TECHNISCHE UNIVERSITAT
DRESDEN

Fakult at Informatik

TUD-FI02-03—-Marz 2002
Michael Hohmuth, Hendrik Tews,
Technische Berichte and Shane G. Stephens

Technical ReportS VFiasco Project

ISSN 1430-211X Applying source-code verification
to a microkernel — The VFiasco
project

Technische Universitat Dresden
Fakultat Informatik

D-01062 Dresden

Germany

URL: http://www.inf.tu-dresden.de/

Applying source-code verification to a microkernel

— The VFiasco project
Michael Hohmuth Shane G. Stephens
Hendrik Tews

Dresden University of Technology University of New South Wales
Department of Computer Science School of Computer Science and Engineering

vfiasco@os.inf.tu-dresden.de

Abstract

Contents
Source-code verification works by reasoning about the se-
mantics of the full source code of a program. Traditionally 1 Introduction 1
it is limited to small programs written in an academic pro-
gramming language. In this paper we present the VFiasco2 Related work 2
(Verified Fiasco) project, in which we apply source-code .
verification to a complete operating-system kernel writ- A semantics of C++ 3
ten in C++. The aim of the VFiasco project is to estab- 3.1 Statetransformers. 3
lish security relevant properties of the Fiasco microkernel 3.2 Typeddata.................. 5
using source code verification. The project's main chal- A type-safe object store 5
lenges are to develop a clean semantlgs for the subse_t of 41 Programmer's expectations and system
C++ used by the kernel and to enable high-level reasoning QUATANEEES . .« . o o 6
about typed data starting from only low-level knowledge 4.2 Hardware model 6
about the hardware. In this paper we present our ideas for 4'3 Verification envirdnﬁéﬁt """""" 7
tackling these challenges. We sketch a semantics of C++ ' 431 Encapsulating sys';e.m. g.u:.ar;ar;téels. 7
and develop a type-safe object store for reasoning about 4'3'2 The object-store layer o 8
C++ programs. This object store is based on a hardware 4.4 B.alc,e ASSUMPLONS . « + » .+ o e 9
model that closely resembles the IA32 virtual-memory ar-
chitecture, and on guarantees provided by the kernelitself. 5 conclusion 9

1 Introduction

hardware. Further, we outline the semantics of C++ that
The VFiasco project aims at the mechanical verification We will use in the verification. S
of security-relevant properties of the L4-compatible Fiasco ~ To our knowledge, the VFiasco project is unique in
microkernel [12]. scope and intended thoroughness. We aim at modeling all

The goal of the project is an operating-system kernel that Of the kernel’s source code in very fine grain, and we in-
providesverifiedsecurity guarantees. Such a kernel could tend to “run” this software model on a hardware model that
be used as a basis for building applications with high-level closely resembles real hardware. These qualities are meant
security requirements. Verification is very expensive (both t0 establish an as-yet unseen level of confidence in our soft-
in man power and time); for success it is crucial to mini- Ware. Our formal-verification approach exceeds even what
mize the size of the system. Huge bug-afflicted monolithic is necessary to fulfill the development requirements of the
kernels are outside the scope of current verification tech- Common Criteria’$ highest assurance level, EAL7.
nologies. On the other hand, microkernels are the smallest Fiasco has been implemented in C++. For the verifica-
kernels that provide an anchor for building secure systems:tion we develop a dialect of C++ with a precise semantics,
separate protected address spaces. Therefore, they are thihich we call “Safe C++.” The verification will be carried
best choice for constructing a verified secure system. out in the interactive theorem prover Isabelle/HOL [21].

VFiasco is a work-in-progress. In this paper we report This theorem prover uses higher-order logic (HOL) as its
in detail on one aspect of the project: the modeling of a input language. Therefore, we translate the kernel's source

type-safe object store on top of a model of virtual-memory code from Safe C++ into its semantics expressed in HOL.
In our approach, fgic compilerperforms this translation

This research was supported by the Deutsche Forschungsgemeinschatft

(DFG) through DFG grant Re 874/2-1. Shane G. Stephens was sup- 1The “Common Criteria for information Technology Security Evalua-

ported by a Study Grant from Deutscher Akademischer Austauschdiensttion” (CC; ISO 15408) replaces the Trusted Computer System Evaluation

(DAAD) through the International Quality Network (IQN) program “Ra- Criteria (TCSEC; better known as the “Orange Book”) in the U.S.A. and

tional Mobile Agents and Systems of Agents.” Information Technology Security Evaluation Criteria (ITSEC) in the E.U.

VFiasco kernel Logic Sourcocode C++ thgt we use in the venﬁcauop. Segtlon 4 contains
source code compiler model the main part of this paper. In this section, we explain

~ what can be expected from an object store, and we de-
Vi ; rive design goals for our model. We briefly discuss our
Verification ! hardware model and then develop a verification environ-

environment: . .
- System guarantees ; ment for system-level software, including a type-safe ob-

- Object store : ject store. We conclude the paper with a summary in Sec-

~ .l .. tion 5.
y
Hardware Verification
specteaton | using teorem 2 Related work

Our research is related to the following work areas: the-
oretical work on program verification, model checking,

proof-carrying code, static source-code checking, object-
Figure 1: The verification procesd.egend: Solid arrows code verification, and theorem proving. In this section, we

show the flow of data. Dashed arrows indicate-ases- rela- discuss these categories in turn.

