
Applying source-code verification
to a microkernel — The VFiasco

project

Michael Hohmuth, Hendrik Tews,
and Shane G. Stephens

VFiasco Project

TUD–FI02–03–März 2002

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

Applying source-code verification to a microkernel
— The VFiasco project

Michael Hohmuth
Hendrik Tews

Dresden University of Technology
Department of Computer Science

Shane G. Stephens

University of New South Wales
School of Computer Science and Engineering

vfiasco@os.inf.tu-dresden.de

Abstract

Source-code verification works by reasoning about the se-
mantics of the full source code of a program. Traditionally
it is limited to small programs written in an academic pro-
gramming language. In this paper we present the VFiasco
(Verified Fiasco) project, in which we apply source-code
verification to a complete operating-system kernel writ-
ten in C++. The aim of the VFiasco project is to estab-
lish security relevant properties of the Fiasco microkernel
using source code verification. The project’s main chal-
lenges are to develop a clean semantics for the subset of
C++ used by the kernel and to enable high-level reasoning
about typed data starting from only low-level knowledge
about the hardware. In this paper we present our ideas for
tackling these challenges. We sketch a semantics of C++
and develop a type-safe object store for reasoning about
C++ programs. This object store is based on a hardware
model that closely resembles the IA32 virtual-memory ar-
chitecture, and on guarantees provided by the kernel itself.

1 Introduction

The VFiasco project aims at the mechanical verification
of security-relevant properties of the L4-compatible Fiasco
microkernel [12].

The goal of the project is an operating-system kernel that
providesverifiedsecurity guarantees. Such a kernel could
be used as a basis for building applications with high-level
security requirements. Verification is very expensive (both
in man power and time); for success it is crucial to mini-
mize the size of the system. Huge bug-afflicted monolithic
kernels are outside the scope of current verification tech-
nologies. On the other hand, microkernels are the smallest
kernels that provide an anchor for building secure systems:
separate protected address spaces. Therefore, they are the
best choice for constructing a verified secure system.

VFiasco is a work-in-progress. In this paper we report
in detail on one aspect of the project: the modeling of a
type-safe object store on top of a model of virtual-memory

This research was supported by the Deutsche Forschungsgemeinschaft
(DFG) through DFG grant Re 874/2-1. Shane G. Stephens was sup-
ported by a Study Grant from Deutscher Akademischer Austauschdienst
(DAAD) through the International Quality Network (IQN) program “Ra-
tional Mobile Agents and Systems of Agents.”

Contents

1 Introduction 1

2 Related work 2

3 A semantics of C++ 3
3.1 State transformers 3
3.2 Typed data 5

4 A type-safe object store 5
4.1 Programmer’s expectations and system

guarantees 6
4.2 Hardware model 6
4.3 Verification environment 7

4.3.1 Encapsulating system guarantees . . 7
4.3.2 The object-store layer 8

4.4 Base Assumptions 9

5 Conclusion 9

hardware. Further, we outline the semantics of C++ that
we will use in the verification.

To our knowledge, the VFiasco project is unique in
scope and intended thoroughness. We aim at modeling all
of the kernel’s source code in very fine grain, and we in-
tend to “run” this software model on a hardware model that
closely resembles real hardware. These qualities are meant
to establish an as-yet unseen level of confidence in our soft-
ware. Our formal-verification approach exceeds even what
is necessary to fulfill the development requirements of the
Common Criteria’s1 highest assurance level, EAL7.

Fiasco has been implemented in C++. For the verifica-
tion we develop a dialect of C++ with a precise semantics,
which we call “Safe C++.” The verification will be carried
out in the interactive theorem prover Isabelle/HOL [21].
This theorem prover uses higher-order logic (HOL) as its
input language. Therefore, we translate the kernel’s source
code from Safe C++ into its semantics expressed in HOL.
In our approach, alogic compilerperforms this translation

1The “Common Criteria for information Technology Security Evalua-
tion” (CC; ISO 15408) replaces the Trusted Computer System Evaluation
Criteria (TCSEC; better known as the “Orange Book”) in the U.S.A. and
Information Technology Security Evaluation Criteria (ITSEC) in the E.U.

Logic
compiler

VFiasco kernel
source code

Hardware
specification

Verification
using theorem

prover

Source-code
model

Q.E.D.

 Verification
 environment:
 - System guarantees
 - Object store

Figure 1: The verification process.Legend: Solid arrows
show the flow of data. Dashed arrows indicate a�uses� rela-
tionship.

automatically. This technique is in stark contrast to ap-
proaches in which parts of the source code are translated
manually to a more or less abstract model. Figure 1 illus-
trates our verification methodology.

The basis of the semantics of Safe C++ is a model of
the computer system, which we must provide in the the-
orem prover. An important problem in the project is to
find the right abstraction level for this model. To facili-
tate the verification, we would like to have the abstraction
level of a virtual machine that provides atype-safe object
store. Under a type-safe object store we understand an ab-
stract model of memory that supports reading and writing
of typed values and that guarantees safe accessibility of
these values. A type-safe object store would allow us to
reason on a comfortably high level, ignoring the complex-
ity of contemporary virtual-memory systems and memory
allocation.

However, we cannot simply assume such an object store
before verifying the Fiasco microkernel. Fiasco executes
in a much more hostile environment—on virtual-memory
hardware. In fact, one of the kernel’s tasks is the provision
of guarantees that allow the construction of such an ob-
ject store in the first place. Therefore, the existence of an
object-store layer with strong properties should be a proof
goal, not a base assumption.

