J;j at time £
u; (1) utilization of task ; at
time ¢
e; (1) execution time of task ;
at time ¢

http://os.inf.tu-dresden.de/papers_ps/roitzsch-phd.pdf
http://os.inf.tu-dresden.de/papers_ps/roitzsch-phd.pdf

ATLAS ON UNI-PROCESSOR SYSTEMS 31

an approximation based on current knowledge. I define the execution
time of an ATrAs task T; at time ¢, e(t;,1) as:

e(t;,t) =¢;(t) = Z e

JijET;

In absence of a task period, I define the utilization of an Arras task at
time ¢ as ratio of the reserved execution time and the available CPU

time:
e; (1)

n]aXJiJETi d’a] -1

M(Ti,t> = Ml(t) =

The utilization remains constant during execution of a task, but
changes if the task blocks, a new job arrives, or a job is cancelled.
The task model of Arras largely prevents a formal feasibility anal-
ysis in exchange for more flexibility when adapting applications to
Atiras. No optimal online scheduler exists for a collection of arbi-
trary jobs with more than one distinct deadline scheduled on more

than one processor,? which is exactly the flexible task model Atras s Kwang S. Hong and Joseph Y-T.
Leung. On-Line Scheduling of Real-Time

o] Tasks. In: Proceedings of the Real-Time
RTaaS the contract between application and scheduler is as follows: as Systems Symposium. IEEE. 1988, pp. 244~

provides. This leads to a concept of real-time as a service4 (RTaaS). In

long as the collection of jobs, generated by the application, is feasible, 250.
4+ Funk, Goossens, and Baruah, “On-line

the scheduler guarantees to meet all deadlines. Given a set of jobs, Scheduling on Uniform Multiproces-

feasible on a platform 7 with an optimal oftline scheduler, techniques sors”.

such as resource augmentation’ can be used to derive how much faster a s Phillips et al., “Optimal Time-Critical

platform 7" needs to be such that the task set is feasible using a non- ?Che,,d‘ﬂmg Via Resource Augmenta-
10n .

optimal online scheduler. In this thesis I restrict myself to the Liu and
Layland task model.

Auto-Training Look-Ahead Scheduling

The advantage of Arras is that it removes the burden of providing
worst-case execution times from developers by predicting execution
time requirements from workload metrics. At the same time, ATLAS
offers a flexible and easy-to-use programming interface inspired by
that of GCD.

I will start with a short overview of Arras’ inner workings. The
rest of this section contains an in-depth description of relevant parts
of the Arras runtime and scheduler. The accompanying Figure 11
visualizes graphically how ATras processes jobs.

THE ATLAS RUNTIME exposes a subset of the GCD interface so appli-
cation developers are presented with a convenient API to submit jobs
Jij = (m;,d; ;). The GCD-inspired interface allows developers to pass
an absolute deadline d;; and a vector ni; ; of workload metrics.

The Artras runtime forwards the workload metrics and its internal
state to the per-application prediction component. The predictor uses
the workload metrics to predict an approximate execution time e; ; for
the job. The job description J;; is stored by the runtime component
until the job has completed execution and its actual execution time
is known. After a job has completed, the actual execution time is

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=51119&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=51119&tag=1

32

application ' l

¢ dispatch_async_atlas T

ime «+oeee- enqueue block
runtime q block
predict
predictor store metrics

metrics

SChEUIET sttt schedule job (S8 m

measured and fed back into the prediction mechanism to improve
future predictions.

The Atras scheduling layer receives the modified job description
Ji; = (eij»d;;) from the runtime. The Atras scheduler reserves exe-
cution time for each submitted job. Because the scheduler has global
knowledge of all applications, ATrLas can optimize across processes and
predict overload situations.

What'’s All This Workload Metrics Stuff, Anyhow?°

The problem of worst-case execution times is that they depend on
the hard- and software environment of the machine the real-time
application is running on. This dependency might be manageable in
a closed system, where the configuration changes only in a controlled
way, if at all. It is not suitable for running soft-real-time applications
on ever-changing commodity hardware of end-user devices.

Even worse, application developers rarely know how to measure or
estimate worst-case execution time, or how to use the tools to do so.
Thus extra time and effort has to be spent training them. What those
developers do have is knowledge from the application domain. This is
why workload metrics, which are taken from the application domain,
are a more promising solution to specify execution times.

A workload metric is required to positively correlate with the
amount of work? which has to be performed to complete the job.
For example, a workload metric might be the number of iterations
required of a loop contained in a job.

Multiple workload metrics can be used to improve the accuracy of
the predicted execution time. Metrics not correlating well with exe-
cution times are filtered out by the prediction algorithm automatically.
Thus “bad” workload metrics cannot do any harm?

The AtrLas Runtime

The interface of the Atras runtime library consists of modified ver-
sions of the GCD functions dispatch_async and dispatch_sync? I
extended the Atrras runtime with an even more convenient C++
front end, allowing developers to pass lambda expressions in addition
to blocks.™°

run block

Figure 11: Life cycle of an Atras
job. Adapted from Michael Roitzsch.
Practical Real-Time with Look-Ahead
Scheduling. PhD thesis. Technische
Universitit Dresden, 2013.

¢ Famous analog integrated circuit
engineer Robert Allen Pease commonly
used a headline of the form What's

All This <Topic> Stuff, Anyhow? for

his column “Pease Porridge” in the
Electronic Design magazine.

71.e. the CPU time required to process
the job.

8 See Roitzsch, “Practical Real-Time
with Look-Ahead Scheduling” for a
in-depth treatment of the prediction
algorithm.

° Additionally, the functions dis-
patch_async_f and dispatch_sync_f are
available. The _f versions take a func-
tion pointer instead of a GCD block as
argument.

©© Technically, the C++ front end also
accepts references to function pointers
(R (x&) (Args)), references to functions
(R (&) (Args)) and references to blocks
(R (~&) (Args)).

http://os.inf.tu-dresden.de/papers_ps/roitzsch-phd.pdf
http://os.inf.tu-dresden.de/papers_ps/roitzsch-phd.pdf
http://electronicdesign.com/author/bob-pease
http://electronicdesign.com

ATLAS ON UNI-PROCESSOR SYSTEMS 33

As in previous versions of Atras, queues and predictors remain or-
thogonal. This means that the knowledge of the predictor is available
to every queue, so there is no necessity to submit a block to the same
queue for all its invocations. The Arras runtime identifies a block by
the pointer to the anonymous function associated with each block.

If a function pointer is submitted, it is used directly as an identifier.

To identify a lambda the hash of its type index is used.”! Polymorphic
wrappers, such as std:: function or std::packaged_task cannot be
used to specify jobs to the AtrLas runtime, because the wrapped target
is type-erased. To use polymorphic wrappers with Atras, they need
to be wrapped in a lambda,? like the example in Figure 12. It is up to
the developer to make sure that function wrappers submitted that way
share a common identity. std::bind expressions work with Atras as
long as the target is a function pointer, block or lambda.

void dispatch(dispatch_queue queue,

const std::chrono::steady_clock::timepoint deadline,

const double xmetrics, const size_t metrics_count,
std::function<void(void)> polymorphic_wrapper) {
dispatch_async(queue, deadline, metrics, metrics_count,

[f = std::move(polymorphic_wrapper)] { f(); });

Each serial queue in Atras is backed by a single worker thread. The
scheduler assigns CPU time to the worker thread according to jobs
submitted to the queue. The worker thread runs a loop, processing
jobs and training the predictor.

The Atras Scheduler

The Atras scheduling class can be thought of as an adaption layer be-
tween execution time reservation in the form of jobs and Linux pro-
cesses and threads as execution context. I will refer to all scheduling
entities, processes and threads, henceforth as threads. While techni-
cally incorrect, such a simplification improves readability and avoids

introducing a new term.'?

THE INTERFACE TO THE SCHEDULER COMPONENT consists of four
system calls.!4

submit notifies the scheduler of a new job. The arguments of the
system call are the absolute deadline of the job, the predicted execu-
tion time, the thread ID, as returned by gettid,’ of the thread sup-
posed execute the job, and an arbitrary 64 bit number identifying the
job® When the Atras runtime is used, the thread ID passed will be
the thread ID of the worker thread of the queue to which the job was
submitted. However, the scheduler interface can be used directly, so
any thread ID can be used to implement producer-consumer patterns
manually.

"http://en.cppreference.com/w/cpp/
types/type_index

2 Or any other type with an identity
that the Atras runtime recognizes.

Figure 12: Giving polymorphic wrap-
pers their identity back.

5 The much-loved ‘task’ is of no help
here, since it would only lead to confu-
sion with its overlapping use in real-time
scheduling theory.

“In the implementation the system calls
are named atlas_submit, atlas_next,
atlas_remove, and atlas_update. For
readability and typographic reasons I
will omit the atlas_-prefix.

15 Contrary to earlier versions of ATLas,
the target thread has to reside in the
same process as the submitting thread. A
thread can also submit work to itself.

1 The job ID is also a new feature.
Previous versions of Atras required
jobs to be processed in FIFO order,
requiring jobs to be submitted with
monotonically increasing deadlines.
Now, the kernel can reorder jobs
according to deadline and notify the
user space of the job to execute by
returning its ID in the next system

call. If this feature is used, the FIFO-
processing property of GCD is violated
and jobs must not depend on one
another. If in doubt, use monotonically
increasing deadlines to force jobs to be
processed in FIFO order.

http://en.cppreference.com/w/cpp/types/type_index
http://en.cppreference.com/w/cpp/types/type_index

34

next is called to notify the scheduler that a job has been completed.
This system call is invoked by worker threads of serial queues. The
worker knows what code to execute from the job description stored
by the Atras runtime. The next system call returns the 64 bit job
identifier, established when submitting a job, of the job supposed to
be executed next via out-parameter. This way, the kernel notifies the
user space which job should be processed next. While not strictly
necessary for serial queues, it will become important for concurrent
queues, discussed in chapter Atras on Multi-Processor Systems. If the
worker thread has processed the last job, the next system call will
block until new jobs have arrived.

remove causes the scheduler to discard a job from the schedule.
The job must not have been started. While the Atras runtime offers
currently no mechanism to cancel jobs, the Arras scheduler offers
that functionality. The idea is that applications can cancel optional
work in overload situations. The implementation of this feature in
applications and the Atras runtime is out of the scope of this thesis.

update changes the deadline, the execution time, or both of a job.
This system call is intended to adapt applications computation require-
ments in overload situation by reducing the execution time, extending
the deadline, or both. Like remove, there is currently no Arras run-
time interface to change a job’s metrics. The implementation of such
a feature is out of the scope of this thesis as well.

THE ATLAS SCHEDULING LAYER maintains the jobs submitted to each
thread sorted by monotonically increasing deadline. Additionally,
Atiras maintains such a list on each run queue!” with the jobs of all
threads on that CPU. This per-run queue job list is the backbone of
the Atras scheduler, similar to the red-black tree of threads in CFS.

If a scheduling decision needs to be made, Atras probes the list of
jobs from front to back for the job with the earliest deadline, whose
thread is ready. This is the thread Atras selects to run.'®

While a job is being processed four things can happen. The thread
can block, a new job with earlier deadline arrives, the job finishes
meeting its deadline, and the job misses its deadline.

Real-time scheduling theory assumes that tasks do not block. Since
Atras aims for practicality it has to deal with application code that
blocks during a job, although it should not. An application is most
likely to block on I/O operations, but it is also possible for an ap-
plication to sleep during a job. If'a thread blocks, there is not much
that can be done. The Linux scheduling framework will remove
the thread from the run queue and a new thread will have to be se-
lected. Arras will select, again, the job with the earliest deadline,
whose thread is not blocked. Once the blocked thread is ready again,
check_preempt_curr will be called to determine if the currently run-
ning process should be preempted.”

A new job will only cause a currently running Arras thread to
be preempted if it has an earlier deadline than the earliest deadline of
the jobs of the currently running thread. A new job with deadline

7 For a uni-processor system ‘per-run
queue’ and ‘global’ data structures are
equivalent.

s Previously, Atras kept a list of
threads, similar to CFS, sorted by

the earliest deadline of each thread.
This construction turned out to make
the implementation of Atras more
complicated than necessary and also had
performance drawbacks.

" That is, if the currently running pro-
cess is also an Artras thread. Otherwise
preemption depends on the scheduling
class of the currently running process.
Processes of lower layers will be pre-
empted, those of higher layers will

not.

ATLAS ON UNI-PROCESSOR SYSTEMS 3§

later than that does not have any influence on the currently running
thread. Additionally, the thread, the job was submitted to, must not be
blocked.

If the job finishes its execution before the deadline has passed, the
job is removed from both, the per-thread list of jobs as well as the
per-run queue list of jobs. I will discuss how Arras deals with missed
deadlines in the section Broken Promises.

BY ORDERING JOBS BY INCREASING DEADLINE, ATLAs effectively gen-
erates an EDF schedule. However, similar to LRT, Atras does not
process jobs eagerly. Instead, Arras delays execution until the latest
possible moment. Atras uses the predicted execution time, which is
subtracted from the deadline, to find the latest moment processing of a
job has to begin. Starting from the job with the latest deadline, work-
ing “backwards” in time, AtrrLas constructs the schedule in reverse
order. Reverse construction allows Atras to let jobs finish either at
their deadline or at the beginning of the next job.

Consider Figure 13 with jobs J; and J,, each with an execution
time of 1 time unit. An EDF schedule of those two jobs would have
J; finish at time unit 1 and J, at time unit 2, both well before their
respective deadlines. The schedule Arras constructs, inspired by
Latest Deadline First*° (LDF), starts out with the latest deadline at time
unit 2.5. For job J, to meet its deadline it has to start at time unit
1.5. Job J; cannot execute between time unit 1.5 and 1.75, because
J, must execute during that interval to meet its deadline. Job J; is
scheduled such that it completes at the minimum of either its deadline
or the start of the next job. Formally, a job’s scheduled deadline df =
min (d;,df, ; -

Atras schedule from right-to-left. In contrast to LDE Arras does

e;+1), yielding an iterative algorithm to construct the

not have to consider precedence constraints.

THE RECLAIMED SLACK can be used to execute a-periodic or non-
real-time work in a real-time system,*! among others. ATras uses

the slack to gain interactivity by handing oft CPU time to the CFS
scheduling layer. This allows non-real-time applications to get timely
service and interactivity from the carefully tuned CFS scheduler, while
Artras is still able to reserve execution time for real-time tasks.

The drawback of such a rigid system is obvious. Let us consider
again Figure 13. In the current system CPU time from time unit 0 to
0.5 is donated to CFS to run non-real-time tasks. But what happens
if no non-real-time task requires execution during the slack-time
interval, but instead in the interval from time unit 1 to 1.5? In the
current configuration, that CPU time would be lost, because Arras is
non-work conserving.