tionship. . . .
Theoretical work. Theoretical accounts sometimes

use examples from operating systems. For instance an

automatically. This technique is in stark contrast to ap- algorithm for mutual exclusion is verified in all of [5, 1,
proaches in which parts of the source code are translated!8. 22, 15]. The theory described in these papers is often
manually to a more or less abstract model. Figure 1 illus- highly relevant for our work. However, the methodology
trates our verification methodology. u;ed there fqr smalll(and clean) examples cannot be ap-
The basis of the semantics of Safe C++ is a model of Plied to the Fiasco microkernel.
the computer system, which we must provide in the the-
orem prover. An important problem in the project is to
find the right abstraction level for this model. To facili-
tate the verification, we would like to have the abstraction
level of a virtual machine that providestype-safe object
store Under a type-safe object store we understand an ab-
stract model of memory that supports reading and writing
of typed values and that guarantees safe accessibility of
these values. A type-safe object store would allow us to
reason on a comfortably high level, ignoring the complex-

Model checking. Model checking has been success-
fully applied to several systems [4, 2, 23]. When using
model checking one first has to reimplement some parts of
the system within the model checker. During this trans-
lation one has to abstract from details that do not affect
the result of the verification. This is necessary because
model checking has inherent restrictions, especially with
respect to the state-explosion problem. These two nec-
essary steps—reimplementation and abstraction—Ilimit the
ity of contemporary virtual-memory systems and memery _conclus_ions that can be drawn from_model checking: Itis
impossible to verify that the model faithfully represents the

allocation.
¥ tsimpl h biect st source code.
owever, we cannot simply aSSUme such an objJect Sloreé. - ingtance, in [23] Tullmann and colleagues verify

before verifying the Eiasco _microkernel. Fi_asco executes | onass properties of the Fluke kernel's [9] IPC subsys-
'hn a deCh m(;re hostile fe T:"rl? nmept—oE "_'““ha"memo_ry tem. Thereby they abstract away from the actual data
?r ware. In acr:, omﬁ oft ﬁ erne sta:_s S 'Sft € p;]rowsmt:\ that is transmitted. While they actually proved the ab-
0 guaranFees t f"It allow the construction o Such an 00~ gance of deadlocks, it is theoretically possible that the IPC
Jegt store in the f'rSt. place. Thereforg, the existence of an subsystem deadlocks because it dereferences a malicious
object-store layer with strong properties should be a proof user pointer (which has been abstracted away in the model
goal, not a base assumption. checker)
In this paper, we fill the gap between high-level pro- |, o project we will model the complete source code

gramming languages (in our case Safe C++), which pro- ot the Fiasco kernel, including the page fault handler. If we
vide safety by means of protecting typed memory objects janage to prove that the IPC system calls do always ter-

from arbitrary accesses, and contemporary hardware with minate, then this proof necessarily includes a (sub-)proof
virtual memory. We develop a type-safe object store based gyt the correct handling of user pointers. While model
on a set of memory models that mimic the way a high- checking can be applied with almost no user interaction,

level-language programmer thinks of memory, butstill can o approach requires highly skilled staff operating the the-
be implemented using a concrete CPU model. Using theseOrem prover.

memory models, it is possible to reason about the Fiasco

kernel, ignoring the current virtual-memory setup and the Proof-carrying code. Proof-carrying code [20, 19]

effects of page faults on the program state. solves the problem of executing untrusted (user-supplied)
This paper is organized as follows. In Section 2, we code in kernel mode. In this approach the kernel (devel-

discuss previous work in the field of operating-system ver- oper) publishes a security policy, and every extension to

ification, and we explain why we use theorem provers and be downloaded must be accompanied with a formal proof

not model checking. Section 3 outlines the semantics of showing that the extension conforms to the security policy.

Checking the validity of the proof can be done efficiently code and more especially to operating-systems source
in the kernel because proof checking is closely related to code.
type checking [10]. The author of the kernel extension is In [17] Liu and colleagues use the theorem prover
responsible for the difficult part—constructing the proof Nuprl [3] in the Ensemble project to verify the correctness
and thereby verifying the extension. However, for a typical of network-protocol stacks and to optimize such stacks.
application of proof-carrying code (for instance a network They use several tools that translate their specifications
filter) the involved verification is trivial and can often be and the Ensemble source code into Nuprl and back. In
done automatically. the VFiasco project we also plan automated translation of
In the VFiasco project, we tackle a rather different prob- source code into the theorem prover Isabelle. However,
lem: proving the kerneitself correct. The problem of there are two important differences. First, to enable the
safely extending this kernel is orthogonal to our work. verification in the Ensemble project the original C source
Microkernels such as Fiasco are extended using user-code was rewritten in a carefully chosen subset of the func-
level servers that run in their own address spaces. Some otional language Ocaml [16]. Features of Ocaml that are
these servers are an integral part of the system and must bénore difficult to handle, like objects or exceptions, are not
trusted by all applications. Trusted servers need to be veri-used in Ensemble.
fied separately, independent of the underlying microkernel. In contrast, we plan to develop a semantics of a subset of
Verification of user-level components and of such trusted C++ that essentially contains everything needed for kernel
servers is outside the scope of this work. We are undertak-programming, including abrupt terminatforiongjmp’s,
ing the first and most basic step of system verification— and pointer arithmetic. Second, Liu and colleagues did
proving the kernel correct. not verify the source code. Instead, they verified program
In general, applying verification to a microkernel based transformations.
system is much easier than applying it to a traditional ~ Our approach to a semantics of C++ is very similar to
monolithic system. The reason is that the enforced the one used in the dop project for Java [13]. We also
address-space separation of system components in a miuse coalgebras to represent statements and expressions. In
crokernel based system makes it possible to verify the the LOOP project Jacobs and colleagues focus on the ver-

components independently from each other. ification of Java applications. Consequently they use an
object memory that directly represents Java objects [24].
Static source-code checking. There are many tools A central aim of the VFiasco project is to incorporate sys-

in the spirit of 1int that statically analyze source code. tem internals like page fault handling and protection levels
Some of these provide customizable rule sets and haveinto the verification. Therefore we need a more low-level
successfully been used to find bugs in operating systemsview on the object memory.
[8, 6, 7].