In this paper, we fill the gap between high-level pro-
gramming languages (in our case Safe C++), which pro-
vide safety by means of protecting typed memory objects
from arbitrary accesses, and contemporary hardware with
virtual memory. We develop a type-safe object store based
on a set of memory models that mimic the way a high-
level–language programmer thinks of memory, but still can
be implemented using a concrete CPU model. Using these
memory models, it is possible to reason about the Fiasco
kernel, ignoring the current virtual-memory setup and the
effects of page faults on the program state.

This paper is organized as follows. In Section 2, we
discuss previous work in the field of operating-system ver-
ification, and we explain why we use theorem provers and
not model checking. Section 3 outlines the semantics of

C++ that we use in the verification. Section 4 contains
the main part of this paper. In this section, we explain
what can be expected from an object store, and we de-
rive design goals for our model. We briefly discuss our
hardware model and then develop a verification environ-
ment for system-level software, including a type-safe ob-
ject store. We conclude the paper with a summary in Sec-
tion 5.

2 Related work

Our research is related to the following work areas: the-
oretical work on program verification, model checking,
proof-carrying code, static source-code checking, object-
code verification, and theorem proving. In this section, we
discuss these categories in turn.

Theoretical work. Theoretical accounts sometimes
use examples from operating systems. For instance an
algorithm for mutual exclusion is verified in all of [5, 1,
18, 22, 15]. The theory described in these papers is often
highly relevant for our work. However, the methodology
used there for small (and clean) examples cannot be ap-
plied to the Fiasco microkernel.

Model checking. Model checking has been success-
fully applied to several systems [4, 2, 23]. When using
model checking one first has to reimplement some parts of
the system within the model checker. During this trans-
lation one has to abstract from details that do not affect
the result of the verification. This is necessary because
model checking has inherent restrictions, especially with
respect to the state-explosion problem. These two nec-
essary steps—reimplementation and abstraction—limit the
conclusions that can be drawn from model checking: It is
impossible to verify that the model faithfully represents the
source code.

For instance, in [23] Tullmann and colleagues verify
liveness properties of the Fluke kernel’s [9] IPC subsys-
tem. Thereby they abstract away from the actual data
that is transmitted. While they actually proved the ab-
sence of deadlocks, it is theoretically possible that the IPC
subsystem deadlocks because it dereferences a malicious
user pointer (which has been abstracted away in the model
checker).

In our project we will model the complete source code
of the Fiasco kernel, including the page fault handler. If we
manage to prove that the IPC system calls do always ter-
minate, then this proof necessarily includes a (sub-)proof
about the correct handling of user pointers. While model
checking can be applied with almost no user interaction,
our approach requires highly skilled staff operating the the-
orem prover.

Proof-carrying code. Proof-carrying code [20, 19]
solves the problem of executing untrusted (user-supplied)
code in kernel mode. In this approach the kernel (devel-
oper) publishes a security policy, and every extension to
be downloaded must be accompanied with a formal proof
showing that the extension conforms to the security policy.

Checking the validity of the proof can be done efficiently
in the kernel because proof checking is closely related to
type checking [10]. The author of the kernel extension is
responsible for the difficult part—constructing the proof
and thereby verifying the extension. However, for a typical
application of proof-carrying code (for instance a network
filter) the involved verification is trivial and can often be
done automatically.

In the VFiasco project, we tackle a rather different prob-
lem: proving the kernelitself correct. The problem of
safely extending this kernel is orthogonal to our work.

Microkernels such as Fiasco are extended using user-
level servers that run in their own address spaces. Some of
these servers are an integral part of the system and must be
trusted by all applications. Trusted servers need to be veri-
fied separately, independent of the underlying microkernel.
Verification of user-level components and of such trusted
servers is outside the scope of this work. We are undertak-
ing the first and most basic step of system verification—
proving the kernel correct.

In general, applying verification to a microkernel based
system is much easier than applying it to a traditional
monolithic system. The reason is that the enforced
address-space separation of system components in a mi-
crokernel based system makes it possible to verify the
components independently from each other.

Static source-code checking. There are many tools
in the spirit oflint that statically analyze source code.
Some of these provide customizable rule sets and have
successfully been used to find bugs in operating systems
[8, 6, 7].

Static source-code checking is different from testing in
that it analyzes the source code instead of running it. With
testing it has in common that it assists in finding program-
ming errors. In the VFiasco project our concern is not so
much to find errors, but togive guaranteesabout their ab-
sence.

Object-code verification. One problem of source
code verification is that, for a compiled language, its re-
sults do not apply to the running system: The compiler
might have changed the program such that the running sys-
tem violates properties that have been proven before. One
way out of this dilemma is to verify the object code itself
as proposed in [25]. The main problem with object-code
verification is that it is much more difficult. The examples
handled in [25] have only a fraction of the size of success-
ful source-code verification projects like for instance the
Huisman’s and colleagues’ Java-Vector verification [14].
Further, also with object-code verification absolute secu-
rity remains an illusion: The theorem prover used in the
verification might be unsound, thus allowing one to prove
arbitrary results.

We believe that source-code verification in combination
with a well-tested compiler provides enough security for
all practical purposes.

Theorem proving. Related work that comes closest to
our project is those that applies theorem proving to source

code and more especially to operating-systems source
code.

In [17] Liu and colleagues use the theorem prover
Nuprl [3] in the Ensemble project to verify the correctness
of network-protocol stacks and to optimize such stacks.
They use several tools that translate their specifications
and the Ensemble source code into Nuprl and back. In
the VFiasco project we also plan automated translation of
source code into the theorem prover Isabelle. However,
there are two important differences. First, to enable the
verification in the Ensemble project the original C source
code was rewritten in a carefully chosen subset of the func-
tional language Ocaml [16]. Features of Ocaml that are
more difficult to handle, like objects or exceptions, are not
used in Ensemble.