To handle this situation more gracefully, Atras has a feature called
pre-roll. The idea of pre-roll is to allow the front-most Atrras job
to start execution, but to compete with all other threads scheduled
by CFES. The way Atras achieves this behaviour is by switching J;’s
thread to the CFS scheduling class for the duration of J;s slack. This

Figure 13: How Atras constructs a
schedule.

deadline v
Jq

deadline ¥

9
LDF slack Jy
2

0 1

* Eugene Leighton Lawler. Optimal

Sequencing of a Single Machine Subject to
Precedence Constraints. In: Management
Science 19.5 (1973), pp. 544—546.

* Too Seng Tia. Utilizing Slack Time for
Aperiodic and Sporadic Requests Scheduling
in Real-Time Systems. PhD thesis. Uni-
versity of Illinois at Urbana-Champaign,
1995.

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.19.5.544
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.19.5.544
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.19.5.544
http://beru.univ-brest.fr/~singhoff/DOC/SCHEDULING/ILLINOIS/tia3.ps.gz
http://beru.univ-brest.fr/~singhoff/DOC/SCHEDULING/ILLINOIS/tia3.ps.gz
http://beru.univ-brest.fr/~singhoff/DOC/SCHEDULING/ILLINOIS/tia3.ps.gz

36

way, J¢s thread receives anywhere from all CPU time to no CPU time
at all — just as CFS sees fit. In essence, during a job’s slack time, its
thread is competing with all non-real-time threads in CFS. Pre-roll is
activated whenever Atras donates slack time to CFES. Since pre-rolled
threads have no guarantee to receive any CPU time, execution time
received during pre-roll is not accounted against a job’s execution time
reservation in the Atras scheduler.

When the calculated slack is up, at time unit 0.5 in the example
of Figure 13, job J{’s thread is switched back to the Atras scheduling
class and receives the reserved execution time. Depending on how
much CPU time a thread received during its pre-roll, the job will
finish earlier than its reservation. Although the CPU time received
during pre-roll is not accounted to a job’s reserved execution time, the
CPU time is accounted as thread-runtime, which is used to train the
Atias predictor.

To come back to our example, let us assume, that no CES thread
1s ready during slack interval of J; and hence J; receives the full 0.5
time units of execution time. With only 0.5 time units of execution
time remaining, J; will finish at time unit 1. Figure 14 visualizes the
schedule for this case. At this point J; passes its slack to J,. Whenever
a job can execute during slack time, this time is passed down as slack
to later jobs.

During the interval between time units 1 to 1.5 interactivity is now
preserved, because Jys thread competes with non-real-time threads
in CFS. From time unit 1.5 onward the thread of job J, is scheduled
by the Atras scheduling layer until its completion. The earliest time
point J, can finish is time unit 2, under the assumption that J, re-
ceives all CPU time during its slack. The latest time J, can finish is at
time unit 2.5, under the assumption that J,s thread receives no CPU
time during J,5 slack. In either case J, meets its deadline at time unit
2.5.

Passing down slack during pre-rolling does not only help interac-
tivity. Pre-rolling also allows Atras to compensate errors in predicted
execution time and system overheads. System overhead includes the
cost of context switches as well as the cost of next and submit system
calls necessary to operate ATLas.

Broken Promises — Deadline Misses in ATLAS

Jobs can miss their deadlines for a variety of reasons, including an
error in execution time prediction, blocking for 170, self-suspension,
or the system being oversubscribed. No matter the reason, Atras has
to deal with jobs overrunning their deadline. This section describes
the different methods Atras employs to cope with deadline misses.
Atras delineates between two flavours of deadline misses, depicted
in Figure 15. The first flavour is caused by a thread blocking during
job execution. A deadline miss due to blocking causes a thread to not
being able to use the execution time reserved for it. Atras does not

Figure 14: Pre-rolling of J; in CFS and
passing on of slack to later jobs.

now vy
0 1 2

Figure 15: Deadline misses due to
blocking and execution time overrun.

deadline ¥

)

ATLAS ON UNI-PROCESSOR SYSTEMS 37

distinguish between blocking during I/O and self-suspension. Such a
scenario is depicted in the upper schedule of Figure 15.

The second kind of deadline miss is execution time overrun, caused
by context switching- and scheduling overheads, errors in the exe-
cution time prediction** or an application lying about its workload
metrics. While the thread uses all the CPU time reserved for it, the
execution time is simply not sufficient to complete the job. The sec-
ond schedule in Figure 15 shows the deadline miss of job J, as a result
of execution time overrun.

Atras’ handling of deadline misses depends on which kind of
deadline miss had occurred.

A DEADLINE MISS CAUSED BY BLOCKING is not considered to be the
application’s fault. Therefore Atras tries to help the application to
catch up. The idea is to use the slack of Atras jobs, so that jobs with
deadline misses can recover time spent blocked. To that end, ATras
keeps all jobs which missed their deadline by blocking in a separate
scheduling band, Atras Recovery. In the slack time donated by real-
time jobs, Atras schedules these jobs in EDF order. I will call this
part of Arras ‘EDF Recovery’ to avoid confusion with the EDF-
implementation in the Deadline scheduling class. The slack time used
by this recovery mechanism is lost for pre-rolling Atras jobs in CFS.
As long as the recovery queue is not empty, no task will pre-roll.

A job which missed its deadline by blocking will execute in EDF
Recovery only for the amount of time it spent blocking during its
original execution time reservation. If the job has not finished when
this time is up, the job is removed from EDF Recovery and demoted
to CFS, as all jobs with execution time overruns are.

The same mechanisms used to handle deadline misses by blocking
are used to handle overload situations in Atras. In an overload sit-
uation, the left-to-right LDF schedule construction used by ATtras
will push jobs ‘into the past’. Consider the task set in Table s and the
corresponding schedule in Figure 16 as an example. The schedule at
time unit O is the initial situation with jobs J; and J, scheduled. With
the release of job J3, the combined execution time requirement of all
three jobs exceeds the available capacity up to time unit 2. Contrary
to EDFE, deadline misses do not occur in the future. The right-to-
left construction of the LDF-schedule pushes the time reservation of
job Jy into the past. A job with a deadline in the past is considered
to have missed its deadline. If the job has not received its full exe-
cution time, it will be transferred to the EDF Recovery scheduling
band. Albeit overload management is out of the scope of this thesis, I
will discuss in chapter Conclusion & Future Work better ways to handle
overload situations.

EXECUTION TIME OVERRUNS are considered to be the application’s
fault. For this reason, a thread which missed a job’s deadline by execu-
tion time overrun is demoted from the Arras scheduling class to the
CES scheduling class. Atras make no effort to support such threads;

22 To compensate for errors in the
execution time prediction, the ATLAs
predictor uses overestimation, see
Roitzsch, “Practical Real-Time with
Look-Ahead Scheduling” for details.

Table s: Example task set causing
overload when J; is released.

Job r e d

Jq o o5 I
J; o I .5
J3 € T 2

Figure 16: The release of J; causes
overload. J; is ‘pushed’ into the past
and will eventually be demoted to EDF
Recovery.

0 1 2

38

the jobs must complete on a best-eftort basis. This part of Atras is
named ‘CFS Recovery’ to distinguish it from EDF Recovery, the
CES scheduling class, and pre-rolling in CFS.

OF COURSE, EVERY RULE HAS AN EXCEPTION, and so does the han-
dling of deadline misses in Atras. Whenever a job is so much delayed
that it runs into the reservation of the next job for the same thread,
the thread will receive the reserved execution time with Atras pri-
ority?? The reason for this change is threefold. (1) By submitting a
job, a proper request for execution time was made. (2) Since the CPU
time for later jobs was properly requested, scheduling a delayed thread
does not interfere with other threads or tasks. (3) Scheduling a delayed
task might help in catching up.

Figure 17 exemplifies this situation. The upper row shows the
planned schedule for task 71, with jobs J; and J,. The lower schedule
shows how the reservations are enforced in the face of deadline misses.
Let us assume that J; is able to execute for 0.2 time units, before it is
forced to block for 0.4 time units. After J; is ready again, its thread
runs until J;s deadline at time unit 0.8. Since J; was blocked, its
thread is enqueued in EDF Recovery to allow it to catch up the 0.4
time units lost during blocking.

Normally, J, could use the slack in the interval between time units
0.8 and 1 to pre-roll. In this case, the slack time is donated to the
non-empty EDF Recovery queue to allow the late jobs to catch up.

At time unit 1, J; runs into the reservation of J,. At this moment
the thread executing J; is promoted again into the Atras scheduler
class. J; executes during the time reserved for J,, as indicated by the
green color.

By time unit 1.2 J; finishes and J, begins execution.

Because J; executed during J,s execution time reservation, J,
might in turn miss its deadline. Because J;’s execution time during the
reservation for J, is not accounted to J,, at the deadline of J, at time
unit 2, it looks like J, was blocked for 0.2 time units. Thus, J, is also
eligible for execution in EDF Recovery.

The same donation of execution time from later jobs to earlier jobs
that missed their deadlines is employed when the deadline miss was
caused by execution time overrun.

Figure 18 illustrates the integration of Arras into the Linux
scheduling framework. The Arras policy?# is used for real-time
Atias jobs. The EDF Recovery policy is used by Arras to catch
up jobs that have missed their deadline due to blocking, by donating
slack time to them. The CFS policy in the Atras scheduling class is
used to (1) catch up jobs in CFS Recovery and (2) pre-roll Atras jobs
in the CFS scheduling class if the EDF Recovery scheduling band is

empty.

3 In Wichtler, “Look-Ahead Schedul-
ing” a job only got promoted to the
Artiras scheduling class again, when it
finally caught up.

Figure 17: Artiras threads receive re-
served execution time, even if the
previous job is not finished yet.

Figure 18: How Atras integrates into
the Linux scheduling framework.

DEADLINE

Deadline

. RR
Realtime

ATLAS
EDF Recovery
CFS

ATLAS

BATCH
NORMAL
IDLE

2 No Arras policy can be se-

lected from user space by means of
sched_setscheduler. A job has to be
submitted using the submit system call.

ATLAS ON UNI-PROCESSOR SYSTEMS 39

Related Work

The WCET is often an outlier, very far from the mean execution
time. Scheduling jobs using the WCET results in under utilization of
the system, or unnecessary over-provisioning of hardware resources.
The multiframe task model?S generalizes the periodic task model by
using a vector of execution times. Consecutive jobs of a task use con-
secutive elements from the vector as their execution time, wrapping to
the start of the vector if the last element has been reached. Neverthe-
less, period and deadline are still constant for all jobs.

Even greater flexibility offers the generalized multiframe task
model 2® where periods and deadlines are represented as vectors as
well.

Atras increases the flexibility of the task model further by remov-
ing periods or minimal inter-arrival times completely, at the expense
of being able to give hard- or firm-real-time guarantees.

Lampson proposed a system estimating response time distributions
based on runtime information supplied by programs requiring service
guarantees.>’” The timing information is presumed to be in form of a
distribution. When service is requested, the system can make certain
probabilistic guarantees with regard to the service it can provide.
However, no algorithm or implementation is presented for such a
system.

AtLas, in contrast, predicts execution times based on workload
metrics with low error rates. Based on these accurate, per-job execu-
tion time predictions® an accurate schedule can be constructed. This
allows to give applications not only probabilistic guarantees in form of
service-distributions, but per-job feedback on whether a deadline can
be met and if not, by how much it will be missed. The error of this
feedback only depends on the error of the runtime prediction and can
be compensated for by pre-rolling in slack time.

> Aloysius K. Mok and Deji Chen. A
Multiframe Model for Real-Time Tasks. In:
IEEE Tiansactions on Software Engineering
23.10 (1997), Pp. 635—645.

26 Sanjoy Baruah et al. Generalized
multiframe tasks. In: Real-Time Systems
17.1 (1999), pp. 5—22.

7 Butler W. Lampson. A Scheduling
Philosophy for Multiprocessing Systems. In:
Communications of the ACM 11.5 (1968),
pp- 347—360.

¥ In contrast to per-task distributions in
Lampson’s proposal.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.1034&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.1034&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9038&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9038&rep=rep1&type=pdf
http://research.microsoft.com/en-us/um/people/blampson/05-schedphil/05-schedphil.pdf
http://research.microsoft.com/en-us/um/people/blampson/05-schedphil/05-schedphil.pdf

Atias on Multi- Processor Systems

42

In this chapter I describe how I extended Arras to take full advantage
of multi-processor systems. Atras’ multi-processor support spans two
main aspects, (1) scheduling serial queues on multiple cores to increase
system capacity and (2) support for concurrent queues.

MULTI-PROCESSOR SUPPORT IN ATLAS is a hybrid scheduling scheme,

based on partitioned data structures, extended with support for process

migration. The implementation of the uni-processor scheduling algo-

rithm presented in chapter Atras on Uni-Processor Systems can be run

on multiple cores if applications, and especially Atras runtime worker

threads, were statically partitioned among available cores.! To meet the ' Using sched_setaffinity.
goal of Ariras, to hand developers a powerful and yet easy-to-use API

to specify soft-real-time work, Atras has to handle load distribution

among multiple cores automatically.

Load Metrics in ATLAS

Eftective load-balancing requires a way to measure load first. One
drawback of the flexible Arras task model is that future load is un-
known instead of being neatly summarized in a task utilization, as it is
for the Liu and Layland task model. Thus, the load Atras has to han-
dle changes as jobs arrive and finish. To determine the load of a run
queue I introduce two new metrics. The first metric is the amount
of slack time of the first Atras job of each run queue. The second
metric is based on execution time reservations of jobs submitted so
far.

THE SLACK TIME OF THE FIRST JOB ON A RUN QUEUE reflects the
immediate load of the run queue and, if the slack is negative, indicates
overload and job migration has to be considered.

For job migration to make sense, negative slack of the first job is
only a necessary condition for migration. Consider the case when

there a single task, implemented by a serial queue, on a run queue,
Figure 19: Migration does not solve all

which happens to have negative slack. In this scenario there is no overload situations.

point in migrating the serial queue, since jobs of a serial queue cannot reservation:

be processed concurrently. Another example, depicted in Figure 19,

is when there is a gap between the deadline of the very first job J; schedule: v deadline

and the start of the next job, J,. If this gap is larger than the absolute O J—1
1

of the slack time of Jy, it is not necessary to migrate any job, either.
Since J; has a negative slack it will miss its deadline and migrating

the job will only exacerbate the situation by introducing additional
overhead. Migrating J, has no point either, because its execution
experiences no interference from the deadline miss of J;. The slack of
J, allows Jy to finish before J, starts executing with elevated privilege,
so Jqs completion in Atras recovery is not hindered by the execution
of J,.