Static source-code checking is different from testing in .
that it analyzes the source code instead of running it. With 3 A semantics of C++
testing it has in common that it assists in finding program-
ming errors. In the VFiasco project our concern is not so
much to find errors, but tgive guaranteeabout their ab-
sence.

This section outlines the semantics of C++ that we need for
the verification of the Fiasco source code. The approach
we take here is very pragmatic: For every feature of C++
we assess both the difficulty of defining a semantics for
Object-code verification. One problem of source that feature and the difficulty of writing the Fiasco kernel
code verification is that, for a compiled language, its re- without that feature. The result of that assessment defines
sults do not apply to the running system: The compiler the language Safe C++, which is used to implement Fiasco.
might have changed the program such that the running sys-Although C++ has a reputation of being an unsafe and dirty
tem violates properties that have been proven before. Ongl@nguage, it is surprising to see how much of C++ can be
way out of this dilemma is to verify the object code itself Modeled without difficulty: Safe-C++ will allow pointer
as proposed in [25]. The main problem with object-code arithmetic and all of C++'s flow control structures includ-
verification is that it is much more difficult. The examples iNgbreak, continue, set jmp/longjmp, and evengoto.
handled in [25] have only a fraction of the size of success- An important goal in the design of Safe C++ is that it
ful source-code verification projects like for instance the shall be compatible with C++ modulo some preprocessor
Huisman’s and colleagues’ Java-Vector verification [14]. directives and a small library (encapsulating direct hard-
Further, also with object-code verification absolute secu- Ware access). If this goal is met we can use a standard C++
rity remains an illusion: The theorem prover used in the compiler for Safe C++ programs.
verification might be unsound, thus allowing one to prove
arbitrary results. 3.1 State transformers

We believe that source-code verification in combination

with a well-tested compiler provides enough security for In the semantics of C++ we do not distinguish between
all practical purposes. statements and expressions as the C++ grammar does:

. 2An expression or statement terminatgruptly if the control flow
Theorem proving. Related work that comes closestto goes not reach the end of the statement or expression because, for in-

our project is those that applies theorem proving to source stance, areak or return was executed.

statements are considered as expressions of vyt the theorem prover). The composition of two state trans-
wherevoid is a type that contains precisely one (uninter- formers is a higher-order function that combines two state
esting) element. The evaluation of such generalized ex- transformers and returns a new state transformer. It is de-
pressions depends on the current state of the whole systemfined as follows:

Therefore the semanti¢s] of an expressionis a function

that takes the current state of the system as inputSt eé ([ex] o [e2])(s) = cases [e1](s) of
the set of all possible system states. We will elaborate on Normal(r,s') = [e2](s)
this set in Section 4.2, for the moment we can ignore the | Abnormal(a) = Abnormal(a)
details. | Bug = Bug
When evaluation an expressierin a states there are
three fundamentally different possibilities: This definition uses pattern matching on the result of

[e1](s): In case the first expression returns normally the
e The expression returnsormally and delivers a re- resultr is discarded and the expressienis evaluated on
sult (of * with type void in casee corresponds to a the intermediate stat&. If e; does not return normally
C++ statement). In addition the evaluation might have thene, is not evaluated at all, as expected. However, a
changed the current state. Therefore the semantics ofsurrounding block can catch the abnormality.
e also returns a successor statec St. The states There is no space here to discuss all possible reasons
s ands’ differ, if e causes side effects, for instance for abrupt termination. Let us do just one example: The
by executing assignments, but alse ifauses a page continue statement. The typebnormalResult is a data
fault that is successfully handled by the current page- type similar toExprResult that lists all possible abnor-
fault handler. malities:

e The expression terminatedruptly with an abnor-
mal result because it does a longjump or (for state-
ments) executes éontinue Or abreak. An abnor- |
mal result consists (roughly) of a tag (for distinguish-
ing breaks from continues), a state, and possibly some The semantics of theontinue statement is now rather
additional information. Special statements (like while simple:
loops) can catch abnormalities, extract the state, and
continue execution normally. [continue] (s) = Continue(s)

datatype 7 AbnormalResult =

Continue "~o"

e The evaluation does not terminate or some catas-

) . X N hat th variabl instanti wi
trophic event, like asserting false, happens. ote that the type variable gets instantiated witibt

here. Continue abnormalities are caught at the end of the
body of for andwhile loops with the following function

We capture this possible behavior with the following
CatchCont:

(pseudo) Isabelle type definition:

CatchCont([e])(s) = cases [e](s) of
Abnormal(a) =
(cases a of
Continue(s’) = Normal(x,s’)
| = = Abnormal(a))
Herea is a type variable that gets instantiated by the con- | @ =T
crete type of the expression in question. The Isabelle
datatype is similar to the variant records of the program-
ming language Modula-2: An element @fExprResult
is tagged with eitheNormal, Abnormal, or Bug. If it is
tagged withNormal it carries an element af and one of
St, if it is tagged withAbnormal it contains an elementof ~ iterate(e,n + 1)(s)
St AbnormalResult, a type which we discuss below. The)) .
first proof obligation in the VFiasco project will be thatthe 10 g€t the semantics of a while statement, one considers
resultBug does never occur. the following composite:
With the preceding type definition the semantics of an
expressiore of type « is a function (in the mathematical iterate([[CONd]] °©
sense) CatchCont[body], k) o [eond] (1)
[e] : St —— a ExprResult

datatype o ExprResult =
Normal "a" "St"
| Abnormal "St AbnormalResult"
| Bug

For the semantics of a loop we need the iteration of a state
transformer:

iterate(e,0)(s) = Normal(x,s)