In contrast, we plan to develop a semantics of a subset of
C++ that essentially contains everything needed for kernel
programming, including abrupt termination2, longjmp’s,
and pointer arithmetic. Second, Liu and colleagues did
not verify the source code. Instead, they verified program
transformations.

Our approach to a semantics of C++ is very similar to
the one used in the LOOP project for Java [13]. We also
use coalgebras to represent statements and expressions. In
the LOOP project Jacobs and colleagues focus on the ver-
ification of Java applications. Consequently they use an
object memory that directly represents Java objects [24].
A central aim of the VFiasco project is to incorporate sys-
tem internals like page fault handling and protection levels
into the verification. Therefore we need a more low-level
view on the object memory.

3 A semantics of C++

This section outlines the semantics of C++ that we need for
the verification of the Fiasco source code. The approach
we take here is very pragmatic: For every feature of C++
we assess both the difficulty of defining a semantics for
that feature and the difficulty of writing the Fiasco kernel
without that feature. The result of that assessment defines
the language Safe C++, which is used to implement Fiasco.
Although C++ has a reputation of being an unsafe and dirty
language, it is surprising to see how much of C++ can be
modeled without difficulty: Safe-C++ will allow pointer
arithmetic and all of C++’s flow control structures includ-
ing break, continue, setjmp/longjmp, and evengoto.

An important goal in the design of Safe C++ is that it
shall be compatible with C++ modulo some preprocessor
directives and a small library (encapsulating direct hard-
ware access). If this goal is met we can use a standard C++
compiler for Safe C++ programs.

3.1 State transformers

In the semantics of C++ we do not distinguish between
statements and expressions as the C++ grammar does:

2An expression or statement terminatesabruptly if the control flow
does not reach the end of the statement or expression because, for in-
stance, abreak or return was executed.

statements are considered as expressions of typevoid,
wherevoid is a type that contains precisely one (uninter-
esting) element∗. The evaluation of such generalized ex-
pressions depends on the current state of the whole system.
Therefore the semanticsJeK of an expressione is a function
that takes the current state of the system as input. LetSt be
the set of all possible system states. We will elaborate on
this set in Section 4.2, for the moment we can ignore the
details.

When evaluation an expressione in a states there are
three fundamentally different possibilities:

• The expression returnsnormally and delivers a re-
sult (of ∗ with type void in casee corresponds to a
C++ statement). In addition the evaluation might have
changed the current state. Therefore the semantics of
e also returns a successor states′ ∈ St. The states
s ands′ differ, if e causes side effects, for instance
by executing assignments, but also ife causes a page
fault that is successfully handled by the current page-
fault handler.

• The expression terminatesabruptly with an abnor-
mal result because it does a longjump or (for state-
ments) executes acontinue or abreak. An abnor-
mal result consists (roughly) of a tag (for distinguish-
ing breaks from continues), a state, and possibly some
additional information. Special statements (like while
loops) can catch abnormalities, extract the state, and
continue execution normally.

• The evaluation does not terminate or some catas-
trophic event, like asserting false, happens.

We capture this possible behavior with the following
(pseudo) Isabelle type definition:

datatype α ExprResult =
Normal "α" "St"

| Abnormal "St AbnormalResult"
| Bug

Hereα is a type variable that gets instantiated by the con-
crete type of the expression in question. The Isabelle
datatype is similar to the variant records of the program-
ming language Modula-2: An element ofα ExprResult
is tagged with eitherNormal, Abnormal, or Bug. If it is
tagged withNormal it carries an element ofα and one of
St, if it is tagged withAbnormal it contains an element of
St AbnormalResult, a type which we discuss below. The
first proof obligation in the VFiasco project will be that the
resultBug does never occur.

With the preceding type definition the semantics of an
expressione of typeα is a function (in the mathematical
sense)

JeK : St // α ExprResult

Such a function with a structured codomain is usually
called a coalgebra. Here we use the termstate transformer
to denote such a function.

Sequential composition of statements (in the source
code) is mapped to composition of state transformers (in

the theorem prover). The composition of two state trans-
formers is a higher-order function that combines two state
transformers and returns a new state transformer. It is de-
fined as follows:(

Je1K ◦ Je2K
)
(s) = cases Je1K(s) of

Normal(r, s′) ⇒ Je2K(s′)
| Abnormal(a) ⇒ Abnormal(a)
| Bug ⇒ Bug

This definition uses pattern matching on the result of
Je1K(s): In case the first expression returns normally the
resultr is discarded and the expressione2 is evaluated on
the intermediate states′. If e1 does not return normally
then e2 is not evaluated at all, as expected. However, a
surrounding block can catch the abnormality.