ATLAS TRADES KNOWLEDGE of future jobs for more flexibility in

its task model. Contrary to the more traditional Liu and Layland

ATLAS ON MULTI-PROCESSOR SYSTEMS

task model, the Atras task model has a time-variant utilization. It is
paramount to extract as much information as possible from Arras’
limited knowledge of future execution time requirements.

Any notion of load in the Arras task model would, similar to the
definition of utilization of an Atras task in chapter Atras on Uni-
Processor Systems, depend on the currently available information. A
job’s contribution to the currently known load, and hence the load
of the corresponding task and run queue, changes constantly during
processing of a job, because jobs are not periodically recurring.

Let e;;(t) describe the outstanding execution time of job J;; at

time ¢, i.e. the execution time that was reserved for J; ;, but not yet

g
received by J; ; at time ¢. Before a job is submitted, i.e. the job is
currently unknown to the system, its remaining execution time is
zero. At the time of submission, the remaining execution time is set
equal to the job’s execution time e, ;. Between the submission and

the release time of J;; the remaining execution time e, ;(r) equals

the execution time requirement e, ;. From the release time on, the
remaining execution time decreases, as the job receives CPU time.

If, at the deadline of a job, its remaining execution time is not zero,
then the job blocked during execution or the system is overloaded.
Blocking time does not count as received execution time, and there-
fore jobs in EDF recovery have a non-zero remaining execution time.
Jobs, which missed their deadlines despite having received their exe-
cution time reservation, have by definition a remaining execution time
of zero.

Formally, the remaining execution time is defined as:

0 1<r;

e; (1) = e t=r;

e;j — (received CPU time) 1>r;;

The definition of the remaining execution time of jobs can be ex-
tended to tasks as follows:

e(t)= Y eyt
JijET;
Based on the concept of remaining execution time, I define the interval
load function to describe the amount of execution time reserved by a
job J;; during the interval of absolute times [z, u]:

lij(t,u) = 0 i < u.
0 otherwise.

The interval load function extends naturally to tasks and run queues.

Let 7; be a task. The interval load function for task 7; is defined

as the sum of the interval load functions of all jobs over this task,

namely ;(t,u) = ZJ;X,-GT,- l; j(t,u). The interval load function of the

run queue of processor P, is defined, in turn, as the sum of the load

function over all tasks 7; on the run queue of processor Py: Ilp, (t,u) =

ZTIEPk l[(ts l’t)-

43

44

The interval load function is not an exact measure, but merely an
approximation of load. A task might have jobs which overran their
execution time reservation, but the CPU time required to complete
those jobs is not accounted for? Another example where the interval
load function does not calculate the load accurately is the case when
there is a job with large execution time and deadline just beyond the
interval in question3 The interval load might therefore be an under-
estimation. On the other hand, jobs might require less execution time
than predicted. Hence the interval load might be an overestimation.

The interval load function is not an analytical tool, but a metric
used to compare run queue Atras-load at runtime. Imagine a job J;;
being submitted at time 7. To select a run queue for processing J; ;,
the interval load function can be computed for all run queues with
the interval [#,d, ;] as argument. The capacity of a run queue & is then
given by ¢p, (t,u) = lp (t,u) — (u —t). The run queue capacity can be
used to select a suitable run queue for J;; according to a placement
policy. Furthermore, the capacity metric gives an indication of system
overload, namely when no run queue has enough capacity to execute
Jij.

Although limited in knowledge and approximate, the interval load
function allows a look further into the future than the slack-time
based metric. I use the load metric of the interval load function for
thread migration.

Both presented load metrics are not equivalent. Consider the case
in Figure 20, where the first job J; has a negative slack time. After
a large gap a second job, J,, follows. Clearly, the slack-time metric
indicates an overload situation. The interval load function will only
indicate overload for 1 <t <1+ Is, (). If, for example, the deadline of
the last job is selected as #, the interval load-method will not indicate
overload, since the total time is larger than the required execution
time of both jobs J; and J,.

The inverse of the case in Figure 20 cannot happen. When ever the
interval load-method will indicate overload, so will the slack-time-
method.

To use the interval load function to compare load across run
queues, a suitable interval [z, «] has to be used. In the implementa-
tion of Atras I use the current time as the start of the interval, t. For
the end of the interval, u, there are number of choices, for example
the maximum deadline, the minimum maximum deadline# or a fixed
time. Another choice is whether minimal/maximal operations should
be performed globally or per-run queue. I will discuss the choice of
interval whenever I employ the interval load function.

Load Balancing

After establishing metrics to compare load of run queues, I present the
design of load balancing mechanisms in Atras and how I integrated
them in the substrate of the Linux scheduler framework.

> Without a clairvoyant component the
additional execution time required on a
deadline miss cannot be determined.

3 Of course, the interval load function
can be adapted to handle that case and
account for partial jobs. I found this
not to be necessary. Partial execution
time can be accounted by splitting

the task in the LRT schedule or by
considering pre-roll. Which yields
better results is out of the scope of
this thesis. The technique of partial
accounting of remaining execution time
can also be used for task splitting or
the introduction of virtual deadlines
to approximate the fluid schedule of a
task. Ion Stoica and Hussein Abdel-
‘Wahab. Earliest Eligible Virtual Deadline
First: A Flexible and Accurate Mechanism
for Proportional Share Resource Allocation.

Tech. rep. TR-95-22. 1995.

Figure 20: The slack time metric and
interval load-metric are not equivalent.
v now

+ The minimum of the maximum of
each run queue:

min (max (d; ;
OSkSm(Ji‘/ePk(i)

http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf

ATLAS ON MULTI-PROCESSOR SYSTEMS 45§

Atras has two scheduling modes, consolidate-to-idle and race-to-idle.
Consolidate-to-idles aims to minimize the number of active cores,
while race-to-idle spreads the work to all available cores.

CONSOLIDATE-TO-IDLE tries to minimize the number of CPU cores
used to schedule a task system while still fulfilling the execution time
reservations for all jobs. Using a minimal number of CPU cores aims
to maximize energy efficiency by letting inactive cores enter a power
conserving mode under the operating system’s control® Energy effi-
ciency is crucial for mobile applications to extend the battery life of
the mobile device.” However, a CPU not used by Atras may still be
used by CFS to accomplish work. Atras does not employ DVES or
powers off cores itself. Atras consolidates jobs to fewer cores, leaving
more CPU time on the freed cores to lower scheduling layers, such
as the idle layer. At that point, the operating system’s native power
management can put an idle core in a sleep state or reduce its core
frequency.

An optimal solution to the minimum number of cores is NP-hard
in the strong sense, since it is reducible to the bin-packing problem.
Algorithms which find optimal solutions to the bin-packing problem
in a small amount of time are known. Optimal algorithms are too
slow to be used in an online scheduler. Approximation algorithms
like Best-Fit-Decreasing (BFD) and First-Fit-Decreasing (FED) are
significantly faster and, for a small number of elements, are accurate,
often finding an optimal solution.?

However, FFD and BFD require sorting the elements by size,
which 1s not possible in the case of Atras-MP. AtLas jobs are al-
ready sorted by increasing deadline and blindly assigning jobs to cores
in any order would certainly cause some jobs to miss their deadlines.
Delivering real-time guarantees is the primary goal of Arras and
takes precedence over the secondary goal of minimizing the active
core count. Hence, the order of jobs, as determined by Arias, has
to be preserved. To conserve the order of jobs determined by ArLas,
I will consider the Best-Fit algorithm to attain the placement goal of

minimal core count.

Race-To-1DLE is characterized by maximal parallel execution, sched-
uled as early as possible. While Arras-MP can spread its work over all

available cores, Arras-MP uses LRT to schedule execution of jobs.
LRT schedules jobs as late as possible. On the other hand, Atras’
pre-rolling can be considered executing jobs as early as possible.

I use the Worst-Fit heuristic to assign jobs and processes to CPUs

with the goal of dividing execution time as evenly as possible between

CPUss.

THE LINUX SCHEDULING FRAMEWORK itself only supports thread
placement upon thread creation and unblocking. A newly created
thread never has Atras priority, so placement is delegated to CFS.?

s Marcus Vélp, Johannes Steinmetz, and
Marcus Hihnel. Consolidate-to-Idle. In:
19th Real-Time and Embedded Technology
and Applications Symposium. Vol. 19.
Work-in-Progress Proceedings. IEEE.
2013, Pp- 9—12.

® Whether consolidate-to-idle or race-
to-idle achieves minimal energy con-
sumption for a given workload is
system-dependent. Connor Imes et al.
POET: A Portable Approach to Minimizing
Energy Under Soft Real-"Time Constraints.
In: Real-Time and Embedded Technology
and Applications Symposium. 1IEEE. 2015,
pp- 75—86.

7 Etienne Le Sueur and Gernot Heiser.
Dynamic Voltage and Frequency Scaling:
The Laws of Diminishing Returns. In: Pro-
ceedings of the 2010 International Conference
on Power Aware Computing and Systems.
USENIX Association. 2010, pp. 1-8.
Etienne Le Sueur and Gernot Heiser.
Slow Down or Sleep, that is the Question.
In: USENIX Annual Technical Conference.
USENIX Association. 2011.

¥ Korf, “A New Algorithm for Optimal
Bin Packing”.

© Wichtler, “Look-Ahead Scheduling”,
p. s0

http://os.inf.tu-dresden.de/papers_ps/rtas2013-wip-consolidate-idle.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7108419&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7108419&tag=1
https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf
https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf
http://static.usenix.org/events/atc11/tech/final_files/LeSueur.pdf

46

Migrating a thread after it unblocks has potentially lower associated
cost than migrating a running thread, because the cache working set
of a running thread is hot, in contrast to a blocked thread. Whether
Atras performs load balancing when an Arras-thread unblocks is
configurable by sysctl.

In race-to-idle-mode ArrLas migrates a thread away from the cur-
rent run queue to the lowest loaded run queue in the system only if
the current run queue is overloaded.

Whole thread migration has the drawback that a thread might
require a lot of computation time and does not fit on any run queue
without overloading the run queue. A more fine grained method
of migration and load balancing is required. For this reason, ATras
is complemented with job-based migration which allows Arras to
process different jobs of the same thread on multiple CPUs. Job-based
migration differs substantially between concurrent and serial work
queues. For this reason, I discuss migration for both queue-types
separately in the next two sections.

Serial Queues

Job-based migration acts only on the first job of every thread. A
job migration has three steps. First, a job is removed from a run
queue. Second, the corresponding thread is migrated to the target

run queue.® Third and ﬁnally, the _]Ob is sorted into the new run] copied the required sequence of calls
to deactivate_task, set_task_cpu, and

] . activate_task almost verbatim from
and process the migrated job. CFS.

queue. The thread is now ready to be scheduled on the new CPU

Migration cannot be performed on just any thread. For a thread to
be eligible for migration a technical, a logical and an organizational
precondition have to be met:

Technical: Linux requires that a task must not be running when it is
migrated.

Logical: The affinity mask of a thread must allow for it to be migrated
to the new CPU.

Organizational: To simplify migration and scheduling, a thread can
only be migrated, if all its jobs are currently on a single run queue.
This avoids spreading a task’s jobs to more than two run queues.

This also requires that a thread is marked once a job is migrated.! = Spreading jobs to more than two run
queues does not make much sense, since

When a job is migrated, ATLas must not process the remaining Jobs cannot be processed concurrently.
jobs in the old run queue. The same mark used to prevent spreading
of jobs of a single thread to more than two run queues is used to
determine whether a thread is currently migrated away. Such jobs
are ignored by Arras in scheduling decisions in the same way ArLas
skips jobs of blocked threads.
An exceptional situation arises when the thread of a job selected
for migration has unfinished jobs that missed their deadline. Because
those deadlines already have been missed they are ordered strictly be-
fore the deadline of the next real-time job. For the next real-time job

ATLAS ON MULTI-PROCESSOR SYSTEMS

to be started, all other jobs in front of that job need to finish first. For
that reason, unfinished jobs that missed their deadline are migrated
along with the Atras job.

JOB MIGRATION COMES IN TWO FLAVORS, depending on how it is
invoked. An overloaded run queue pushes jobs away, while an idle
run queue pulls jobs towards itself. Both, overload-pushing and idle-
pulling, can be separately enabled or disabled using sysct1l.

If a run queue is idle, i.e. there are no real-time or non-real-time
AtLas jobs queued, idle-balancing causes a job to be migrated from
another run queue. To find a suitable job, the run queues are sorted
by descending load and searched for a job ready for migration. A
job is ready for migration, if its thread fulfills all preconditions for
migration. Currently, only a single thread is migrated.

Initially, I used the condition Ip, (t,u) > u—t, where t = now
and u = maxp _d,; to initiate overload condition. Less formally, a
run queue is overloaded if the job with the latest deadline on the
run queue will miss its deadline, because the total execution time
required by all preceding jobs is larger than the available time from
the current point in time to that deadline. Measurements showed
that the insensitivity of the interval load function to some overload
situations, mentioned in section Load Metrics in ATLAS, occurs rather
often. In these situations, at least the first job has negative slack, but
there is enough time for currently last job to meet its deadline. Thus,
the interval load function does not indicate overload, when migration
would reduce the total number of deadline misses.

To remedy this situation, I changed overload detection to the slack
time method. Whenever the first job on the run queue has nega-
tive slack, overload pushing is initiated. While this method performs
significantly better, I elaborate in section Improvements on additional
points of optimization for the new overload detection mechanism.

To avoid any additional overhead on the already overloaded run
queue, overload pushing is not carried out actively by the over-
loaded run queue, but passively by informing other run queues of
the overload situation. A run queue notified of overload on another
run queue runs the work-stealing algorithm idle-pulling described
above, contingent on itself not being overloaded. Other CPUs are
notified by issuing an IPI'* to them.

Sending IPIs in an overload situation can be implemented in
two ways. A run queue can send IPIs to other CPUs all at once or
chained, one after another. In chained notification, the overloaded
run queue notifies just one other run queue of the overload situation.
If the notified run queue could not resolve the overload situation, it
notifies the next CPU, which then tries to resolve the overload sit-
uation. The chain ends when either the overload situation could be
resolved or all CPUs have been notified. The trade-oft is as follows:
Notitying all CPUs at once may potentially cause contention on the
run queue lock of the overloaded run queue or cause unnecessary
IPIs when the first notified run queue resolves the overload situation.

2 Inter processor interrupt.

47

48

Chained notification, on the other hand, has a potentially higher delay
until the overload is mitigated. I chose to notify all run queues at once
to minimize delay. Furthermore, the latency of delivering an IPI is
highly variable, self~-mitigating any contention issues on the run queue
lock.