(iterate(e,n) o [e])(s)

If there exists a natural numbérsuch that {) returns ei-
Such a function with a structured codomain is usually ther abnormally (because oftareak or a goto) or nor-
called a coalgebra. Here we use the tetate transformer ~ mally with result false then the semantics of the while
to denote such a function. statement is precisely) with the least suclk substituted.
Sequential composition of statements (in the source If there is no suctk then the while loop does not terminate
code) is mapped to composition of state transformers (in and its semantics Bug € St ExprResult.

3.2 Typed data match the type of the data athen some arbitrary value is
produced, as discussed before.

In our semantics of C++ the locations of variables will
also be underspecified. This means that the semantics does
only allow to infer that the location of an automatic vari-
able is above the stack pointer and that different automatic
variables do not overlap—but not more. As a result, an “of

In this subsection we discuss how to model typed variables
and pointer arithmetic. For that discussion it is necessary
to know a bit more about how we model the state of the
system: The main ingredient of a state is the main memory,
which supports as basic operations reading and writing of

sequences of bytes. N . ; .
. . by one” error in a stack-allocated array invalidates all other
However, for the semantics of C++ variables we need . . o)
automatic variables (because it is impossible to prove that

qperatlons that read and wn_te typed values. These (_)pera-the locations of these other variables are different from the
tions should have the following property: Letbe a vari-

able of some typé. In the main memory there will be wrong pointer).
ype. y U We have not yet decided about how to treat C++’s arith-
some bytes that represent the valueofif this memory . . : .
. o " metic on integer types. For instance in C++ we have
area is modified (as a result of a bug) by writing a value

of a type different fromt then trying to read the value of 0 —1 > 0 forunsigned types Wh”e.m the theorem prover
. . . |sabelle0—1 = 0. A correct semantics of C++ would have
v should result in an undetermined value. We solve this

problem by usinginderspecified functionsA function is to define arithmetic modul®® for unsigned types of width

e 1 . w. However, the special effects of arithmetic modato
underspecified if the result for some arguments is not com-) : e
. are never used in the Fiasco kernel. So for the verification
pletely determined.

For example, to operate with C++ variables of type it might be more economical to treat arithmetic for integer

boolean we declare two functions in Isabelle: types as partial functions, which are only well defined if
' the result is within the bounds. This latter approach would

byte_to_bool : byte list — bool require to prove that all arithmetic in the kernel obeys the
bool_to_byte : bool — byte list size limitations.
. _ . Safe-C++ will not contain floating point arithmetic. The
We make two additional assumptions: First, we assume pjasqq kernel does not use floating point arithmetic; be-

tbhatlthe length oft(:1eIL|95:c;|1,t9,byte(b)_ Is fixed f?]r f:j"f sides, an exact formalization of the IEEE floating point
ooleans. Second, the following equation must hold for standard in a theorem prover is a major project in its

. '3
all possibleb: own [11].

byte_to_bool(bool tobyte b) = b) _ Safe—C+.+ will probably not allow exceptions. Modgl—
ing exceptions with the state-transformer approach is no

Note that we assume neither that a boolean is en-problem at all. However, exceptions are not used in Fiasco
coded in one byte (as the C++ standard doatgprescribe (mainly because they require a heavy library).
sizeof(bool) = 1) nor thatfalse is represented a5

Logically the use of an underspecified function amounts .
to universal quantification: The inferred results apply to 4 A type-safe object store
all pairs of functionsbyte_to_bool andbool_to_byte PR ; ;
that fulfill the assumptions. Or, to put it differently, our reS|d|ng in virtual memory
verification results apply to all C++ compilers, regardless

. In this section, we discuss what a Safe-C++ program’s
of how booleans are represented in memory.

stateSt contains and which operations it supports. This

; 6\1/vgt|r;gcae ;/gltljzeir;(t)tthheefsgggznlVi”atE"l’i's SZ‘;VS?O:V%Z interface comprises the “architecture” for which our logic
gep : oL_to_byte compiler produces “code.”

the value into its byte representation; then these bytes are It is possible to apply the state-transformer approach

written at the location ob. The assumptioni guaran- ; . ; : e
: 2 from Section 3 to environments with widely differing ab-
tees that reading a boolean value at the locationgif’es .) . i
straction levels. In the VFiasco project our goal is to keep

the same value back—as expected. However, if an inte-_ " - - . o
a high-level-language programmer’s view during verifica-

ger is written at the location af then it is impossible to . ; . ' :
. . . . tion while still enabling reasoning about low-level hard-
infer something about the value obtained when reading a . :

ware manipulation.

boolean from the location af. Such a bug will typically As an example, consider a safely-typethject-oriented
produce an unsolvable proof obligation (unless the variable | h '] | h y Iy J ,
v is never used again), which means that the verification anguage such as Java. In such a language, a programs
cannot be completed until the bug is fixed. stgte cpn5|sts of a glob'al object stqre in Whlch each typed
object is referenced using a global index. This model has

Note that with this approach of using underspecified bee ccessfull ed in thebp broiect for modeli
functions we can also model C++’s pointer arithmetic: In n successiully usedin projectiorm ing a
Java object store [24].