There is no space here to discuss all possible reasons
for abrupt termination. Let us do just one example: The
continue statement. The typeAbnormalResult is a data
type similar toExprResult that lists all possible abnor-
malities:

datatype γ AbnormalResult =
Continue "γ"

| · · ·

The semantics of thecontinue statement is now rather
simple:

JcontinueK (s) = Continue(s)

Note that the type variableγ gets instantiated withSt
here. Continue abnormalities are caught at the end of the
body offor andwhile loops with the following function
CatchCont:

CatchCont(JeK)(s) = cases JeK(s) of
Abnormal(a) ⇒(

cases a of
Continue(s′) ⇒ Normal(∗, s′)

| x ⇒ Abnormal(a)
)

| x ⇒ x

For the semantics of a loop we need the iteration of a state
transformer:

iterate(e, 0)(s) = Normal(∗, s)
iterate(e, n + 1)(s) =

(
iterate(e, n) ◦ JeK

)
(s)

To get the semantics of a while statement, one considers
the following composite:

iterate
(
JcondK ◦

CatchContJbodyK, k
)
◦ JcondK (†)

If there exists a natural numberk such that (†) returns ei-
ther abnormally (because of abreak or a goto) or nor-
mally with result false then the semantics of the while
statement is precisely (†) with the least suchk substituted.
If there is no suchk then the while loop does not terminate
and its semantics isBug ∈ St ExprResult.

3.2 Typed data

In this subsection we discuss how to model typed variables
and pointer arithmetic. For that discussion it is necessary
to know a bit more about how we model the state of the
system: The main ingredient of a state is the main memory,
which supports as basic operations reading and writing of
sequences of bytes.

However, for the semantics of C++ variables we need
operations that read and write typed values. These opera-
tions should have the following property: Letv be a vari-
able of some typet. In the main memory there will be
some bytes that represent the value ofv. If this memory
area is modified (as a result of a bug) by writing a value
of a type different fromt then trying to read the value of
v should result in an undetermined value. We solve this
problem by usingunderspecified functions. A function is
underspecified if the result for some arguments is not com-
pletely determined.

For example, to operate with C++ variables of type
boolean we declare two functions in Isabelle:

byte_to_bool : byte list −→ bool
bool_to_byte : bool −→ byte list

We make two additional assumptions: First, we assume
that the length of the listbool to byte(b) is fixed for all
booleansb. Second, the following equation must hold for
all possibleb:3

byte to bool(bool to byte b) = b (‡)

Note that we assume neither that a boolean is en-
coded in one byte (as the C++ standard doesnot prescribe
sizeof(bool) = 1) nor thatfalse is represented as0.

Logically the use of an underspecified function amounts
to universal quantification: The inferred results apply to
all pairs of functionsbyte to bool and bool to byte
that fulfill the assumptions. Or, to put it differently, our
verification results apply to all C++ compilers, regardless
of how booleans are represented in memory.

Writing a value to the boolean variablev is now a two
stage process: First the functionbool to byte transforms
the value into its byte representation; then these bytes are
written at the location ofv. The assumption (‡) guaran-
tees that reading a boolean value at the location ofv gives
the same value back—as expected. However, if an inte-
ger is written at the location ofv then it is impossible to
infer something about the value obtained when reading a
boolean from the location ofv. Such a bug will typically
produce an unsolvable proof obligation (unless the variable
v is never used again), which means that the verification
cannot be completed until the bug is fixed.

Note that with this approach of using underspecified
functions we can also model C++’s pointer arithmetic: In
the theorem prover the pointer arithmetic is performed ac-
cording to the C++ standard yielding as result some loca-
tion l in the memory. If the type of the pointer does not

3To ensure consistency we prove that there exist two functions
byte to bool andbool to byte with these properties. For the type
of booleans this is obvious, but how about the type defined bytypedef

int huge[1000][1000][1000]?

match the type of the data atl then some arbitrary value is
produced, as discussed before.

In our semantics of C++ the locations of variables will
also be underspecified. This means that the semantics does
only allow to infer that the location of an automatic vari-
able is above the stack pointer and that different automatic
variables do not overlap—but not more. As a result, an “of
by one” error in a stack-allocated array invalidates all other
automatic variables (because it is impossible to prove that
the locations of these other variables are different from the
wrong pointer).

We have not yet decided about how to treat C++’s arith-
metic on integer types. For instance in C++ we have
0 − 1 > 0 for unsigned types while in the theorem prover
Isabelle0−1 = 0. A correct semantics of C++ would have
to define arithmetic modulo2w for unsigned types of width
w. However, the special effects of arithmetic modulo2w

are never used in the Fiasco kernel. So for the verification
it might be more economical to treat arithmetic for integer
types as partial functions, which are only well defined if
the result is within the bounds. This latter approach would
require to prove that all arithmetic in the kernel obeys the
size limitations.

Safe-C++ will not contain floating point arithmetic. The
Fiasco kernel does not use floating point arithmetic; be-
sides, an exact formalization of the IEEE floating point
standard in a theorem prover is a major project in its
own [11].

Safe-C++ will probably not allow exceptions. Model-
ing exceptions with the state-transformer approach is no
problem at all. However, exceptions are not used in Fiasco
(mainly because they require a heavy library).

4 A type-safe object store
residing in virtual memory

In this section, we discuss what a Safe-C++ program’s
stateSt contains and which operations it supports. This
interface comprises the “architecture” for which our logic
compiler produces “code.”

It is possible to apply the state-transformer approach
from Section 3 to environments with widely differing ab-
straction levels. In the VFiasco project our goal is to keep
a high-level–language programmer’s view during verifica-
tion while still enabling reasoning about low-level hard-
ware manipulation.

As an example, consider a safely-typed4 object-oriented
language such as Java. In such a language, a program’s
state consists of a global object store in which each typed
object is referenced using a global index. This model has
been successfully used in the LOOPproject for modeling a
Java object store [24].