Once a migrated job has been finished — the next system call has
been invoked — the thread can be migrated back. But this is not the
only option. Another idea is to migrate the next job to the current
run queue to be processed there. This avoids, or at least holds off on,
migrating the thread back, amortizing migration cost over more jobs.
Migrating a job is a relatively cheap operation, compared to migrating
a thread. This optimization is only used if the next job would not
overload the current run queue, otherwise the thread is migrated
back. The thread is also migrated back if there are currently no more
jobs submitted for this thread.

As long as a thread has Atras jobs queued, be it real-time jobs,
jobs in EDF Recovery, or jobs in CFS Recovery, that thread may
not be migrated by CES. To prevent threads from migrating in other
scheduling classes while they have Atras jobs queued, the affinity
mask of such threads is modified by Arras to only allow them to run
on the current CPU.

There are two cases in which an Atras thread might be sched-
uled by CFS (1) during pre-roll and (2) if a job is in CFS Recovery.
The issue with threads being migrated in scheduling classes other than
ATras is that Atras is not notified of this migration. If migration in
foreign scheduling classes were allowed, there are two possibilities to
handle the situation once Arras notices the migration. The first solu-
tion is to simply migrate the thread back. The second solution would
be to leave the thread and instead move all Atras jobs to the new run
queue. Let me discuss why [instead chose to prevent migration in
other scheduling classes altogether.

Migrating a thread incurs additional cost for migrating the thread
back and complicates the implementation of Arras. Migration always
requires taking two run queue locks, for the source and destination
run queue. To avoid deadlocks, the run queue locks have to be taken
in proper order. Since large parts of the scheduling framework are
invoked with the run queue lock already held, this would require po-
tentially dropping the run queue lock and reacquiring it, creating the
possibility to violate the invariant protected by the run queue lock.
Locks are used to protect data which is temporarily in an inconsistent
state. Whenever the lock is released the data must be in a consistent
state. The problem with dropping locks, that where acquired by the
caller of the current function, is that the called function does not
know which modifications the caller made and hence which incon-
sistencies might exist. Even if we assume the called function had that
knowledge the problems continue. Often locks are taken under some
preconditions. Those are checked by the caller who took the lock and
are not known by the called function who dropped the lock and now
needs to re-acquire it. Even if such a knowledge is available it would

5 After all, the Linux kernel code is
hardly commented. Such an endeavour
might just open Pandora’s box.

ATLAS ON MULTI-PROCESSOR SYSTEMS 49

have to be maintained for each caller. After all in the Linux kernel
almost any function can call any other function — recursively. Another
issue is that any local variables that were assigned values depending on
data protected by locks should be considered invalid, after the lock has
been dropped. Even worse, the entire code path taken when the lock
was held might not be valid anymore, when the lock is re-acquired.™#

The second option to handle thread migrations by CES is to move
jobs to the new run queue of the thread. This is not a good solution
either, mostly because this would cause run queue load to be moved
in unpredictable ways by scheduling classes that are unaware of the
real-time load that Atras run queues carry.

Preventing migration in scheduling classes other than Atras seems
the most practical solution to the problem.

Concurrent Queues

A serial queue, backed by a single worker thread, is the ArrLas corre-
spondent to a task in real-time scheduling theory. While load balanc-
ing of serial queues allows for job-level migration, it does not allow
for intra-task parallelism. So far, ATras-MP is able to load balance a
single application with multiple serial queues, or multiple applications
with one or more serial queues each.

Concurrent queues in GCD allow for independent jobs without
precedence constraints to be processed truly concurrently. In this
section [present the design and implementation of the Arras pendant
to concurrent GCD queues, allowing applications to take advantage of
the inherent parallelism in their soft-real-time jobs. At the same time,
concurrent queues afford applications a more light-weight approach to
load balancing than serial queues currently do.

CONCURRENT ATLAS QUEUES are based on a thread pool of worker
threads, managed by the Atras runtime. I extended the Arras sys-
tem call interface to allow the kernel scheduler to be notified of the
creation of thread pools, threads joining and leaving a thread pool, and
jobs being submitted to a thread pool.

atlas_tp_create sets up management data structures in the kernel
and allocates a thread pool ID, which is passed to the user space as
result. This call does not create actual threads.

atlas_tp_join is called by an Arras thread pool worker thread
to join a thread pool. The thread pool the calling thread wishes to
join is identified by the thread pool ID, which is an argument of the
system call. Before a thread can join a thread pool it must be pinned
to exactly one CPU. Thread pool worker threads should use distinct
CPUs to achieve optimal performance. Thread pool worker threads
must not migrate, reducing the load balancing problem to migrating
thread pool jobs instead of migrating threads and jobs. There is no
corresponding system call for a thread to leave a thread pool. Once
joined, the only way for a thread to leave a thread pool is to exit.

4 Andrew D. Birrell. An Introduction to
Programming with Threads. Tech. rep. 3s.
DEC Systems Research Center, Jan.
1989.

https://birrell.org/andrew/papers/035-Threads.pdf
https://birrell.org/andrew/papers/035-Threads.pdf

50

atlas_tp_destroy frees all resources associated with a thread pool.
A thread pool can only be destroyed after all threads in a thread pool
have quit.

atlas_tp_submit queues work for the thread pool to process. Ini-
tially, a job is assigned to a thread pool worker thread with a heuristic
matching the race-to-idle or consolidate-to-idle load distribution
mode.

Scheduling concurrent queues is similar to R-EDF.'S When a new s Sanjoy Baruah and John Carpenter.
Multiprocessor fixed-priority scheduling

L . . . with restricted interprocessor migrations. In:
remaining capacity to accommodate the new job is selected among Proceedings of the 15th Euromicro Conference

job is submitted to a concurrent queue, a run queue with enough

the run queues with worker threads assigned to the concurrent queue. on Real-Time Systems. IEEE. 2003,
If multiple run queues have enough capacity, a run queue is selected PP- 1957202
according to the current scheduling mode and heuristic. In contrast to
rR-EDF, Arras does not keep a running total of the current load on
each run queue. Instead, the interval load function is evaluated over
the interval from the current point in time until the deadline of the
new job.

In race-to-idle mode the Worst-Fit and Next-Fit heuristics can
be used to assign a newly submitted job to worker threads and hence
place the job on a run queue. The Worst-Fit heuristic selects always
the run queue with the lowest load, which is also well-defined during
overload situations.

In consolidate-to-idle mode the Best-Fit and First-Fit heuristics
can be selected to place a new job on a worker thread. While this
assignment strategy might not result in completely idle run queues, it
aims to concentrate the load of Arras jobs on as few as possible run
queues. Run queues with few Artras jobs are relieved of as much load
as possible, maximizing their idle time.

If no run queue has enough capacity for the newly submitted
job, the job is submitted to the run queue with the lowest load, ir-
respective of the load-balancing mode. This is to ensure that as few
as possible jobs miss their deadlines and the amount of tardiness is not
unnecessarily increased.

The Atras scheduler needs to adapt the assignment of jobs to
worker threads during runtime to compensate for external interfer-
ence, such as blocking, scheduling overhead, and higher scheduling
classes requiring CPU time. Pinning worker threads in thread pools
reduces the cost of load balancing compared to serial queues. Since
worker threads already exist on different CPUs, threads need not be
migrated. It is sufficient to migrate only jobs, which is a compara-
tively cheap operation.

Concurrent queues take part in overload-push and idle-pull job
migration. There is only a single precondition for a job of a concur-
rent queue to be eligible for migration: the job must not have been
started. In contrast to serial queues, where a thread is migrated across
CPUgs, including its current execution state, migrating a job leaves the
execution states of all worker threads on their CPUs. Once a thread
started processing a job, that job cannot be migrated.

Job migration is a four step process.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212744
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212744

ATLAS ON MULTI-PROCESSOR SYSTEMS

(1) The job has to be removed from the local run queue and the cur-
rent thread pool worker it is assigned to.

(2) The task_struct of the worker thread on the destination run
queue has to be found. This information is maintained in the
thread pool data structures in the kernel.

(3) Once the new thread is known, the job is inserted into the new
thread’s job list.

(4) Finally, the job is enqueued in the new run queue.

GCD processes jobs in submission order. As long as deadlines of
successive jobs are monotonically increasing, Atras conforms to the
GCD FIFO-behaviour. A problem arises, when a later submitted
job has an earlier deadline than the currently latest deadline. There
are four ways to handle this situation (1) reject the job, (2) adjust the
deadline of the new job, (3) adjust the deadline(s) of older job(s), and
(4) re-order jobs.

Forcing monotonically increasing deadlines on the programmer is
not very appealing, especially if there are three choices of meaningful
semantics for this scenario to choose from.

Adjusting the deadline of the new job is problematic, because an
adjustment to make the deadlines monotonically increasing would
mean to add to the deadline. As a result, the job could potentially
finish later than the programmer intended to — not a very intuitive
solution.

Adjusting the deadlines of already submitted jobs would mean to
push their deadlines before the new deadline. While this would not
cause jobs to finish later than their initial deadline required, there are
two problems with this solution. For one, the slack for jobs, which
ATras uses for interactivity, would unnecessarily be reduced. Second,
and probably even worse, reducing deadlines of earlier jobs could lead
to artificially created overload situations and deadline misses.

The fourth option keeps the deadlines of jobs as they are, but re-
orders jobs to maintain the invariant of monotonically increasing
deadlines. The issue with this solution is that the user space needs
to be informed, when job re-ordering takes place. For this reason,
each job is assigned an ID by user space and passed to kernel space
with the submit system call. I extended the next system call with an
out-parameter which is used by the kernel to inform the user space of
next job to be processed. With this change to the next system call the
FIFO-processing assumption between kernel and user space is broken
up and the kernel space is free to re-arrange jobs. I back-ported this
feature with the same semantics to serial ATLAS queues.

Utilization Bounds of AtLas-MP

In this section I discuss the expected utilization bounds of Arras,
if Artias is used to schedule periodic task systems, specifically task
systems adhering to the Liu and Layland task model.

SI

52

According to the categorization of real-time multi-processor
scheduling algorithms proposed by Carpenter et al.,’® ATras serial
and concurrent queues have different theoretical utilization bounds.

ATLAS SERIAL QUEUES are in the class of (2, 3)-restricted scheduling
algorithms, meaning serial queues have job-level dynamic priority
assignments and offer unrestricted migration. Migration can occur at
any instant, but the priority of threads changes only on job bound-
aries. The theoretical utilization bound listed by Carpenter et al. is

m? m+1
5

om—1°"%

The lower bound of this class of scheduling algorithms is achieved by
algorithm EDF-US[m/2m-1],'7 while the upper bound is achieved by
algorithm rPEDF,"™ an improved version of EDF-US. Both schedul-
ing algorithms are based on giving the highest priority to “heavy
tasks”, that is tasks with a utilization above a threshold ¢. While EDF-
US uses a threshold of m/2m-1, ,PEDF uses a threshold of 0.5. All
tasks with utilization below the threshold are assigned priorities ac-
cording to EDE

Since Atias builds its schedule strictly by deadline, the achievable
utilization bound is, depending on job and task utilization, arbitrarily
close to 1. Artras suffers from Dhall’s effect. Goossens, Funk, and
Baruah have given a utilization bound based on the maximum per-
task utilization u,,,,,."9 This bound is

u=m(l- Upax) + Upgy-

This is the best bound Atras serial queues are currently able to
achieve. If ArrLas were to prioritize tasks and jobs with utilization
above a threshold ¢, like EDF-US and rpEDF do, Atras could
achieve a better utilization bound for serial queues.

CONCURRENT QUEUES are in the class of (2, 2)-restricted scheduling
algorithms. Once started, a job must not migrate to another CPU.
The same as with serial queues, tasks change priority only at job
boundaries. The theoretical utilization bounds for (2, 2)-restricted
scheduling algorithms are

m+ 1
2 9
where «a is a real number, such that @ < u;,V7; € 7.

m—-—am-1)<uc<

The utilization bound of Arras concurrent queues is currently
limit by two factors. AtrLas concurrent queues (1) lack preemptibility
and (2) do not prioritize ‘heavy’ jobs.

Preemptivity of jobs is necessary for priority-driven scheduling and
a key requirement to feasibly schedule task sets with a utilization equal
to machine capacity, even on uni-processor machines.

Without considering a job’s utilization, ATras concurrent queues
are only able to achieve the lower utilization bound, as R-EDF does2°

1 Carpenter et al., “A Categorization of
Real-Time Multiprocessor Scheduling
Problems and Algorithms”.

17 Srinivasan and Baruah, “Deadline-
based scheduling of periodic task
systems on multiprocessors”

" Baruah, “Optimal Utilization Bounds
for the Fixed-priority Scheduling of
Periodic Task Systems on Identical
Multiprocessors”.

v Joél Goossens, Shelby Funk, and
Sanjoy Baruah. Priority-Driven Scheduling
of Periodic ‘lask Systems on Multiprocessors.
In: Real-time systems 25.2-3 (2003),

pp. 187—205.

> If they were not already limited by
non-preemptibility.

http://cobweb.cs.uga.edu/~shelby/pubs/goossensFB2001-1.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/goossensFB2001-1.pdf

ATLAS ON MULTI-PROCESSOR SYSTEMS §3

For task systems where the maximal utilization of each task is 0.5,

the lower and upper bound coincide. For task systems with lower
maximal task utilization than 0.5, the lower bound will exceed the
upper utilization bound. To achieve the upper utilization bound, tasks
with utilization higher then 0.5 need to be prioritized over any other
tasks in the system. For this purpose the R-PriD scheduling algorithm
has been proposed.?!

It is currently unknown how the scheduling classes (2, 2) and (2, 3)
compare.

The utilization bounds discussed above are only valid for each
queue type used in isolation. For concurrent queues, m is the number
of worker threads, which must not exceed the number of available
processors. More than one concurrent queue can be used at the same
time, but the analysis has to be performed for each queue in isolation.
Processor assignments have to be exclusive to exactly one queue.

Improvements

Atras-MP is a research prototype and as such does not yet incor-
porate a number of optimizations. Instead, I focused on correctness,
flexibility and a clean implementation. This section includes known
deficiencies and optimization opportunities which could not be im-
plemented in the prototype due to time constraints. Optimizations
applicable to Atras-MP include:

SEVERAL PARAMETERS, such as the number and the total capacity of
jobs submitted to a task or queued on a run queue, are calculated on
demand. Another parameter is whether a thread has a migrated job
or not. Clearly, these computations have linear complexity in the
number of jobs and require traversal of pointer based data structures,
increasing the probability of cache misses. Both properties may have
a negative impact on performance. These parameters need not be
calculated on demand. They can be implemented as a running total
which has constant complexity for updating and reading the value.
A running total is a worthwhile optimization especially for values
updated seldom.