the theorem prover the pointer arithmetic is performed ac- ¢ | del thatsriori f
cording to the C++ standard yielding as result some loca- , Unfortunately, a storagg model t atasprl_on type safe
tion 1 in the memory. If the type of the pointer does not is not adequate for modeling a kernel environment for two

reasons. First, such an assumption might be wrong—

3To ensure consistency we prove that there exist two functions
byte_to_bool andbool_to_byte with these properties. For the type 4By safely-typed programming languagee mean a language in
of booleans this is obvious, but how about the type definedypedef which all type errors can be detected at either compile time or run time.
int huge[1000] [1000] [1000]? According to this definition, Java is safely typed, but C++ is not.

invalidating all verification results—because there is no Type-safe object store.Efficient interactive reasoning
system component that provides type safety. In the real about a program requires high-level knowledge of the
world, the kernel runs on top of an untyped virtual memory program’s state. Therefore, we need to create a veri-
and must ensure its own type safety. Second, kernel pro- fication environment that provides a type-safe object
grammers sometimes need to circumvent the compiler's store with proven object-store properties. This envi-
type safety for low-level systems programming, for exam- ronment consists of a mapping of an object-store in-
ple for manipulating CPU data structures. The power to terface to a virtual-memory interface. Section 4.3 de-
do so is missing from safely-typed languages; this is why scribes our verification environment.

kernel programmers often choose C or C++ instead of Java
or Modula-3.

The remainder of this section is organized as follows. In
Section 4.1, we elaborate on the missing link between low-
level virtual-memory hardware and the C++ object model, There are also a number of second-level design goals:
and we derive design goals for our storage model. Section -] o
4.2 introduces the hardware model we use for verifying Reusab|llty. The object-store specification needs to be
the Fiasco kernel. Section 4.3 explains our verification en- generic enough to serve as the general target language

vironment and Section 4.4 lists our base assumptions. of the logic compiler. Fiasco’s high-leveind low-
level kernel code as well as boot code should be ex-

pressible. In the future, we also would like to use it as
atarget for user-program code. Section 4.3.1 explains
how we achieve this goal.

Direct hardware access.It must be possible to circum-
vent the object store and access virtual memory di-
rectly. We address this requirement in Section 4.3.2.

4.1 Programmer's expectations and

system guarantees

Programmers of high-level languages such as Safe C++ Automation. Based on the object-store properties, we
including kernel programmers, make many assumptions provide powerful theorem-rewriting rules that auto-
about the environment in which their program eventually matically simplify logic-compiled source code with-

runs. For example, programmers assume that a program out operator intervention as far as possible. We dis-
can successfully access objects that have been properly al- cuss our rewriting rules in Section 4.3.2.

located (statically, on the heap, or on the stack). Table 1
lists a number of such assumptions.

During verification, it is advantageous to have access to
a high-level type-safe object store and to have Table 1's The hardware model provides the basis for the semantics
assumptions available as known properties of that objectof Safe C++. It defines the set of system stafiesand
store (henceforth calledbject-store propertigs Recall primitive operations, like reading in memory and insert-
that we use an interactive theorem prover to reason abouting page mappings. A complete model of the Intel I1A32
programs; in other words, a human user operates the theo-architecture is far beyond our project. Rather, we use an
rem prover. This user would like to reason on the level of abstraction of the hardware that contains just those prim-
the Safe-C++ programmer, and therefore needs to use factstive operations that are necessary to run the Fiasco mi-
the programmer originally assumed. crokernel. In particular, hardware features such as real

As stated before, thepriori assumption of these object- address mode, V86 mode, the floating-point coprocessor,
store properties would make our verification project mean- segments, and so on are only modeled in a rudimentary
ingless. The point of the VFiasco projectis to show thatthe way. For instance, the semantics of resetting the PE flag
Fiasco kernel works according to its specification based on (which switches the processor into real address mode) is
much more low-level knowledge. We want to assume only simply the special valuBug. This way it becomes a proof
very basic facts about the hardware and the Safe-C++ com-obligation that the PE flag is never reset.
piler. Additionally, we need to be able to circumvent the During verification, translated microkernel code actu-
object store and access the hardware layer directly. ally “runs” on the model. This ensures that several im-

Therefore, instead of assuming object-store properties portant proof obligations (e. g., the microkernel does not
from the start, our approach is to prove them starting from cause recursive page faults) are generated automatically by
low-level knowledge. Isabelle.

In summary, we aim for the following design goals in The model currently consists of four main components:
modeling our object store:

4.2 Hardware model

e The physical memory is modeled by a specification

Credibility. We want to start only from very basic low- that encapsulates reading and writing to memory.

level assumptions. Therefore, the storage model
should be based on a memory model that closely re-
sembles the virtual-memory hardware on which the

kernel executes. Further, we must document all base

e The TLB specification encompasses three TLB-
related operations: insert, retrieve and flush.

e Page-fault handling is modeled by a fully-specified

assumptions that we make about the hardware and the
Safe-C++ compiler. The hardware model and the base
assumptions are discussed in Section 4.2 and Sec-
tion 4.4, respectively.

page-table—lookup function. In systems with
software-loaded TLBs, this function is part of the op-
erating system and must be verified by the techniques
described in this paper.