Unfortunately, a storage model that isa priori type safe
is not adequate for modeling a kernel environment for two
reasons. First, such an assumption might be wrong—

4By safely-typed programming languagewe mean a language in
which all type errors can be detected at either compile time or run time.
According to this definition, Java is safely typed, but C++ is not.

invalidating all verification results—because there is no
system component that provides type safety. In the real
world, the kernel runs on top of an untyped virtual memory
and must ensure its own type safety. Second, kernel pro-
grammers sometimes need to circumvent the compiler’s
type safety for low-level systems programming, for exam-
ple for manipulating CPU data structures. The power to
do so is missing from safely-typed languages; this is why
kernel programmers often choose C or C++ instead of Java
or Modula-3.

The remainder of this section is organized as follows. In
Section 4.1, we elaborate on the missing link between low-
level virtual-memory hardware and the C++ object model,
and we derive design goals for our storage model. Section
4.2 introduces the hardware model we use for verifying
the Fiasco kernel. Section 4.3 explains our verification en-
vironment and Section 4.4 lists our base assumptions.

4.1 Programmer’s expectations and
system guarantees

Programmers of high-level languages such as Safe C++,
including kernel programmers, make many assumptions
about the environment in which their program eventually
runs. For example, programmers assume that a program
can successfully access objects that have been properly al-
located (statically, on the heap, or on the stack). Table 1
lists a number of such assumptions.

During verification, it is advantageous to have access to
a high-level type-safe object store and to have Table 1’s
assumptions available as known properties of that object
store (henceforth calledobject-store properties). Recall
that we use an interactive theorem prover to reason about
programs; in other words, a human user operates the theo-
rem prover. This user would like to reason on the level of
the Safe-C++ programmer, and therefore needs to use facts
the programmer originally assumed.

As stated before, thea priori assumption of these object-
store properties would make our verification project mean-
ingless. The point of the VFiasco project is to show that the
Fiasco kernel works according to its specification based on
much more low-level knowledge. We want to assume only
very basic facts about the hardware and the Safe-C++ com-
piler. Additionally, we need to be able to circumvent the
object store and access the hardware layer directly.

Therefore, instead of assuming object-store properties
from the start, our approach is to prove them starting from
low-level knowledge.

In summary, we aim for the following design goals in
modeling our object store:

Credibility. We want to start only from very basic low-
level assumptions. Therefore, the storage model
should be based on a memory model that closely re-
sembles the virtual-memory hardware on which the
kernel executes. Further, we must document all base
assumptions that we make about the hardware and the
Safe-C++ compiler. The hardware model and the base
assumptions are discussed in Section 4.2 and Sec-
tion 4.4, respectively.

Type-safe object store.Efficient interactive reasoning
about a program requires high-level knowledge of the
program’s state. Therefore, we need to create a veri-
fication environment that provides a type-safe object
store with proven object-store properties. This envi-
ronment consists of a mapping of an object-store in-
terface to a virtual-memory interface. Section 4.3 de-
scribes our verification environment.

Direct hardware access.It must be possible to circum-
vent the object store and access virtual memory di-
rectly. We address this requirement in Section 4.3.2.

There are also a number of second-level design goals:

Reusability. The object-store specification needs to be
generic enough to serve as the general target language
of the logic compiler. Fiasco’s high-leveland low-
level kernel code as well as boot code should be ex-
pressible. In the future, we also would like to use it as
a target for user-program code. Section 4.3.1 explains
how we achieve this goal.

Automation. Based on the object-store properties, we
provide powerful theorem-rewriting rules that auto-
matically simplify logic-compiled source code with-
out operator intervention as far as possible. We dis-
cuss our rewriting rules in Section 4.3.2.

4.2 Hardware model

The hardware model provides the basis for the semantics
of Safe C++. It defines the set of system statesSt and
primitive operations, like reading in memory and insert-
ing page mappings. A complete model of the Intel IA32
architecture is far beyond our project. Rather, we use an
abstraction of the hardware that contains just those prim-
itive operations that are necessary to run the Fiasco mi-
crokernel. In particular, hardware features such as real
address mode, V86 mode, the floating-point coprocessor,
segments, and so on are only modeled in a rudimentary
way. For instance, the semantics of resetting the PE flag
(which switches the processor into real address mode) is
simply the special valueBug. This way it becomes a proof
obligation that the PE flag is never reset.

During verification, translated microkernel code actu-
ally “runs” on the model. This ensures that several im-
portant proof obligations (e. g., the microkernel does not
cause recursive page faults) are generated automatically by
Isabelle.

The model currently consists of four main components:

• The physical memory is modeled by a specification
that encapsulates reading and writing to memory.

• The TLB specification encompasses three TLB-
related operations: insert, retrieve and flush.

• Page-fault handling is modeled by a fully-specified
page-table–lookup function. In systems with
software-loaded TLBs, this function is part of the op-
erating system and must be verified by the techniques
described in this paper.

Assumption
(object-store properties)

Reality
(low-level knowledge)

Implied system guarantee

All program code and properly allo-
cated data are accessible

Any memory access can fault during
a TLB or page-table access

Pinned memory, or kernel faults in
“correct” memory; kernel is mapped
into all address spaces

Reading after writing returns the
value previously written; objects do
not change value unless updated ex-
plicitly

different objects might overlap; the
same object might be mapped twice

All objects are allocated such that no
two object’s virtual-address regions
overlap

Program reads and writes typed ob-
jects

Objects are stored in byte sequences;
the byte representation of most data
types is unknown to the programmer

There exist two inverse functions
that convert between typed values
and byte sequences

Program operates in flat virtual ad-
dress space

Program code and data are split into
pages, some of which are stored non-
contiguously in physical memory,
and some of which are not memory-
resident

Page-fault code and virtual address
space maintain “illusion” of flat ad-
dress space

A program’s code is immutable Kernel can change all programs’
code, including its own

Kernel does not modify program
code

Hardware interrupts do not change
the program’s state arbitrarily

CPU switches to different context
and executes interrupt handler in ker-
nel mode

Interrupt handlers do not modify
memory except for a small set of ex-
plicitly declared “volatile” objects

Table 1: Examples of high-level–language programmer’s assumptions and guarantees needed from the memory subsystem.
Usually, programmers assume object-store properties like those in the left column. However, these properties are not true
in general. In reality, facts like those in the middle column can falsify the assumptions. The right column shows properties
that, when maintained by the runtime system, imply the object-store properties.