JOB-STEALING IS ANOTHER POINT for optimization. Currently only
a single job>* of a single thread is migrated. Since migration has a
high associated cost in terms of locking, it might prove beneficial to
migrate more than a single job from a single thread. Here the design
space is rather large, ranging from migrating multiple jobs of a single
thread, to a fixed number of jobs from arbitrary threads, or migrat-
ing one or more whole threads. Another approach would be to use
migration to distribute the load as equally as possible between run
queues.

OVERLOAD PUSHING 1s vulnerable to the case of false-positive sig-
nalling of overload indicated in section Load Metrics in Atras: when

2! Baruah and Carpenter, “Multipro-
cessor fixed-priority scheduling with
restricted interprocessor migrations”.

22 Plus all previous jobs in EDF Recov-
ery and CFS Recovery.

54

a single job queued on a run queue falls behind, overload pushing is
initiated, but there are no other jobs which could be migrated away to
lighten the load on the overloaded run queue. The amount of nega-
tive slack is also not taken into account. The ktime_t data type, used
in the Linux kernel, handles time in nanosecond resolution. Introduc-
ing IPI-overhead in the order of tens of microseconds is unreasonable
to resolve “overload” in nanosecond or even microsecond range. A
threshold can be used to activate overload pushing only for significant
overload situations. On the other hand, such a threshold is hardly ma-
chine independent and thus introduces a parameter which has to be
tuned for optimal performance.

Evaluation

56

In this chapter I give a first characterization of Arras in terms of
introduced overhead, schedulability, and functionality. All experiments
have been run on a quad-core Intel® Core™ i7 CPU, model 860
running with 2.8 GHz and 4 GiB of RAM. I disabled hyper-threading
for all experiments.

System Call Overhead

Figure 21 shows the overhead of the uni-core Atras submit and next
system calls, depending on the number of queued jobs. Values smaller
than the first or larger than the third quartile are drawn in light color.
Values between the the first and third quartile are drawn in dark color.
The median is accentuated as a white line. I obtained the data by
repeating each experiment 10,000 times and discarding the top per-
centile of measurements as outliers.

3,

next

Delay in ps

0 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Number of queued jobs
Figure 21: Latency of the ArrLas submit
. . . and next system calls, depending on the
The overhead of both system calls is acceptable, with a median of number of already-queued jobs.

0.9 ps for the submit system call and 1.8 ps for the next system call,

both with 25 queued jobs. I expect applications to queue no more

than two dozen or so jobs at any time. The FFplay demo! application ' Roitzsch, “Practical Real-Time with
queues at most 20 jobs. With a combined overhead of 2.7 us per job, Look-Ahead Scheduling”
this benchmark also shows that Atras is apt to handle fine-grained

work.

In the rest of this chapter I discuss the evaluation of schedulability ex-
periments. I loaded Atras with generated task sets to measure its uti-
lization bounds. Unfortunately, there seems to be no well-established
consensus on how to generate tasks sets for multi-processor real-time

systems. Thus, I explain how I generated the task sets first.

Task Set Generation

The task set generation algorithm I devised, UUniMulti, has four input
parameters: the number of tasks 7, the total utilization of the task set

Ug,m» the maximum utilization of any task u,,,,, and the minimal and
maximal periods of the generated tasks p,,;, and p,,qx-

At first, utilization values for n tasks are generated in such a way,
that the following two constraints are satisfied:

Z U = Ugyy aNd VT; € T: 0 < u; < Uy

T.EeT
My method of generating utilization values is based on UUniSort,> but
less elegant. For each task its minimum and maximum utilization are
determined and a random value is chosen from that interval.

To explain the need for a minimum and maximum utilization of
a task, let us consider generating a task set for the parameters n = 3,
Ugm = 1.5 and u,,,, = 1. The first task can have any utilization in the
interval (0, 1]. Let us assume, utilization 1 was chosen. Since the total
utilization of the task set is required to be 1.5, the utilization of the
second and third task has to be smaller than 0.5.

The utilization of the second task is chosen from the interval
(0,0.5 — €. € is the resolution at which utilization values are gener-
ated, for example 0.0013 Subtracting e for each remaining utilization
value to generate ensures that no task has a utilization of 0. A task
system with n tasks, which has a task with utilization 0, is in fact a task
system with n — 1 tasks, hence task utilization must be non-zero.

The utilization of the third task is set to be uz = 1.5 - Z::ol u; to
match the desired total utilization of the task set.

To explain the requirement for a minimum utilization let us con-
sider the same task set parameters, but now assume that the first uti-
lization value, drawn from the interval (0, 1], is 0.1. The second uti-
lization value must now be drawn from the interval [0.4, 1], otherwise
the third task may have a utilization exceeding 1, violating the Liu and
Layland task model.

Figure 22 shows 1000 generated task sets with the parameters of
the example task set just considered: n = 3 tasks, a maximal task
utilization of 1.0 and a task set utilization of 1.5. All points are located
on a plane, such that the sum of the three coordinates of each point
sum to 1.5. The plane is delimited in each dimension by the allowable
per-task utilization of (0, 1].

THE NEXT STEP is generating either periods or execution times. Ex-
ecution time generation can be used if a known workload has to be
modelled. Execution times can be drawn from a known or derived
distribution of execution times. Multiplying the execution times with
the utilization value yields the period of the task. The main drawback
of this approach is that even for small task systems, of less than ten
tasks, the hyper-period grows significantly large, prohibiting actually
executing the task system.

The same problem of exploding hyper-periods arises when periods
are drawn uniformly from each order of magnitude between the mini-
mum and maximum period lengths, as proposed by Davis, Zabos, and
Burns#

EVALUATION §7

2 Enrico Bini and Giorgio C. Buttazzo.
Measuring the Performance of Schedulability
Tests. In: Real-Time Systems 30.1-2 (2005),
Pp. 129—154.

3 In my implementation [use integer
arithmetic. The advantages of multi-
precision integer arithmetic over floating
point are no rounding errors, higher
speed, and arbitrary resolution.

Figure 22: Distribution of utilization
values obtained with UUniMulti for
three tasks with a maximum per-
task utilization of 1.0 and a task set
utilization of 1.5.

u(ts) -

0.5
e -0 50
0 0.5 1
u(ty) u(zy)

4+ Robert Davis, Attila Zabos, and Alan
Burns. Efficient Exact Schedulability Tests
for Fixed Priority Real-time Systems. In:
IEEE 'Tiansactions on Computers §7.9
(2008), pp. 1261—1276.

http://retis.sssup.it/~giorgio/paps/2005/rtsj05-bini.pdf
http://retis.sssup.it/~giorgio/paps/2005/rtsj05-bini.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2007/YCS/418/YCS-2007-418.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2007/YCS/418/YCS-2007-418.pdf

58

To bound the hyper-period, I propose to first choose a set of prime
factors and then choose an acceptable range of exponents for each
prime factor. To draw a period, the exponent for each prime factor is
chosen from its respective range. The prime powers are then multi-
plied to get the period. The maximal hyper-period is the product of
highest power of each prime.

The drawback of this method is, that the distribution of the peri-
ods is not known. Without any a-priori knowledge of an application,
some probability distribution must be assumed.S For most experiments
a uniform distribution is assumed. My proposed method might con-
tain more harmonic periods than randomly drawn periods. On the
other hand, as noted by Davis, Zabos, and Burns, randomly generated
periods might not be representative of real applications.

For my experiments I restrict myself to period lengths between
roms and 100 ms as realistic workloads for Atras. I draw periods from
the set {4,6,8,9,12}".

The period is then multiplied by the utilization to calculate the

execution time.

Experiments

I used the strstr function to emulate work. The work function
searches for the string “test” in a memory area filled with upper
case letters ‘A’. I tuned the size of the memory area such that the
invocation of strstr takes approximately 100 ps on my test machine.
The test function is called repeatedly, to keep the CPU busy for the
duration of the generated execution time.

[EVALUATE SERIAL AND CONCURRENT ATLAS QUEUES separately.
The experiment consists of loading Atras with a periodic real-time
task set for one hyper-period. I repeat this measurement for different
core counts, task set utilizations, number of real-time tasks, and ATrLas
migration settings, to determine the ratio of jobs that missed their
deadline. With this setup, I can experimentally determine if Atras
meets the utilization bounds derived in section Utilization Bounds of
ATLAS-MP.

Serial Atras queues are directly mapped to real-time tasks. For
each real-time task a Linux thread is instantiated to process the real-
time task’s, and hence the serial queues, jobs.

For concurrent Atras queues all real-time jobs are submitted to
an Atias thread pool with a worker thread pinned to each available
CPU. The assignment of jobs to worker threads is left to the Arras
scheduler. I use the Worst-Fit heuristic to assign jobs to worker
threads within Atias concurrent queues.

The Deadline scheduling class is tested with a setup similar to
Artias serial queues. For each real-time task a thread is set up and
the Deadline scheduler is fed the parameters of the real-time task for
each thread via Linux’ sched_setattr system call. Because the Dead-
line scheduling class has no next system call on which the worker

5 Bini and Buttazzo, “Measuring the
Performance of Schedulability Tests”.

thread could block after it processed a job, I introduced a queue, into
which jobs where submitted. If a thread completed all jobs, emptying
the queue, the thread blocks on a condition variable, to be woken up
when the next job is released. Running the experiment on a vanilla
Linux 4.0 kernel resulted repeatedly in a crash caused by dereferenc-
ing an invalid pointer in the Deadline scheduling class code. For this
reason, I ran the Deadline scheduling class benchmarks on a vanilla

Linux 4.4 kernel? where the particular bug I hit seems to have been
fixed.

TO MEASURE AND COMPENSATE FOR ADDITIONAL OVERHEAD for
simulating tasks, I fixed the workload at 1 ms, 10ms, and 100 ms and
generated a task set containing a single task with periods 1o ms, 100 ms,
roooms and utilization of 0.1. Then I increased the utilization of the
task submitted to the kernel until no more deadline misses occurred,
while keeping the amount of work done in user space constant. The
result of this experiment is the over-allocation that is necessary to
compensate any overhead incurred in the kernel or user space.

I found that after an over-allocation of 160 pus no deadline misses
occurred for either of the three periods tested for Atras serial queues.
I adapted the workload emulation by subtracting a fixed amount of
200 ps from the execution time. For execution times smaller than
200 ps, no emulation is done and the execution time is taken up solely
by kernel and user space overheads. Since the estimation of overhead
includes only one thread, the overhead for task switching and/or
migration is not accounted for.

I determined the overhead of the benchmark for concurrent queues
to be 250 ps. I rounded the result up to the next hundred microsec-
onds and the set the compensation to 300 ps.

I measured the overhead of the benchmark for the Linux Deadline
scheduling class initially at 20 us and employed an over-allocation of
100 s to compensate for overhead.

To ESTABLISH A BASELINE for any further experiments with multiple
cores, I disabled all but one core on my test machine and ran a se-
ries of uni-processor tests. I varied the utilization from 0.1 to 1.0, the
number of tasks from 2 to 10 and set the maximal per-task utilization
to 1.0. For each parameter set I generated 200 task sets and ran them
each for one hyper-period on both Atras queue types and the Dead-
line scheduling class, counting the total number of missed jobs. The
results are plotted in Figure 23.

Data points in green color represent hard-real-time capability; no
deadline misses were observed. Data points shaded blue show the soft-
real-time band with less than 1% deadline misses. Orange data points
signify a deadline miss ratio higher than 1 %.

The hard-real-time utilization bound of Atras serial queues,
depicted in Figure 23(a), seems to be at a task set utilization of 0.7.
Only for task sets with nine or ten tasks, the hard-real-time utilization
bound decreases to 0.6 and 0.5, respectively. Presumably, increased

EVALUATION $9

¢ Git commit
39a8804455fb23f09157341d3ba7db6d7aebee76

7 Git commit
afd2ff9b7e1b367172f18ba7f693dfb62bdcb2dc

https://github.com/torvalds/linux/commit/39a8804455fb23f09157341d3ba7db6d7ae6ee76
https://github.com/torvalds/linux/commit/39a8804455fb23f09157341d3ba7db6d7ae6ee76
https://github.com/torvalds/linux/commit/afd2ff9b7e1b367172f18ba7f693dfb62bdcb2dc
https://github.com/torvalds/linux/commit/afd2ff9b7e1b367172f18ba7f693dfb62bdcb2dc

60

30 %
20 %
10 %

Percentage of deadline misses

Task set utilization

(a) Arras serial queue

Percentage of deadline misses

Task set utilization

(b) Atras concurrent queue

Percentage of deadline misses

Task set utilization

(c) Linux Deadline scheduling class

task switching overhead in the scheduler reduces the utilization bound
for these task sets.

More than 99 % of all deadlines are met for task sets with utiliza-
tion less than or equal to 0.9, except for task sets with 2 or 3 tasks,
that reach the 99 % limit for a utilization less than 0.9. The overhead
compensation of 200 ps clearly favours task sets with many tasks. More
tasks result, on average, in smaller jobs and more jobs, each of which
receives the execution time reduction as compensation.

Figure 23(b) shows the result of the same experiment conducted on
ATLAS concurrent queues.

With concurrent queues, Atras achieves a significantly lower
utilization. Concurrent Atras queues are not preemptible. Once
a worker thread started executing a job, the job must run to com-
pletion. Since the number of worker threads equals the number of
CPUgs, with each worker thread bound to a single CPU, a job might
not get executed on time.

Number of tasks

Number of tasks

Number of tasks

Figure 23: Achieved utilization bounds
of Arias serial queues, concurrent
queues, and the Linux Deadline
scheduling class on a uni-processor
system.

I repeated the same experiment for the Linux Deadline scheduling
class. Figure 23(c) shows the result.

The Deadline scheduling class has no utilization where for all num-
bers of tasks all deadlines are met. For most task sets, the Deadline
class seems hard-real-time capable up to a utilization of 0.2. From a
utilization of 0.8 onward, the Deadline class misses more than 1 % of
all deadlines; for task systems with few tasks the utilization may be as
low as 0.6. At least for short periods in the range of 10ms to 100 ms
the Deadline scheduling class is inferior to Arras serial queues.

The utilization bounds of Atras concurrent queues and the Dead-
line scheduling class seem similar, leading me to the conclusion, that
preemption in the Deadline scheduling class does not work properly.
Presumably, the CBS algorithm pushes jobs into the next period.

FOR THE NEXT SET OF EXPERIMENTS, I enabled two out of the four
processors of my test machine. I kept all task set parameters the same,
except the task set utilization, which I varied from 0.5 to 2, the capac-
ity of the system.

In Figure 24, the experimentally determined utilization bounds of the
Deadline scheduling class are plotted. On a dual-core machine, the
best result of the Deadline scheduling class is nearly 20 % of missed
deadlines for a task set utilization as low as 0.5. The Deadline schedul-
ing class processing implicit deadline task systems is equivalent of a
global EDF scheduler and thus should be able to schedule task systems
up to a utilization bound of 1.0.