Assumption Reality Implied system guarantee

(object-store properties) (low-level knowledge)
All program code and properly allo- Any memory access can fault duringPinned memory, or kernel faults in
cated data are accessible a TLB or page-table access “correct” memory; kernel is mapped

into all address spaces
Reading after writing returns thedifferent objects might overlap; the All objects are allocated such that no
value previously written; objects do same object might be mapped twicetwo object’s virtual-address regions
not change value unless updated ex- overlap
plicitly
Program reads and writes typed ob©Objects are stored in byte sequenceS§here exist two inverse functions
jects the byte representation of most datahat convert between typed values
types is unknown to the programmerand byte sequences
Program operates in flat virtual ad-Program code and data are split intd?age-fault code and virtual address
dress space pages, some of which are stored nonspace maintain “illusion” of flat ad-
contiguously in physical memory, dress space
and some of which are not memory-

resident

A program’s code is immutable Kernel can change all programsérnel does not modify program
code, including its own code

Hardware interrupts do not changeCPU switches to different contextInterrupt handlers do not modify

the program’s state arbitrarily and executes interrupt handler in kermemory except for a small set of ex-
nel mode plicitly declared “volatile” objects

Table 1: Examples of high-level-language programmer’s assumptions and guarantees needed from the memory subsystem.
Usually, programmers assume object-store properties like those in the left column. However, these properties are not true
in general. In reality, facts like those in the middle column can falsify the assumptions. The right column shows properties
that, when maintained by the runtime system, imply the object-store properties.

e Functions for reading and writing to virtual mem- specification provides the notion bfessingmemory re-
ory complete the specification. These functions cap- gions. It asserts that reading from or writing to a memory
ture the behavior of the MMU, and make use of the region that is read-blessed or write-blessed respectively
physical-memory and TLB specifications, as well as does not fail. The object-store properties are valid gener-
the page-table lookup function. ally only for objects residing in blessed memory. We call

)) . . instances of this specificatiomaemory model.
In the future this model will be extended with specifica- _
tions of other CPU features such as privilege levels, input— Normally, these memory models must be implemented
output, and interrupts as required. in terms of the hardware model’s virtual-memory inter-
face® Therefore, each memory model uses one particular
e . age-fault handler.
4.3 Verification environment pag - _ _
The Type specification provides operations for convert-

In this section, we construct a type-safe object store, as-ing between typed values and the memory representation

suming only a model of virtual-memory hardware. of these values as byte sequences, following the ideas de-
scribed in Section 3.2. There is an instance of Type for
4.3.1 Encapsulating system guarantees each (user-defined or Safe-C++ builtin) data type.

System specifications. ~ We have been able to prove The Allocator specification contains operations for al-
the object-store properties by assuming the properties oflocating memory blocks in blessed memory. It asserts that
Table 1's “imp”ed System guarantee” column. As a means within blessed memory regions, eaCh a||0cated bIOCk iS ac-
for structuring the proofs, we have factored the system cessible at only one virtual address. This property facili-
guarantees into a number Wstem Speciﬁcations: Plain tates safe ObjeCt reads and writes. There are a number of

Memory Type andAllocator. The extent of these guar- instances of Allocator prOVided by Safe C++—in particu-

antees differs between low-level and high-level parts of lar the static allocator and the stack allocator; for a kernel,

the kernel. For example, the kernel's page-fault handler there is no predefined heap allocator. However, there can

can access only some parts of the kernel's virtual addressbe any number of user-defined allocators written in Safe

space, and it is not allowed to page-fault recursively. We C++.

therefore have taken care to allow the specifications to be

parameterized with memory regions that can be safely ac-

cessed 5However, there are other memory models that are conceivable as

N e L. . well: For example, during the boot process, paging may be turned off,

The Plain Memor_y specification models a flat ylrtual ad'_ which results in a memory model that operates directly on top of physical

dress space in which bytes can be read or written. This memory.

Instantiating the system specifications. For each The “Physical Memory” memory model. We
part of the kernel that is to be verified, we must instan- have also verified that the our hardware model's physi-
tiate the system specifications that are to be used: onecal memory (Section 4.2) is an instance of Plain Mem-
memory model and potentially multiple Type and Alloca- ory. In this memory model, read and write operations di-
tor instances. For the lowest-level parts of the kernel, theserectly map to the corresponding physical-memory opera-
instances only include axiomatic knowledge about builtin tions; page faults cannot occur. All existing physical mem-
Safe-C++ types and allocators and about the memory stateory is blessed.

after boot-up. Higher-level parts can use a richer set of We will use the Physical Memory model for verifying
Allocator instances and a more complex memory model the part of Fiasco’s boot code that runs with paging dis-
that uses a Safe-C++ page-fault handler verified as a lower-abled. This verification will help us establishing the boot-
level part. up assumptions of the remaining kernel code.

Our memory models are of particular interest because
they allow us to use the object-store interface for both low-
level and high-level kernel code. In the remainder of this
section, we discuss the two memory models we use for The object-store layer is the interface that provides the
these two types of kernel code. In addition, we present an-desired object-store properties. It provides functions for
other memory model, Physical Memory, which we will use safely manipulating typed objects. This interface is the tar-
for verifying boot code. We have proven that all of these get language used by our logic compiler.

4.3.2 The object-store layer

memory models are indeed instances of Plain Memory. This layer relies on the guarantees provided by previous
o §) section’s system specifications. As the object-store layer is
The “Simple VM” memory model. ~ This memory jygependent from the concrete instantiation of these speci-

model i; used for.verifying low-level kernel code. Its read fications, it works with both the Simple VM model and the
and write operations are based on our hardware modelkernel Memory model. Therefore, it is possible to logic-

(Section 4.2). In the Simple VM model, each invocation compileall kernel code towards the same object-store in-
of the page-fault handler is considered an error. Blessingsiarface.
are based on the contents of the current page table. We implemented this layer by combining, using some

Based on the invariant that the kernel's code and static gjye logic, the system specifications we described in the
data are always mapptand on the precondition that there previous subsection. The objects reside in a Plain Memory
is an accessible stack, the Simple VM model can run code and are accessed using their Plain-Memory addresses. As
that does not rely on page-fault handling and that does on a real computer, objects do not have any extra state be-
not need a custom allocator. We use this model to ver- sides the state stored in Plain Memory. In other words, the
ify Fiasco's page-table insertion, low-level allocator, and opject-store operations work on only one state—the mem-
page-fault handler functions. ory state.