• Functions for reading and writing to virtual mem-
ory complete the specification. These functions cap-
ture the behavior of the MMU, and make use of the
physical-memory and TLB specifications, as well as
the page-table lookup function.

In the future this model will be extended with specifica-
tions of other CPU features such as privilege levels, input–
output, and interrupts as required.

4.3 Verification environment

In this section, we construct a type-safe object store, as-
suming only a model of virtual-memory hardware.

4.3.1 Encapsulating system guarantees

System specifications. We have been able to prove
the object-store properties by assuming the properties of
Table 1’s “implied system guarantee” column. As a means
for structuring the proofs, we have factored the system
guarantees into a number ofsystem specifications: Plain
Memory, Type, andAllocator. The extent of these guar-
antees differs between low-level and high-level parts of
the kernel. For example, the kernel’s page-fault handler
can access only some parts of the kernel’s virtual address
space, and it is not allowed to page-fault recursively. We
therefore have taken care to allow the specifications to be
parameterized with memory regions that can be safely ac-
cessed.

The Plain Memory specification models a flat virtual ad-
dress space in which bytes can be read or written. This

specification provides the notion ofblessingmemory re-
gions. It asserts that reading from or writing to a memory
region that is read-blessed or write-blessed respectively
does not fail. The object-store properties are valid gener-
ally only for objects residing in blessed memory. We call
instances of this specification amemory model.

Normally, these memory models must be implemented
in terms of the hardware model’s virtual-memory inter-
face.5 Therefore, each memory model uses one particular
page-fault handler.

The Type specification provides operations for convert-
ing between typed values and the memory representation
of these values as byte sequences, following the ideas de-
scribed in Section 3.2. There is an instance of Type for
each (user-defined or Safe-C++ builtin) data type.

The Allocator specification contains operations for al-
locating memory blocks in blessed memory. It asserts that
within blessed memory regions, each allocated block is ac-
cessible at only one virtual address. This property facili-
tates safe object reads and writes. There are a number of
instances of Allocator provided by Safe C++—in particu-
lar the static allocator and the stack allocator; for a kernel,
there is no predefined heap allocator. However, there can
be any number of user-defined allocators written in Safe
C++.

5However, there are other memory models that are conceivable as
well: For example, during the boot process, paging may be turned off,
which results in a memory model that operates directly on top of physical
memory.

Instantiating the system specifications. For each
part of the kernel that is to be verified, we must instan-
tiate the system specifications that are to be used: one
memory model and potentially multiple Type and Alloca-
tor instances. For the lowest-level parts of the kernel, these
instances only include axiomatic knowledge about builtin
Safe-C++ types and allocators and about the memory state
after boot-up. Higher-level parts can use a richer set of
Allocator instances and a more complex memory model
that uses a Safe-C++ page-fault handler verified as a lower-
level part.

Our memory models are of particular interest because
they allow us to use the object-store interface for both low-
level and high-level kernel code. In the remainder of this
section, we discuss the two memory models we use for
these two types of kernel code. In addition, we present an-
other memory model, Physical Memory, which we will use
for verifying boot code. We have proven that all of these
memory models are indeed instances of Plain Memory.

The “Simple VM” memory model. This memory
model is used for verifying low-level kernel code. Its read
and write operations are based on our hardware model
(Section 4.2). In the Simple VM model, each invocation
of the page-fault handler is considered an error. Blessings
are based on the contents of the current page table.

Based on the invariant that the kernel’s code and static
data are always mapped6 and on the precondition that there
is an accessible stack, the Simple VM model can run code
that does not rely on page-fault handling and that does
not need a custom allocator. We use this model to ver-
ify Fiasco’s page-table insertion, low-level allocator, and
page-fault handler functions.

The “Kernel Memory” memory model. For the
bulk of Fiasco kernel code, the Simple VM model does
not contain enough features. In particular, it lacks dy-
namic memory allocation, kernel-virtual memory manip-
ulation, and lazy page-directory updates. Fiasco relies on
these features when it dynamically allocates data structures
such as thread descriptors from its private memory pool.
In this event, it maps new pages into a “master” virtual-
address space and lazily updates the kernel regions of user
tasks’ virtual address spaces from the master copy upon
page faults. These lazy updates are completely transparent
to the kernel code; for this code, it looks as if the allo-
cated memory “is always there.” We reflect this view in
our memory model “Kernel Memory.”

In this memory model, read and write operations again
are based on our hardware model (Section 4.2). The behav-
ior of these operations is similar to the Simple VM model;
however, here page-faults invoke the global page-fault han-
dler.

In addition to the Simple VM blessings, the Kernel
Memory model also regards as blessed the memory blocks
that were allocated using the low-level allocator. Based on
this low-level allocator, we can verify a hierarchy of more
complex allocators (such as Fiasco’s slab allocator).

6This invariant needs to be set up by the boot process.

The “Physical Memory” memory model. We
have also verified that the our hardware model’s physi-
cal memory (Section 4.2) is an instance of Plain Mem-
ory. In this memory model, read and write operations di-
rectly map to the corresponding physical-memory opera-
tions; page faults cannot occur. All existing physical mem-
ory is blessed.