100 % [
80% I~
60 %
40% |
20% &

Percentage of deadline misses

0.5 Number of tasks

Task set utilization

Presumably, worker threads overrun their budgets by a small mar-
gin. Now, the Constant Bandwidth Server algorithm kicks in and
limits the threads to a share equal to their reservation, causing even
more deadline misses.

The Deadline scheduling class does not handle overload. If the
Deadline scheduling class believes it has no capacity left it will reject a
thread changing its priority and the thread will remain scheduled by
CFS. Because AtLas does not decline work, the benchmark ignores
overload of the Deadline scheduling class and executes the task system
either way.

EVALUATION 01

Figure 24: Measured ratio of deadline
misses of the Linux Deadline scheduling
class on a dual-core system.

62

On the left side of Figure 25 the results of Atras serial queues are
shown; the results of Atras concurrent queues are on the right side.
Combinations of Arras load balancing modes are plotted from top
to bottom. In the first row, load balancing is disabled, in the second
row idle-pull load balancing is enabled, followed by overload-push
load balancing in the third row. The last row shows the effect of both,
idle-pull and overload-push load balancing enabled at the same time.

Figure 25(a) shows the utilization bounds of Arras with load bal-
ancing disabled and demonstrates the necessity of load balancing. For
experiments where the task set utilization exceeds 1, the deadline miss
ratio follows a steep increase, which peaks at approximately 70 %. The
only form of load balancing in this set of benchmarks is done by CFS.
CES determines thread placement when a thread is newly created.
Only when a thread has completed all Atras jobs, and hence is about
to block, CFS is able to migrate the thread.

Both load balancing modes, shown in Figures 25(c) and 25(e), im-
prove the deadline miss ratio considerably up to a task set utilization
of about 1.5. Nevertheless, for task sets with more than utilization
1, more than 1% of the jobs miss their deadline. The idle-pull load
balancing mode performs better than overload-push for task sets with
2 or 3 tasks and utilization values between 1 and 1.5.

If both load balancing modes are combined, the overhead of
overload-push dominates the result, which is depicted in Figure 25(g).

Figure 25(b) shows that the performance of ArrLas concurrent queues
on two processors is also dominated by the inability to preempt run-
ning jobs. Load balancing cannot mitigate this drawback.

Performance of the load balancing option overload-push is shown
in Figure 25(d). Because the worker threads are constantly in overload,
continuous IPIs cause even more deadline misses.

Figure 25(f) is very similar to the performance of AtLas concurrent
queues with no load balancing. The reason is that worker threads are
rarely idle and thus the idle-pull operation is executed seldom. The
influence of idle-pull, which is not visible in the graphic, varies. In
some configurations an improvement was measured, whereas in others
more deadlines were missed. The minimum was 722 less deadline
misses; the maximum 426 more deadline misses of idle-pull against
no load balancing. Over all operating points the improvement of
idle-pull operation was 3146 less deadline misses. Compared to the
4781 440 jobs of each experiment in Figure 25, this corresponds to an
improvement of 0.066 %. Because of the low number of task sets and
jobs, the statistical significance of these is numbers is questionable.

If both load balancing modes, idle-pull and overload-push, are
enabled, the deteriorating effect of overload-push dominates the result
and no improvement over no load balancing can be achieved.

Generally speaking, the more tasks are in the task set, the fewer
deadlines are missed. The reason is that the mean task utilization
decreases, as task sets with increasing number of tasks are generated for
a fixed task set utilization.

Percentage of deadline misses Percentage of deadline misses Percentage of deadline misses

Percentage of deadline misses

EVALUATION 03

- e Number of tasks
Task set utilization Task set utilization

(a) Atras serial queue; no load balancing (b) Arras concurrent queue; no load balancing

S e Number of tasks
Task set utilization Task set utilization

(c) Arras serial queue; overload-push load balancing (d) Atras concurrent queue; overload-push load balancing

o e Number of tasks
Task set utilization Task set utilization

(e) Atras serial queue; idle-pull load balancing (f) Atras concurrent queue; idle-pull load balancing

Number of tasks

Task set utilization Task set utilization

(g) Arras serial queue; overload-push and idle-pull load balancing (h) AtLas concurrent queue; overload-push and idle-pull load balancing

Figure 25: Achieved utilization bounds
of Arras serial and concurrent queues
with various combinations of load-
balancing modi supported by Atras on
a dual-core machine.

04

[RAN THE LAST SET OF EXPERIMENTs with all four cores enabled. 1
varied the task set utilization for all schedulers from 0.5 to 4.0. The
rest of the parameters remain the same. The results are presented in
Figure 26. Figure 26 has the same composition as Figure 2s; the results
for serial queues are shown in the left column, those of concurrent
queues in the right column. The rows contain, in order, the results
for no load balancing, overload-push load balancing, idle-pull load
balancing and combined overload-push/idle-pull load balancing.

The results of my measurements on the quad-core system fit well
with the performance figures of the dual-core system. ArLas serial
queues continue to exhibit less than 1 % of deadline misses for task set
utilizations less than 1, as they should.

If no load balancing is enabled, Dhall’s effect is clearly visible in
Figure 26(a).

Overload-push load balancing, depicted in Figure 25(c), displays
moderate deadline miss ratios of less than 10 %, for a task set utilization
up to 2 and more than s tasks.

Idle-pull load balancing, presented in Figure 25(e), shows similar
performance in the region below a task set utilization of 2 and more
than s tasks like overload-push load balancing. Unlike the dual-core
case, where idle-pull performed marginally better, overload-push
shows better results in the quad-core system, for this small region.
Overall, idle-pull load balancing seems to produce less deadline misses
as overload-push load balancing.

The results for the combination of idle-pull and overload-push load
balancing are plotted in Figure 26(g). As before, the data is very sim-
ilar overload-push load balancing on its own, leading me to conclude
the overhead of sending IPIs dominate the effects of idle-pull load
balancing. Additionally, with increasing load idle phases become more

and more seldom.

The deadline misses for concurrent queues increase on the quad-core
system.

If no load balancing is employed, the deadline miss ratio increases
from, for example, around 10 % for 10 tasks at 75 % capacity in the
dual-core case to nearly 20 % in the quad-core case, depicted in Fig-
ure 26(b).

The performance of overload-push load balancing also worsens, as
shown in Figure 26(d). As more CPUs are added to the system, the
lack of rate-limiting of IPIs causes nearly all deadlines or near system
capacity to be missed. In the dual-core case the deadline miss ratio
seemed to plateau around 80 %.

Figure 26(f) shows the results for idle-pull load balancing on four
cores. On the quad-core system, the similarity between no load bal-
ancing and idle-pull load balancing remains, because idle time remains
rare. The overall performance of idle-pull load balancing worsens, go-
ing from two to four cores. Picking up the same example as before, 10
tasks at a utilization of 75 % system capacity, the deadline miss ratio in-

Percentage of deadline misses Percentage of deadline misses Percentage of deadline misses

Percentage of deadline misses

EVALUATION 065§

- e Number of tasks
Task set utilization Task set utilization

(a) Atras serial queue; no load balancing (b) Arras concurrent queue; no load balancing

Number of tasks

Task set utilization Task set utilization
(c) Arras serial queue; overload-push load balancing (d) Atras concurrent queue; overload-push load balancing
/r— . >
r oL T T
- 7

100 % §22000400,,999% 7
- Seegy oy 'il" ' =
80 % - _segsia i Ren Ba ML Sal]
60 %o Seee c"',"én!%”l,, 5%
0%, ey, iy, s, YA Iy
A0 % |ty g Mage Sue Mag, Sote, Suo D808
20 % o e, e L o

S e Number of tasks
Task set utilization Task set utilization

(e) Atras serial queue; idle-pull load balancing (f) Atras concurrent queue; idle-pull load balancing

00 204
X -

v .o
RS

I e Number of tasks
Task set utilization Task set utilization

(g) Arras serial queue; overload-push and idle-pull load balancing (h) AtLas concurrent queue; overload-push and idle-pull load balancing

Figure 26: Influence of load balancing
on the deadline miss ratio of AtrLas
serial and concurrent queues on a
quad-core machine.

66

creases from approximately 1o % for the dual-core case in Figure 25(f)
to around 20 % for the quad-core case in Figure 26(f).

As before, the performance of overload-push load balancing domi-
nates performance of the combination of overload-push and idle-pull,
as depicted in Figure 26(h).

Figure 27 shows the result of the benchmark for the Deadline schedul-
ing class on a quad-core system. As before, on the dual-core system,
the Deadline scheduling class is not able to meet an acceptable num-
ber of deadlines, even below its theoretical utilization bound of 1.0.

Figure 27: Deadline miss ratio of the
Linux Deadline scheduling class on a
quad-core system.

Percentage of deadline misses

1 0.5 Number of tasks
Task set utilization

IN A 1AST EXPERIMENT, | reduced the maximum per-task utiliza-
tion to 0.5. I repeated the benchmark for the Deadline scheduling
class and Arras serial queues on a dual-core system. With m = 2
and u,,,, = 0.5, the theoretical utilization bound for Atras and the
Deadline scheduling class is 1.5.

The result is show in Figure 28.

100 % [
80 %
60 %
40 %
20 %

Percentage of deadline misses

Number of tasks

Task set utilization Task set utilization
(a) Atras serial queue; overload-push load balancing (b) Linux Deadline scheduling class

Figure 28: Utilization bounds for AtLas
serial queues and Linux Deadline

. . A scheduling class with a maximum per-
push load balancing mode. Arras is able to maintain a low number task utilization of 0.5 on a dual-core

As an example for Atias I chose the serial queues in the overload-

of deadline misses up to the theoretical utilization bound of 1.5, as system.
plotted in Figure 28(a). Atras serial queues with idle-pull and com-

bined idle-pull/overload-push load balancing show similar deadline

miss ratios. I omit the plots of the remaining combinations of Atras

load balancing options for the sake of brevity.

EVALUATION 67

The Deadline scheduling class does not benefit from the reduction
in per-task utilization. Figure 28(b) look essentially the same as Fig-
ure 24, the plot of the deadline miss ratio of the Deadline scheduling
class with per-task utilization of 1.0.

Conclusion & Future Work

70

I have presented an implementation of the Atras paradigm for multi-
processor systems. While my implementation 1s functional, the evalua-
tion revealed several drawbacks of my design. In this chapter I discuss
improvements to mitigate the obvious flaws of my Arras imple-
mentation as well as inspire future research directions concerning the
Artiras infrastructure.

FIrRST AND FOREMOST, the utilization bounds of ATras have to be
improved. While load balancing mitigated the influence of Dhall’s
effect on serial queues somewhat, a different scheduling algorithm,
rPEDF, can avoid Dhall’s effect altogether. The challenge here is to
find a useful definition of utilization for Atras’ non-periodic job
model. The definition of utilization given in section The Atrras Task
Model is problematic insofar as that the utilization is time-variant and
thus might degenerate into time-slicing, much like the slack in LST
scheduling, if two serial queues have similar utilization values. Two
possible solutions can be explored, (1) keeping the utilization constant
over jobs and (2) the introduction of “utilization inversion”, inspired
by laxity inversion to mitigate time-slicing in LST.!

In contrast to serial queues, ATras concurrent queues cannot profit
directly from a change in scheduling algorithm. The fundamental
problem of allowing jobs to be preempted has to be solved first.

A stop-gap solution is to allow multiple worker threads per CPU,
where currently exactly one worker thread per CPU is used. The
drawback is that a threads needs to be created for each currently active
job.

A more sustainable solution is to use user level threads and give
each Artias job a thread and hence an execution context. If the user
level threads are made first-class citizens of the system,? preemption
and low-cost context switching are possible. First-class status entails
that if a user level threads executes a blocking system class, the user
level scheduler is informed so that it can execute another user level
thread, instead of loosing the execution context because the kernel
thread blocked. The kernel needs to inform the user level scheduler
of all events which may result in a scheduling decision, such as timer
expiration, blocking, and un-blocking of system calls. Communica-
tion between kernel scheduler and user level scheduler to improve
performance of parallel programs is also proposed by Anderson et al.
with their scheduler activation mechanism 3

Allotting each job its own context allows to use a (2, 3) restricted
scheduling algorithm to be used to schedule jobs of Arras concurrent
queues, so that serial and concurrent queues share a common schedul-
ing algorithm. Furthermore, a per-job execution context is necessary
to implement job-splitting, the Atrzas-pendant to task splitting.4 If
systems based on non-periodic job models can indeed profit from
job-splitting, as systems based on periodic job models can, is also a
question to be answered in future research.

' Oh and Yang, “A Modified Least-
Laxity-First Scheduling Algorithm for
Real-Time Tasks”.

> Brian D. Marsh et al. First-Class
User-Level Threads. In: ACM SIGOPS
Operating Systems Review. Vol. 2s. s.
ACM. 1991, pp. 110—I2I.

3 Thomas E. Anderson et al. Scheduler
Activations: Effective Kernel Support for
the User-Level Management of Parallelism.
In: Transactions on Computer Systens 10.1
(1992), pp. 5379

+ Andersson and Tovar, “Multiprocessor
Scheduling with Few Preemptions”.

http://ftp.cs.rochester.edu/~scott/papers/1991_SOSP_Psyche_first_class_threads.pdf
http://ftp.cs.rochester.edu/~scott/papers/1991_SOSP_Psyche_first_class_threads.pdf
https://courses.cs.washington.edu/courses/cse551/09au/papers/CSE550.activations.pdf
https://courses.cs.washington.edu/courses/cse551/09au/papers/CSE550.activations.pdf
https://courses.cs.washington.edu/courses/cse551/09au/papers/CSE550.activations.pdf

CONCLUSION & FUTURE WORK

LoAD BALANCING is not as effective, as I have hoped. In overload-
push load balancing, continuous sending of IPIs degrades performance
even more. A hold-oft mechanism to rate-limit IPIs can be used to
mitigate that overhead. As an alternative, IPIs can be chained. In
chaining, the overloaded CPU sends out only one IPIL. If the receiving
CPU cannot pull a job, because it is overloaded or close to overload
itself, the receiving CPU notifies another CPU, until all CPUs have
been tried or the overload situation is resolved. Chaining avoids ex-
cessive IPIs and reduces the risk of lock contention on the overloaded
run queue.

Idle-pull load balancing offers only a marginal improvement over
no load balancing. The reason for this is two-fold. On one hand, a
run queue being completely idle is rare. On the other hand, migrat-
ing a thread — on which a serial queue is currently based — is rather
costly. Instead of idle-pull, “slack-pull”, a mode where Arvras tries to
pull jobs when it is in slack time, might prove more beneficial. User
space scheduling has the potential to reduce the cost of job migration
substantially, and hence make migration more eftective.