Based on the system guarantees provided by instances
of the system specifications, we were able to prove many
object-store properties such as the following:

The “Kernel Memory” memory model. For the
bulk of Fiasco kernel code, the Simple VM model does
not contain enough features. In particular, it lacks dy-
namic memory allocation, kernel-virtual memory manip-
ulation, and lazy page-directory updates. Fiasco relies on
these features when it dynamically allocates data structures
such as thread descriptors from its private memory pool. 4 After writing to an allocated object, reading from that
In this event, it maps new pages into a “master” virtual- object actually returns the value written.
address space and lazily updates the kernel regions of user
tasks’ virtual address spaces from the master copy upon e The order in which you allocate or deallocate objects
page faults. These lazy updates are completely transparent s jrrelevant as long as you deallocate objects with the

to the kernel code; for this code, it looks as if the allo- allocator from which you have allocated it in the first
cated memory “is always there.” We reflect this view in place.

our memory model “Kernel Memory.”
In this memory model, read and write operations again These properties usually take the form of theorem-

are based on our hardware model (Section 4.2). The behavrewriting rules that allow semiautomatic simplification of

ior of these operations is similar to the Simple VM model; and reasoning about state transformers that use only the

however, here page-faults invoke the global page-fault han-object-store layer. When reasoning about a sequence of

dler. object-store operations, these rewrite rules help by remov-
In addition to the Simple VM blessings, the Kernel ing uninteresting state modifications.

Memory model also regards as blessed the memory blocks Consider the following example:

that were allocated using the low-level allocator. Based on

this low-level allocator, we can verify a hierarchy of more addr, # addr, —

complex allocators (such as Fiasco’s slab allocator).

e Writing to some allocated object does not accidently
modify any other allocated object.

value_of (read, (write, (state, value)))

5This invariant needs to be set up by the boot process. - value,of(reada (state))

This rewrite rule states that when reading the value of an (i. e., performing tests and so on). It is impossible to

objecta, it is possible to ignore a preceding write to an verify the translation into HOL, because there is no
objectb if andb have different addresses. formal semantics of C++.
Bootstrapping the verification. Itis important to re- Compiler and boot loader. We assume a correct compi-
alize that the object-store layer works with each valid in- lation of the Fiasco source code. Further. the boot
stantiation of the system specifications. In particular, it loader should not modify the Fiasco image. With this
works with both the Simple VM and the Kernel Memory assumption our results will apply to the running mi-
memory models. o crokernel. In theory it is possible to formalize and
Therefore, during the verification we can always use the verify these assumptions.

object-store interface, regardless of whether we are work-
ing on low-level parts (such as the page-fault handler) or correct hardware model. Our hardware model should

high-level parts (such as the IPC system). Only the guar- be a correct abstraction of an IA32-based system. In
antees provided by the object-store layer differ: For the theory this assumption could be checked against the
page-fault handler we use the Simple-VM instantiation, VHDL description of an IA32-compliant processor.
thus the object-store properties hold only for objects on However, this is illusory not only because of the com-

the stack and for some statically allocated objects. For the plexity of these processors.

bulk of the kernel code we use the Kernel-Memory instan-

tiation which additionally provides heap allocation and the £ormal pase assumptions.

object-store properties for heap-allocated objects.

Correct booting. The verification starts in a kind of

a bootstrap process using the most basic memory
model. Therefore we rely on the fact that the boot
process sets up a state that fulfills the assumptions of
the most basic memory model. As far as possible we
will test this boot assumption with an assertion at the
end of the booting phase.

Direct hardware access. As we mentioned in Sec-
tion 4.1, it is sometimes necessary to circumvent the
object-store layer to directly access the hardware model,
for example to modify the page table, to switch between
virtual address spaces, or to access a memory-mapped de-
vice register.

This access is easily possible by manipulating the mem-
ory state directly using hardware-model functions. Recall
that our memory models are actually implemented by pro-
viding a functional mapping between the hardware model
and the Plain Memory specification. Therefore, the Plain-
Memory statds a hardware-model state.

Bypassing the object-store layer implies that after a di-

Correct stack allocator. We assume that the allocation of
automatic variables that is built into the Safe-C++
compiler fulfills the Allocator specification.

We do not plan to make assumptions about the size of
the physical memory. Instead we track memory consump-

rect. hardware-model access itis unknown whether the "€ tion during the verification. This yields theorems that have
sulting state still provides the system guarantees. Beforememory requirements as a precondition in the following
the object store can be reasoned about again after sucl?

rm:

an access, the theorem-prover user needs to reestablishe

(i.e., prove again) these guarantees explicitly. “Property P holds for functionf provided that at
leasts stack space ankl heap space is available

4.4 Base Assumptions when calling the function.”

Base assumptions are axioms for our verification. We as-
sume them to hold without proving them. The complete
list of base assumptions will only be known once we com-

pleted the verification. There are two kinds of base as- __ . o .
sumptions. First, the informal base assumptions that are IS Paper presents the main ideas for applying source-
inherent in our verification approach. Second, the formal code verification to the Fiasco microkernel in the VFiasco

base assumptions that will appear as axioms in the Isabelld’roject. Afirst challenge of this project is to come up with
source code. a semantics of C++ that deals with those features of C++
that are used in the Fiasco sources (including pointer arith-
Informal base assumptions. metic andset jmp/longjmp). With such a semantics avail-
able there is no need to reimplement the kernel in a differ-
ent programming language. We solve this first challenge
by combining state transformers with underspecified func-
tions.
A second challenge in the VFiasco project is to enable
Correct semantics. We assume that the translation from high-level reasoning in terms of typed objects during the
Safe C++ into HOL correctly captures the seman- verification, yet assume only low level hardware proper-
tics of the Safe-C++ source. We try to ensure a cor- ties. Here we use a verification environment that consists
rect translation with means from software technology of several layers of parametrized specifications.