We will use the Physical Memory model for verifying
the part of Fiasco’s boot code that runs with paging dis-
abled. This verification will help us establishing the boot-
up assumptions of the remaining kernel code.

4.3.2 The object-store layer

The object-store layer is the interface that provides the
desired object-store properties. It provides functions for
safely manipulating typed objects. This interface is the tar-
get language used by our logic compiler.

This layer relies on the guarantees provided by previous
section’s system specifications. As the object-store layer is
independent from the concrete instantiation of these speci-
fications, it works with both the Simple VM model and the
Kernel Memory model. Therefore, it is possible to logic-
compileall kernel code towards the same object-store in-
terface.

We implemented this layer by combining, using some
glue logic, the system specifications we described in the
previous subsection. The objects reside in a Plain Memory
and are accessed using their Plain-Memory addresses. As
on a real computer, objects do not have any extra state be-
sides the state stored in Plain Memory. In other words, the
object-store operations work on only one state—the mem-
ory state.

Based on the system guarantees provided by instances
of the system specifications, we were able to prove many
object-store properties such as the following:

• Writing to some allocated object does not accidently
modify any other allocated object.

• After writing to an allocated object, reading from that
object actually returns the value written.

• The order in which you allocate or deallocate objects
is irrelevant as long as you deallocate objects with the
allocator from which you have allocated it in the first
place.

These properties usually take the form of theorem-
rewriting rules that allow semiautomatic simplification of
and reasoning about state transformers that use only the
object-store layer. When reasoning about a sequence of
object-store operations, these rewrite rules help by remov-
ing uninteresting state modifications.

Consider the following example:

addra 6= addrb =⇒
value of

(
reada(writeb(state, value))

)
= value of(reada(state))

This rewrite rule states that when reading the value of an
objecta, it is possible to ignore a preceding write to an
objectb if a andb have different addresses.

Bootstrapping the verification. It is important to re-
alize that the object-store layer works with each valid in-
stantiation of the system specifications. In particular, it
works with both the Simple VM and the Kernel Memory
memory models.

Therefore, during the verification we can always use the
object-store interface, regardless of whether we are work-
ing on low-level parts (such as the page-fault handler) or
high-level parts (such as the IPC system). Only the guar-
antees provided by the object-store layer differ: For the
page-fault handler we use the Simple-VM instantiation,
thus the object-store properties hold only for objects on
the stack and for some statically allocated objects. For the
bulk of the kernel code we use the Kernel-Memory instan-
tiation which additionally provides heap allocation and the
object-store properties for heap-allocated objects.

Direct hardware access. As we mentioned in Sec-
tion 4.1, it is sometimes necessary to circumvent the
object-store layer to directly access the hardware model,
for example to modify the page table, to switch between
virtual address spaces, or to access a memory-mapped de-
vice register.

This access is easily possible by manipulating the mem-
ory state directly using hardware-model functions. Recall
that our memory models are actually implemented by pro-
viding a functional mapping between the hardware model
and the Plain Memory specification. Therefore, the Plain-
Memory stateis ahardware-model state.

Bypassing the object-store layer implies that after a di-
rect hardware-model access it is unknown whether the re-
sulting state still provides the system guarantees. Before
the object store can be reasoned about again after such
an access, the theorem-prover user needs to reestablished
(i. e., prove again) these guarantees explicitly.

4.4 Base Assumptions

Base assumptions are axioms for our verification. We as-
sume them to hold without proving them. The complete
list of base assumptions will only be known once we com-
pleted the verification. There are two kinds of base as-
sumptions. First, the informal base assumptions that are
inherent in our verification approach. Second, the formal
base assumptions that will appear as axioms in the Isabelle
source code.

Informal base assumptions.

Soundness of Isabelle.We assume that the theorem
prover Isabelle does not allow us to infer invalid con-
clusions. So far Isabelle had only very few soundness
bugs.

Correct semantics. We assume that the translation from
Safe C++ into HOL correctly captures the seman-
tics of the Safe-C++ source. We try to ensure a cor-
rect translation with means from software technology

(i. e., performing tests and so on). It is impossible to
verify the translation into HOL, because there is no
formal semantics of C++.

Compiler and boot loader. We assume a correct compi-
lation of the Fiasco source code. Further, the boot
loader should not modify the Fiasco image. With this
assumption our results will apply to the running mi-
crokernel. In theory it is possible to formalize and
verify these assumptions.

Correct hardware model. Our hardware model should
be a correct abstraction of an IA32-based system. In
theory this assumption could be checked against the
VHDL description of an IA32-compliant processor.
However, this is illusory not only because of the com-
plexity of these processors.

Formal base assumptions.

Correct booting. The verification starts in a kind of
a bootstrap process using the most basic memory
model. Therefore we rely on the fact that the boot
process sets up a state that fulfills the assumptions of
the most basic memory model. As far as possible we
will test this boot assumption with an assertion at the
end of the booting phase.

Correct stack allocator. We assume that the allocation of
automatic variables that is built into the Safe-C++
compiler fulfills the Allocator specification.

We do not plan to make assumptions about the size of
the physical memory. Instead we track memory consump-
tion during the verification. This yields theorems that have
memory requirements as a precondition in the following
form:

“PropertyP holds for functionf provided that at
leasts stack space andh heap space is available
when calling the function.”