Placement and migration heuristics should be properly evaluated.
In addition to the already-implemented Worst-Fit and Best-Fit heuris-
tics, Next-Fit and First-Fit can be added to AtLAs to measure their
performance. Instead of only measuring the deadline-miss-ratio, a
more elaborate metric should be chosen. A tardiness of 10 ps is not as
bad as a tardiness of 10ms. But not only the absolute tardiness, or the
tardiness relative to the execution time determines the “badness” of
a deadline miss. A tardiness of 1 ms for a job with a period of 100 ms
could be considered to be not as bad as for a job with a 10ms period.

USER LEVEL SCHEDULING, in combination with a common scheduling
algorithm for Arras serial and concurrent queues, has the advan-

tage of a better integration of serial and parallel queues. Currently
those constructs merely co-exist instead of complementing each other.
With user level scheduling, a pool of worker threads can be used to
process jobs from serial and concurrent queues alike, while providing
light-weight preemptivity and migration.

WHILE ATLAS IS ABLE TO DETECT OVERLOAD, it currently does not

handle overload situations well. First, in overload situations ATLAS

should switch from LRT to EDF scheduling. This avoids that jobs

miss their deadlines “eagerly”, as described in section Broken Promises.

Furthermore, using signals to inform the user space of deadline misses

should be removed. I found the first thing in writing an Atras appli-

cation is installing a signal handler to ignore those signals. Forcing de-

velopers to write unnecessary boiler plate code conflicts with Arras’

ease-of-use principles. Having those signals does not give the user

space any information it could not get anyway by way of POSIX’

clock_gettime with CLOCK_MONOTONICS 5 Or std::chrono: :steady_clock in
Somewhat related to overload management are temporal isolation, Gt

fairness and security. Temporal isolation is a property of a scheduler,

71

72

that no task can cause another task to miss their deadlines. Arras
does currently not have that property. A similar concept is fairness. As
long as the machine’s capacity is not exceeded, everyone gets enough
resources and fairness is not an issue. Only in overload situations,
when the machine’s capacity is exceeded, some notion of fairness

is required. Security is absence of starvation for scheduling layers
below Atras. Arras threads decay to CFS priority eventually after
missing their deadline. This protects the system from starvation if a
job enters an infinite loop. If that infinite loop contains a statement to
constantly submit new jobs, an Arras-application might still be able

to starve a system. The Deadline scheduling class in Linux handles this

problem by using at most 95 % of the system’s capacity in its default
configuration, leaving s % for lower-priority scheduling classes.t

Instead of updating or cancelling already queued work in over-
load situations, I propose to queue the minimal necessary amount of
work and than add optional work as there is free capacity. The main
drawback of reducing the amount of work during runtime is with
the prediction component of Arras. While the execution time was
reduced, the workload metrics have not been adapted. If the predic-
tor learns from this tuple of workload metrics and reduced execution
time, further predictions will fall short of the actual execution time
requirement, exacerbating the overload condition.

The submit call could return an estimation of remaining capacity.
In the simplest case, this could be a Boolean indicating overload/no
overload. Depending on this return value, the application can queue
usually small jobs of additional work. A more elaborate scheme is to
return an estimation of free CPU time and use the predictor “back-
wards”, translating execution time into a hyper-cube of workload
metrics, delimiting combinations of workload metric vectors, whose
corresponding jobs would feasibly execute in the remaining CPU
time.

A LONG-TERM GOAL is to feature the complete GCD interface,

or at least the majority of GCD functions, in Atras. This would
make Atras a drop-in replacement of GCD, to ease porting GCD-
applications to Atras. On a functional level, this includes incor-
poration of device I/O. Where GCD is currently only reactive to
device I/0, the Atras scheduler can be extended to be proactive.
The Artras concept can be extended to predict and schedule device
I/O, for example for disks and network devices.

A drawback in the current Atras runtime interface that Roitzsch
discovered while porting FFplay to Arvras, is that not every job has
a deadline associated with it. The input and decode stages in FFplay
are examples for such jobs. The input stage reads data from disk, de-
multiplexes audio and video and queues jobs for the decode stage.
The decode stage decompresses video and audio data and queues the
display job. Only the display job has a “natural” deadline — the time
when the image must appear on the screen. The input and decode
stage do not have a natural deadline; their constraint is to finish early

¢ Faggioli, Abeni, and Lelli, Deadline Task
Scheduling.

enough for the remaining computation to finish in time. Roitzsch
circumnavigated the problem by introducing “artificial” deadlines for
the input and decode stage, such that the bufters that link all stages
remain approximately half~full. Figure 29 shows the technique of
inventing artificial deadlines in pseudo-code.

static void read_frame() {
frame *xf = new frame;
/* read from disk, demux x/
dispatch_async(f->metrics, artificial_deadline, [f1() {
decode_frame(f);

1)

static void decode_frame(frame xf) {
/* decode frame x/
dispatch_async(f->deadline, [fl() { display_frame(f); });

static void display_frame(frame *f) {
dispatch_async(artificial_deadline, read_frame);

while (std::chrono::steady_clock::now() < f->display_time) {
std::this_thread::sleep_until(f->display_time);

output_to_screen(f);
delete f;

int main() {
dispatch_async(artificial_deadline, read_frame);
dispatch_barrier_sync([] {});

R eading and displaying a frame do not have any metrics because
the amount of work is constant for every frame. For reading and
decoding a frame, no natural deadline can be given, and artificial
deadlines have to invented in lines s, 15, and 26. It is also noteworthy,
that the frame structure is not passed as parameter, but is captured by
lambdas and implicitly passed from function to function.

Figure 30 shows my proposed solution. dispatch calls without
deadline return an object of unspecified type on which then may be
called. The then member function accepts lambdas, which in turn
accept the return type of the initial function as argument. In case of
the example in lines 25 to 32 of Figure 30, this type is frame *. The
first lambda extracts the workload metrics from its argument, if any.

CONCLUSION & FUTURE WORK 73

Figure 29: Each job requires a deadline;
for those jobs that do not have a natural
deadline, an artificial one must be
invented.

74

The second lambda returns the natural deadline, if there exists one.
The last lambda contains the work to be performed.

static frame xread_frame() {
frame *f = new frame;
/* read from disk, demux x/
return f;

static frame xdecode_frame(frame *xf) {
/* decode frame x/

return f;

static void display_frame(frame *f) {
while (std::chrono::steady_clock::now() < f->display_time) {
std::this_thread::sleep_until(f->display_time);

output_to_screen(f);
delete f;

int main() {
while (--frames) {
dispatch_async(read_frame)

.then([](frame xf) { return f->metrics; },
[1(frame xf) { decode_frame(f); })

.then([] { return nullptr; }, /* no metrics x/
[1(frame xf) { return f->deadline; }, /x deadline %/
[1(frame *xf) { display_frame(f); }); /% work */

dispatch_barrier_sync([] {});

In case no deadline was given to a call to dispatch or then, the
object of unspecified return type has a private destructor, which yields
a compilation error and forces the programmer to eventually complete
each such chain with a deadline.

With chaining, execution time prediction is a two-stage process.
When the then member function in lines 24 and 26 of Figure 30 are
executed, metrics cannot be extracted from the frame, because the
frame has not yet been read from disc. In the first stage, an estimation
based on previous executions of those jobs are made. These prelim-
Inary execution time estimations are submitted to the kernel. When
the first job, read_frame, completes, the first lambda of the next then
member function is called, to extract the workload metrics. In the

Figure 30: Chaining jobs to avoid
inventing artificial deadlines.

second stage, the estimated execution time can be refined using the
now-available workload metrics and communicated to the Atras
scheduler using the update system call. In this scheme, the developer
is freed from inventing artificial deadlines. Inventing artificial dead-
lines is just another way of estimating execution times, in this case the
execution times of later jobs — a responsibility ATrAs aims to assume
from the developer. With chaining, Atras estimates the execution
time, when no workload metrics are available. When the workload
metrics are available, they are used to predict the execution time more
accurately.

In contrast to Figure 29, the video player functions in Figure 30
return the frame by pointer, so that the result of the function call is
directly visible to the caller. Passing the result directly to the caller
makes it easier to write unit tests for each function. Implicitly pass-
ing data captured by lambdas makes non-intrusive testing of those
functions hard to impossible.

Atras might further benefit from a vectorized submit system call,
to submit multiple jobs from a chained dispatch call at once to the
kernel. A vectorized submit call amortizes the cost of a system call
over multiple jobs, allowing Atras to schedule even short jobs effec-
tively.

THE SOURCE CODE to both, Atras7 and the Atras runtime? is pub-
licly available online. The predictor component, contained in the
Artias runtime, has been previously published by Roitzsch? To the
best of my knowledge, AtLas is the only implemented system com-
bining scheduling of sets of real-time jobs with a developer-friendly

programming interface and overload management.

CONCLUSION & FUTURE WORK 7§

7https://github.com/hannesweisbach/
linux-atlas
Shttps://github.com/hannesweisbach/
atlas-rt

9 https://github.com/TUD-0S/ATLAS/
tree/dissertation

In this thesis I presented ATLAS-MP, a multi-processor implementation of the ATLAS infrastructure. ATLAS-MP consists

of serial and concurrent work queues. An integral part of ATLAS-MP is load balancing across multiple CPUs for both

queue types. 1 tested my implementation extensively on a single-, dual-, and quad-core system, by loading it with a varying

amount of periodic real-time tasks. The presented implementation matches the predicted utilization bound for serial queues,

but is still limited by Dhall’s effect. Concurrent queues are currently limited by their lack of preemptivity. Regardless of

ATLAS’ current limitations, because of its ability to handle overload situations gracefully, ATLAS is able to outperform the

Linux Deadline scheduling class in terms of the number of missed deadlines. I proposed solutions to improve the utilization

bound of serial and concurrent quenes as well as to the ATLAS concept in general.

https://github.com/hannesweisbach/linux-atlas
https://github.com/hannesweisbach/linux-atlas
https://github.com/hannesweisbach/atlas-rt
https://github.com/hannesweisbach/atlas-rt
https://github.com/TUD-OS/ATLAS/tree/dissertation
https://github.com/TUD-OS/ATLAS/tree/dissertation

Bibliography

Abeni, Luca and Giorgio Buttazzo. Integrating Multimedia Applications
in Hard Real-Time Systems. In: Proceedings of the 19th Real-Time Systems
Symposium. IEEE. 1998, pp. 4-13.

Anderson, James H. and Anand Srinivasan. Early-Release Fair Schedul-
ing. In: 12th Euromicro Conference on Real-Time Systems. IEEE. 2000,

PP- 35743.

Anderson, Thomas E. et al. Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism. In: Tiansactions on Computer

Systems 10.1 (1992), pp. $3—79.

Andersson, Bjorn. Global Static-Priority Preemptive Multiprocessor Schedul-
ing with Utilization Bound 38%. In: Principles of Distributed Systems.
Springer, 2008, pp. 73—88.

Andersson, Bjorn, Sanjoy Baruah, and Jan Jonsson. Static-priority
scheduling on multiprocessors. In: Proceedings of the 2z2nd Real-Time Systems
Symposium. IEEE. 2001, pp. 193—202.

Andersson, Bjorn and Jan Jonsson. The utilization bounds of partitioned
and pfair static-priority scheduling on multiprocessors are 50%. In: Proceedings of
the 15th EuroMicro Conference on Real-Time Systems. July 2003, pp. 33—40.

Andersson, Bjorn and Eduardo Tovar. Multiprocessor Scheduling with Few
Preemptions. In: Proceedings of the 12th International Conference on Embedded
and Real-Time Computing Systems and Applications. IEEE. 2006, pp. 322—

334.
Apple, Inc. Grand Central Dispatch (GCD) Reference.
— Kernel Programming Guide. 2013. (Visited on 02/02/2016).

Baruah, Sanjoy Kumar. Optimal Utilization Bounds for the Fixed-priority
Scheduling of Periodic Task Systems on Identical Multiprocessors. In: IEEE
Transactions on Computers 53.6 (2004), pp. 781—784.

Baruah, Sanjoy K. et al. Proportionate Progress: A Notion of Fairness in
Resource Allocation. In: Algorithmica 15.6 (1996), pp. 600—625.

http://www.itmexicali.edu.mx/posgrado/str/abeni98integrating.pdf
http://www.itmexicali.edu.mx/posgrado/str/abeni98integrating.pdf
http://www.cs.unc.edu/~anderson/papers/euro00.pdf
http://www.cs.unc.edu/~anderson/papers/euro00.pdf
https://courses.cs.washington.edu/courses/cse551/09au/papers/CSE550.activations.pdf
https://courses.cs.washington.edu/courses/cse551/09au/papers/CSE550.activations.pdf
http://www.springerlink.com/index/7226g6t22k778j87.pdf
http://www.springerlink.com/index/7226g6t22k778j87.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990610
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990610
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212725
https://www.artemis-emmon.eu/docs/multiprocessor_scheduling_with_few_preemptions/259/view.pdf
https://www.artemis-emmon.eu/docs/multiprocessor_scheduling_with_few_preemptions/259/view.pdf
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/
https://developer.apple.com/library/prerelease/mac/documentation/Darwin/Conceptual/KernelProgramming/About/About.html
http://www.cs.unc.edu/techreports/03-022.pdf
http://www.cs.unc.edu/techreports/03-022.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.5163&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.5163&rep=rep1&type=pdf

78

Baruah, Sanjoy and John Carpenter. Multiprocessor fixed-priority schedul-
ing with restricted interprocessor migrations. In: Proceedings of the 15th Euromi-
cro Conference on Real-Time Systems. IEEE. 2003, pp. 195—202.

Baruah, Sanjoy et al. Generalized multiframe tasks. In: Real-Time Systems
17.1 (1999), pp. s—22.

Bini, Enrico and Giorgio C. Buttazzo. Measuring the Performance of
Schedulability Tests. In: Real-Time Systems 30.1-2 (2005), pp. 129—154.

Binstock, Atman. Powering the Rift. May 2015. (Visited on 12/30/2015).

Birrell, Andrew D. An Introduction to Programming with Threads. Tech.
rep. 35. DEC Systems Research Center, Jan. 1989.

Blake, Geoftrey et al. Evolution of Thread-Level Parallelism in Desktop Ap-
plications. In: SIGARCH Computer Architecture News. Vol. 38. 3. ACM.

2010, pp. 302—313.

Brandenburg, Bjorn B. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis. 2o11.

Burchard, Almut et al. New Strategies for Assigning Real-Time Tasks to
Multiprocessor Systems. In: IEEE Tiansactions on Computers 44.12 (1995),

PP- 1429—1442.