5 Conclusion

Soundness of IsabelleWe assume that the theorem
prover Isabelle does not allow us to infer invalid con-
clusions. So far Isabelle had only very few soundness
bugs.

References

(1]

K. R. Apt and E.-R. Olderog\Verification of Sequential
and Concurrent ProgramsSpringer, Berlin, 1991.

[2] Thierry Cattel. Modelling and verification of a multi-

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

processor realtime OS kernel. 7th Internation Confer-
ence on Formal Description Techniqu@&erne, Switzer-
land, October 1994.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,
T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T.
Saski, and S. F. Smitimplementing mathematics with
the Nuprl proof development systemPrentice Hall,
1986.

G. Duval and J. Julliand. Modeling and verification of
the RUBISu-kernel with SPIN. InProceedings of the
First SPIN Workshop1995.

E. A. Emerson. Temporal and modal logic. In Jan
van Leeuwen, editorHandbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics
pages 995-1072. Elsevier Science Publishers, Amster-
dam, The Netherlands, 1990.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Check-
ing system rules using system-specific, programmer-
written compiler extensions. I8ymposium on Operat-
ing Systems Design and Implementation (OSDI 2000)
San Diego, CA, 23-25 October 2000.

D. Engler, D. Yu Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general approach
to inferring errors in systems code.Pnoceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP-01)2001.

D. Evans, J. Guttag, J. Horning, and Y. Tan. LCLint:
a Tool for Using Specifications to Check Code. In
D. Wile, editor, Proc. 2nd ACM SIGSOFT Symp. on
Foundations of Software Engineeringolume 19:5 of
ACM SIGSOFT Software Engineering Ngtpages 87—
96, New Orleans, USA, December 1994.

B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tull-
mann. Interface and execution models in the fluke ker-
nel. InProceedings of the Third Symposium on Oper-
ating Systems Design and Implementatipages 101-
116, New Orleans, Louisiana, February 1999. USENIX
Association.

Jean-Yves Girard, Yves Lafont, and Paul TayProofs
and Typesvolume 7 ofCambridge Tracts in Theoretical
Computer Science Tambridge University Press, 1988.

J. Harrison. A machine-checked theory of floating
point arithmetic. Lecture Notes in Computer Science
1690:113-130, 1999.

M. Hohmuth and H. HErtig. Pragmatic nonblocking syn-
chronization for real-time systems. WSENIX Annual
Technical Conferengdoston, MA, June 2001.

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

M. Huisman and B. Jacobs. Java program verifica-
tion via a Hoare logic with abrupt termination. In
T. Maibaum, editorFundamental Approaches to Soft-
ware Engineeringnumber 1783 in LNCS, 2000.

M. Huisman, B. Jacobs, and J. van den Berg. A
case study in class library verification: Java’'s
Vector class. Techn. Rep. CSI-R0007, Com-
put. Sci. Inst, Univ. of Nijmegen. Available at
URL http://www.cs.kun.nl/csi/reports/info/CSI-
R0007.html, 2000.

B. Jacobs. Exercises in coalgebraic specification. In
R. Crole R. Backhouse and J. Gibbons, editége-
braic and Coalgebraic Methods in the Mathematics of
Program Constructionvolume 2297 ofLecture Notes

in Computer Sciencgpages 237-280. Springer, Berlin,

2002.

X. Leroy, D. Doligez, J. Garrigue, D. &ny, and
J. Vouillon. The Objective Caml systera001. Avail-
able at URLhttp://caml.inria.fr/ocaml/.

X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hay-
den, K. P. Birman, and R. L. Constable. Building re-
liable, high-performance communication systems from
components. Ifl7th ACM Symposium on Operating
System Principles (SOSPrges 80-92, Kiawah Island,
SC, December 1999.

Z. Manna and A. PnueliThe Temporal Logic of Reac-
tive and Concurrent SysterrSpringer, New York, 1992.

George C. Necula. Proof-carrying code.Qonnference
Record of POPL '97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
pages 106-119, Paris, France, 15-17 1997.

George C. Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. @nd Symposium on
Operating Systems Design and Implementation (OSDI
'96), October 28-31, 1996. Seattle, YWages 229-243,
1996.

L. C. Paulson. Isabelle: A Generic Theorem Prover
Number 828 in LNCS. Springer, Berlin, 1994.

W. Reisig. Elements of Distributed Algorithms
Springer, Berlin, 1998.

P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau,
A. Chitturi, and G. Back. Formal methods: A practical
tool for OS implementors. Iorkshop on Hot Topics
in Operating Systempages 2025, 1997.

J. van den Berg, M. Huisman, B. Jacobs., and E. Poll.
A type-theoretic memory model for verification of se-
guential Java programs. In D. Bert, C. Choppy, and
P. Mosses, editora/ADT '99 number 1827 in LNCS,
pages 1-21, 1999.

M. Wahab. Verification and abstraction of flow-graph
programs with pointers and computed jumps. Research
Report CS-RR-354, Department of Computer Science,
University of Warwick, Coventry, UK, November 1998.