5 Conclusion

This paper presents the main ideas for applying source-
code verification to the Fiasco microkernel in the VFiasco
project. A first challenge of this project is to come up with
a semantics of C++ that deals with those features of C++
that are used in the Fiasco sources (including pointer arith-
metic andsetjmp/longjmp). With such a semantics avail-
able there is no need to reimplement the kernel in a differ-
ent programming language. We solve this first challenge
by combining state transformers with underspecified func-
tions.

A second challenge in the VFiasco project is to enable
high-level reasoning in terms of typed objects during the
verification, yet assume only low level hardware proper-
ties. Here we use a verification environment that consists
of several layers of parametrized specifications.

References

[1] K. R. Apt and E.-R. Olderog.Verification of Sequential
and Concurrent Programs. Springer, Berlin, 1991.

[2] Thierry Cattel. Modelling and verification of a multi-
processor realtime OS kernel. In7th Internation Confer-
ence on Formal Description Techniques, Berne, Switzer-
land, October 1994.

[3] R. L. Constable, S. F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,
T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T.
Saski, and S. F. Smith.Implementing mathematics with
the Nuprl proof development system. Prentice Hall,
1986.

[4] G. Duval and J. Julliand. Modeling and verification of
the RUBISµ-kernel with SPIN. InProceedings of the
First SPIN Workshop, 1995.

[5] E. A. Emerson. Temporal and modal logic. In Jan
van Leeuwen, editor,Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics,
pages 995–1072. Elsevier Science Publishers, Amster-
dam, The Netherlands, 1990.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem. Check-
ing system rules using system-specific, programmer-
written compiler extensions. InSymposium on Operat-
ing Systems Design and Implementation (OSDI 2000),
San Diego, CA, 23–25 October 2000.

[7] D. Engler, D. Yu Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general approach
to inferring errors in systems code. InProceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP-01), 2001.

[8] D. Evans, J. Guttag, J. Horning, and Y. Tan. LCLint:
a Tool for Using Specifications to Check Code. In
D. Wile, editor, Proc. 2nd ACM SIGSOFT Symp. on
Foundations of Software Engineering, volume 19:5 of
ACM SIGSOFT Software Engineering Notes, pages 87–
96, New Orleans, USA, December 1994.

[9] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tull-
mann. Interface and execution models in the fluke ker-
nel. In Proceedings of the Third Symposium on Oper-
ating Systems Design and Implementation, pages 101–
116, New Orleans, Louisiana, February 1999. USENIX
Association.

[10] Jean-Yves Girard, Yves Lafont, and Paul Taylor.Proofs
and Types, volume 7 ofCambridge Tracts in Theoretical
Computer Science 7. Cambridge University Press, 1988.

[11] J. Harrison. A machine-checked theory of floating
point arithmetic. Lecture Notes in Computer Science,
1690:113–130, 1999.

[12] M. Hohmuth and H. Ḧartig. Pragmatic nonblocking syn-
chronization for real-time systems. InUSENIX Annual
Technical Conference, Boston, MA, June 2001.

[13] M. Huisman and B. Jacobs. Java program verifica-
tion via a Hoare logic with abrupt termination. In
T. Maibaum, editor,Fundamental Approaches to Soft-
ware Engineering, number 1783 in LNCS, 2000.

[14] M. Huisman, B. Jacobs, and J. van den Berg. A
case study in class library verification: Java’s
Vector class. Techn. Rep. CSI-R0007, Com-
put. Sci. Inst., Univ. of Nijmegen. Available at
URL http://www.cs.kun.nl/csi/reports/info/CSI-
R0007.html, 2000.

[15] B. Jacobs. Exercises in coalgebraic specification. In
R. Crole R. Backhouse and J. Gibbons, editors,Alge-
braic and Coalgebraic Methods in the Mathematics of
Program Construction, volume 2297 ofLecture Notes
in Computer Science, pages 237–280. Springer, Berlin,
2002.

[16] X. Leroy, D. Doligez, J. Garrigue, D. Ŕemy, and
J. Vouillon. The Objective Caml system, 2001. Avail-
able at URLhttp://caml.inria.fr/ocaml/.

[17] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hay-
den, K. P. Birman, and R. L. Constable. Building re-
liable, high-performance communication systems from
components. In17th ACM Symposium on Operating
System Principles (SOSP), pages 80–92, Kiawah Island,
SC, December 1999.

[18] Z. Manna and A. Pnueli.The Temporal Logic of Reac-
tive and Concurrent Systems. Springer, New York, 1992.

[19] George C. Necula. Proof-carrying code. InConference
Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 106–119, Paris, France, 15–17 1997.

[20] George C. Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. In2nd Symposium on
Operating Systems Design and Implementation (OSDI
’96), October 28–31, 1996. Seattle, WA, pages 229–243,
1996.

[21] L. C. Paulson. Isabelle: A Generic Theorem Prover.
Number 828 in LNCS. Springer, Berlin, 1994.

[22] W. Reisig. Elements of Distributed Algorithms.
Springer, Berlin, 1998.

[23] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau,
A. Chitturi, and G. Back. Formal methods: A practical
tool for OS implementors. InWorkshop on Hot Topics
in Operating Systems, pages 20–25, 1997.

[24] J. van den Berg, M. Huisman, B. Jacobs., and E. Poll.
A type-theoretic memory model for verification of se-
quential Java programs. In D. Bert, C. Choppy, and
P. Mosses, editors,WADT ’99, number 1827 in LNCS,
pages 1–21, 1999.

[25] M. Wahab. Verification and abstraction of flow-graph
programs with pointers and computed jumps. Research
Report CS-RR-354, Department of Computer Science,
University of Warwick, Coventry, UK, November 1998.