Carpenter, John et al. A Categorization of Real-Time Multiprocessor
Scheduling Problems and Algorithms. In: Handbook of Scheduling: Algo-
rithms, Models and Performance Analysis. Ed. by Joseph Y-T. Leung. CRC
Press LLC, 2000 N.W. Corporate Blvd., Bocy Raton, Florida 33431.:
Chapman & Hall/CRC, 2004. Chap. 30, pp. 30.1—30.30.

Corbet, Jonathan. CFS group scheduling. In: LWN (July 2007).

Davis, Robert I. and Alan Burns. A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems. In: ACM Computing Surveys 43.4 (2011), p. 35.

Davis, Robert, Attila Zabos, and Alan Burns. Efficient Exact Schedula-
bility Tests for Fixed Priority Real-time Systems. In: IEEE Tiansactions on
Computers 57.9 (2008), pp. 1261—1276.

Dhall, Sudarshan K. and Chung Laung Liu. On a Real-Time Scheduling
Problem. In: Operations Research 26.1 (1978), pp. 127—140.

Duda, Kenneth J. and David R. Cheriton. Borrowed-Virtual-Time
(BV'T) scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. In: SIGOPS Operating Systems Review. Vol. 33. s. ACM. 1999,
pp. 261—276.

Faggioli, Dario, Luca Abeni, and Juri Lelli. Deadline Task Scheduling.
Linux kernel documentation.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212744
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212744
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.9038&rep=rep1&type=pdf
http://retis.sssup.it/~giorgio/paps/2005/rtsj05-bini.pdf
http://retis.sssup.it/~giorgio/paps/2005/rtsj05-bini.pdf
https://www.oculus.com/en-us/blog/powering-the-rift/
https://birrell.org/andrew/papers/035-Threads.pdf
http://web.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_ISCA2010.pdf
http://web.eecs.umich.edu/~blakeg/docs/Desktop_TLP_Study_ISCA2010.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=477248
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=477248
https://cs.unc.edu/~anderson/papers/multibook.pdf
https://cs.unc.edu/~anderson/papers/multibook.pdf
http://lwn.net/Articles/240474/
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2007/YCS/418/YCS-2007-418.pdf
https://www.cs.york.ac.uk/ftpdir/reports/2007/YCS/418/YCS-2007-418.pdf
http://dx.doi.org/10.1287/opre.26.1.127
http://dx.doi.org/10.1287/opre.26.1.127
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.205&rep=rep1&type=pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt

BIBLIOGRAPHY 79

Faggioli, Dario et al. An EDF scheduling class for the Linux kernel. In:
Proceedings of the Real-Time Linux Workshop. 2009.

Flautner, Kristidn et al. Thread-level Parallelism and Interactive Performance
of Desktop Applications. In: SIGOPS Operating Systems Review 34.5 (2000),
pp. 129—138.

Funk, Shelby, Joel Goossens, and Sanjoy Baruah. On-line Scheduling
on Uniform Multiprocessors. In: Proceedings of the 22nd Real-Time Systems
Symposium. IEEE. 2001, pp. 183—192.

Funk, Shelby et al. DP-Fair: a unifying theory for optimal hard real-time
multiprocessor scheduling. In: Real-Time Systems 47.5 (2011), pp. 380—429.

Goossens, Joél, Shelby Funk, and Sanjoy Baruah. Priority-Driven
Scheduling of Periodic Task Systems on Multiprocessors. In: Real-time systems

25.2-3 (2003), pp. 187—205.

Hong, Kwang S. and Joseph Y-T. Leung. On-Line Scheduling of Real-
Time Tasks. In: Proceedings of the Real-Time Systems Symposium. IEEE.
1988, pp. 244—250.

Horn, W.A. Some Simple Scheduling Algorithms. In: Naval Research Logis-
tics Quarterly 21.1 (1974), pp. 177—18s.

Imes, Connor et al. POET: A Portable Approach to Minimizing Energy
Under Soft Real-Time Constraints. In: Real-Time and Embedded Téchnology
and Applications Symposium. IEEE. 2015, pp. 75—86.

Kopetz, Hermann. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Springer Science & Business Media, 2011.

Korf, Richard E. A New Algorithm for Optimal Bin Packing. In: AAAI-o02
Proceedings. 2002, pp. 731—736.

Lakshmanan, Karthik, Ragunathan Raj Rajkumar, and John P.
Lehoczky. Partitioned Fixed-Priority Preemptive Scheduling for Multi-Core
Processors. In: 215t Euromicro Conference on Real-Time Systems. IEEE. 2009,

pPp. 239—248.

Lampson, Butler W. A Scheduling Philosophy for Multiprocessing Systems.
In: Communications of the ACM 11.5 (1968), pp. 347—360.

Lawler, Eugene Leighton. Optimal Sequencing of a Single Machine Subject
to Precedence Constraints. In: Management Science 19.5 (1973), pp. 544—546.

Le Sueur, Etienne and Gernot Heiser. Dynamic Voltage and Frequency
Scaling: The Laws of Diminishing Returns. In: Proceedings of the 2010 In-
ternational Conference on Power Aware Computing and Systems. USENIX
Association. 2010, pp. 1-8.

— Slow Down or Sleep, that is the Question. In: USENIX Annual Technical
Conference. USENIX Association. 201T.

http://retis.sssup.it/people/faggioli/papers/RTLW-2009-edf_refined.pdf
http://web.eecs.umich.edu/~tnm/trev_test/papersPDF/2000.8.Thread-level_parallelism_ASPLOS-IX.pdf
http://web.eecs.umich.edu/~tnm/trev_test/papersPDF/2000.8.Thread-level_parallelism_ASPLOS-IX.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/funkGB2001.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/funkGB2001.pdf
http://link.springer.com/article/10.1007/s11241-011-9130-0#/page-1
http://link.springer.com/article/10.1007/s11241-011-9130-0#/page-1
http://cobweb.cs.uga.edu/~shelby/pubs/goossensFB2001-1.pdf
http://cobweb.cs.uga.edu/~shelby/pubs/goossensFB2001-1.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=51119&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=51119&tag=1
http://onlinelibrary.wiley.com/store/10.1002/nav.3800210113/asset/3800210113_ftp.pdf;jsessionid=2398F7613706E99BEFF1183DB5AE23B4.f04t01?v=1&t=iiir6hm8&s=1f297bb66d5d3b32b54dcd0958fe30f525924d74
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7108419&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7108419&tag=1
http://books.google.com/books?vid=ISBN9781441982377
http://books.google.com/books?vid=ISBN9781441982377
http://varma.ece.cmu.edu/SysWeaver/Partitioned.pdf
http://varma.ece.cmu.edu/SysWeaver/Partitioned.pdf
http://research.microsoft.com/en-us/um/people/blampson/05-schedphil/05-schedphil.pdf
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.19.5.544
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.19.5.544
https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf
https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf
http://static.usenix.org/events/atc11/tech/final_files/LeSueur.pdf

80

Liu, Chung Laung. Scheduling Algorithms for Multiprocessors in a Hard
Real-Time Environment. In: Space Programs Summary. Vol. I1. The Deep
Space Network. 37-60. Jet Propulsion Laboratory, 1969. Chap. 3,

pp. 28—31.

Liu, Chung Laung and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. In: Journal of the
ACM 20.1 (1973), pp. 46—061.

Liu, Jane W. S. Real-Time Systems. Prentice Hall, 2000.

Lundberg, Lars. Analyzing Fixed-Priority Global Multiprocessor Schedul-
ing. In: Proceedings of the Eighth Real-Time and Embedded ‘Technology and
Applications Symposium. IEEE. 2002, pp. 145—153.

Marsh, Brian D. et al. First-Class User-Level Threads. In: ACM SIGOPS
Operating Systems Review. Vol. 25. 5. ACM. 1991, pp. 110—121.

Mok, Aloysius K. and Deji Chen. A Multiframe Model for Real-Time
Tasks. In: IEEE ‘Tiansactions on Software Engineering 23.10 (1997), pp. 635—
045.

Molnir, Ingo. CFES Scheduler. Linux kernel documentation.

Nagle, John. On Packet Switches with Infinite Storage. In: Transactions on
Communications 35.4 (1987), pp. 435—438.

Oh, Sung-Heun and Seung-Min Yang. A Modified Least-Laxity-First
Scheduling Algorithm for Real-Time lasks. In: Proceedings of the sth Interna-
tional Conference on Real-Time Computing Systems and Applications. IEEE.

1998, pp. 31—36.

Oh, Yingfeng and Sang H. Son. Tight Performance Bounds of Heuristics for
a Real-Time Scheduling Problem. Tech. rep. CS-93-24. 1993.

Phillips, Cynthia A. et al. Optimal Time-Critical Scheduling Via Resource
Augmentation. In: Proceedings of the 29th annual ACM Symposium on Theory
of Computing. ACM. 1997, pp. 140—149.

Qualcomm Technologies, Inc. Snapdragon 810. (Visited on 10/29/2015).

Roitzsch, Michael. Practical Real-Time with Look-Ahead Scheduling. PhD
thesis. Technische Universitit Dresden, 2013.

Roitzsch, Michael, Stefan Wichtler, and Hermann Hirtig. ATLAS:
Look-Ahead Scheduling Using Workload Metrics. In: 19th Real-Time and
Embedded ‘Technology and Applications Symposium (RTAS). IEEE. 2013,

pp. 1—10.

Srinivasan, Anand and Sanjoy Baruah. Deadline-based scheduling of pe-

riodic task systems on multiprocessors. In: Information Processing Letters 84.2

(2002), pp- 93—98.

https://ia800302.us.archive.org/18/items/nasa_techdoc_19700013503/19700013503.pdf
https://ia800302.us.archive.org/18/items/nasa_techdoc_19700013503/19700013503.pdf
http://www.di.ens.fr/~pouzet/cours/systeme/bib/liu73.pdf
http://www.di.ens.fr/~pouzet/cours/systeme/bib/liu73.pdf
http://books.google.com/books?vid=ISBN0130996513
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1137389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1137389
http://ftp.cs.rochester.edu/~scott/papers/1991_SOSP_Psyche_first_class_threads.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.1034&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.1034&rep=rep1&type=pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1096782
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=726348
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=726348
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1535&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1535&rep=rep1&type=pdf
http://www.cs.unc.edu/~baruah/Teaching/2001S/Papers/extra-resources.pdf
http://www.cs.unc.edu/~baruah/Teaching/2001S/Papers/extra-resources.pdf
https://www.qualcomm.com/products/snapdragon/processors/810
http://os.inf.tu-dresden.de/papers_ps/roitzsch-phd.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6531074
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6531074
http://www.sciencedirect.com/science/article/pii/S0020019002002314
http://www.sciencedirect.com/science/article/pii/S0020019002002314

BIBLIOGRAPHY

Srinivasan, Anand et al. The Case for Fair Multiprocessor Scheduling. In:
Proceedings of the International Parallel and Distributed Processing Symposium.
IEEE. 2003, 10—pp.

Standard for Information Technology Portable Operating System Interface
(POSIX®) Base Specifications, Issue 7. In: IEEE Std 1003.1, 2013 Edition
(incorporates IEEE Std 1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013)
(Apr. 2013), pp. 1—3906. DOI: 10.1109/IEEESTD.2013.6506091.

Stats, StatCounter Global. Top 8 Operating Systems from Dec 2014 to Dec
2015. (Visited on o1/20/2016).

Stoica, lon and Hussein Abdel-Wahab. Earliest Eligible Virtual Deadline
First: A Flexible and Accurate Mechanism for Proportional Share Resource
Allocation. Tech. rep. TR-95-22. 1995.

Sutter, Herb. Welcome to the Parallel Jungle. In: Dr. Dobb’s Journal. (2012).
(Visited on 10/29/2015).

Tanenbaum, Andrew S. Modern Operating Systems. 2nd Edition. Upper
Saddle River; NJ o7458: Prentice Hall, 2001.

Tia, Too Seng. Utilizing Slack Time for Aperiodic and Sporadic Requests
Scheduling in Real-Time Systems. PhD thesis. University of Illinois at
Urbana-Champaign, 1995.

Volp, Marcus, Johannes Steinmetz, and Marcus Hihnel. Consolidate-to-
Idle. In: 19th Real-Time and Embedded Technology and Applications Sympo-
sium. Vol. 19. Work-in-Progress Proceedings. IEEE. 2013, pp. 9—12.

Wichtler, Stefan. Look-Ahead Scheduling. Diploma Thesis. Technische
Universitit Dresden, 2012.

Zapata, Omar Ulises Pereira and Pedro Mejia Alvarez. EDF and RM
Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation. In:
Seccion de Computacion Av. IPN 2508 (2005).

81

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5391&rep=rep1&type=pdf
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://dx.doi.org/10.1109/IEEESTD.2013.6506091
http://gs.statcounter.com/#all-os-ww-monthly-201412-201512
http://gs.statcounter.com/#all-os-ww-monthly-201412-201512
http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
http://www.drdobbs.com/parallel/232400273
http://books.google.com/books?vid=ISBN0130926418
http://beru.univ-brest.fr/~singhoff/DOC/SCHEDULING/ILLINOIS/tia3.ps.gz
http://beru.univ-brest.fr/~singhoff/DOC/SCHEDULING/ILLINOIS/tia3.ps.gz
http://os.inf.tu-dresden.de/papers_ps/rtas2013-wip-consolidate-idle.pdf
http://os.inf.tu-dresden.de/papers_ps/rtas2013-wip-consolidate-idle.pdf
http://os.inf.tu-dresden.de/papers_ps/waechtler-diplom.pdf
http://delta.cs.cinvestav.mx/~pmalvarez/multitechreport.pdf
http://delta.cs.cinvestav.mx/~pmalvarez/multitechreport.pdf

Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Apple and Mac OS are trademarks of Apple Inc., registered in the U.S. and other
countries.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries.
Android is a trademark of Google Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Intel and Intel Core are trademarks of Intel Corporation in the U.S. and/or other
countries.

	Background
	Schedulers
	Real-Time
	Uni-Processor Real-Time Scheduling
	Multi-Processor Real-Time Scheduling
	Real-World Case: Linux
	Grand Central Dispatch

	Atlas on Uni-Processor Systems
	The Atlas Task Model
	Auto-Training Look-Ahead Scheduling
	Workload Metrics
	The Atlas Runtime
	The Atlas Scheduler
	Broken Promises
	Related Work

	Atlas on Multi-Processor Systems
	Load Metrics in Atlas
	Load Balancing
	Serial Queues
	Concurrent Queues
	Utilization Bounds of Atlas-MP
	Improvements

	Evaluation
	System Call Overhead
	Task Set Generation
	Experiments

	Conclusion & Future Work
	Bibliography

