
The Semantics of C++ Data Types: Towards
Verifying low-level System Components

Michael Hohmuth Hendrik Tews

Dresden University of Technology
Department of Computer Science

vfiasco@os.inf.tu-dresden.de

July 3, 2003

In order to formally reason about low-level system programs one needs a se-
mantics (for the programming language in question) that can deal with programs
that are not statically type-correct. For system-level programs, the semantics
must deal with such heretical constructs like casting integers to pointers and
converting pointers between incompatible base types.

In this paper we describe a formal semantics for the data types of the C++
programming language that is suitable for low-level programs in the above sense.
This work is part of a semantics for a large subset of the C++ programming
language developed in the VFiasco project. In the VFiasco project we aim at the
verification of substantial properties of the Fiasco microkernel, which is written
in C++.

1 Introduction

The VFiasco [21] project aims at the verification of substantial properties of the Fiasco [9]
microkernel for x86 PC hardware (more precisely for IA32-based systems). Fiasco is a real-
time microkernel operating system. It has been developed in the context of the DROPS
project [7] and supports the flexible construction of applications with security or quality of
service requirements. As a microkernel, Fiasco has a minimal interface and supports only
the absolutely necessary operating-system functionality. There are, for instance, no device
drivers included in Fiasco. For legacy applications it is possible to boot Linux on top of
Fiasco [8].

Fiasco is almost entirely written in C++ [20]. Only those operations that cannot be
performed in C++ (like accessing CPU control registers) are written in inline assembler.
The properties that we attempt the prove in the VFiasco project include the following:

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through DFG grant Re 874/2-1.

1



• Fiasco’s internal page-fault handler terminates for all kernel page faults

• Fiasco’s internal memory allocation works correctly

For the verification, we plan to employ a state-of-the-art general-purpose theorem prover.
Our current development focuses on PVS [17]. For the verification, the C++ source code
of Fiasco will be fed into a semantics compiler that generates the semantics of the input as
shallow embedding1 in the higher-order logic of PVS. Specifications and properties will be
formulated directly in the logic of PVS. The whole verification process can be depicted as
follows:

properties

��
Fiasco source

in C++
+3 C++ semantics

compiler
+3 Formalization

in HOL
+3 PVS +3 q.e.d.

The semantics compiler is currently developed on the basis of the OpenC++ package [4].
For the translation of Fiasco’s source code we need a semantics for a substantial part of
C++.

In this paper we concentrate on the built-in types and the type constructions (like structs
and unions) of C++. Other details of our semantics of C++ will be described elsewhere,
see [10, 11]. We base our formalisation of the data types on the C++ ISO Standard [5].
In the following we call this document simply the standard. The notation §n.m(k) refers
to Section n.m, paragraph k in the standard. In the standard the data types are mainly
described in §3.9 and §9. We have the following requirements for our semantics:

1. The semantics is suitable for reasoning about low-level systems programs, especially
operating systems written in C++, like Fiasco.

2. The semantics scales well to the formalisation of a specific C++ implementation that
determines the behaviour of certain language constructs that is unspecified in the
standard.

3. The semantics supports popular unsafe C++ programming idioms (like allocating a
char array and casting its base address into a specific pointer type) together with pro-
gramming idioms that are necessary for operating-systems programming (like casting
unsigned integers to pointers).

4. The semantics is sensible enough to detect subtle programming errors, like reading
data from uninitialised memory.

The motivation for these requirements is clear from the context of this work: After all
we want to use the semantics in a concrete verification project. Let us now discuss the
implications of these requirements.

The first consequence of Requirement 1 (reasoning about low level code) is that we cannot
use the traditional way of modelling dynamically allocated structures. For instance in [3, 15]

1In a shallow embedding an external tool translates the sources into their semantics. In contrast, in a deep
embedding one can represent phrases of the source in the logic and the semantic function is expressed
inside the logic.

2



dynamically allocated structures are modelled as functions of the form heap : address −→
value-type. In this approach the heap is implicitly typed, making it impossible to describe
programs which possibly contain type errors (like reading an integer from a memory location
that contains a string). However, one of the goals of the VFiasco project is to prove the
absence of such typing errors. This is impossible in an implicitly-typed semantics. Our
model of the heap must support operations like pointer-type conversion and also interpreting
the same data in different types.

For the second consequence of the first requirement recall again our long term goal:
Verifying Fiasco. For that we are currently developing an x86 hardware model in PVS.
The hardware model gives an abstraction of the execution environment of x86 compatible
processors. A state of the hardware model will be an abstraction of the state of real-world
PC. Such a state contains a snapshot of the physical memory together with some important
control registers on the CPU (like cr3, which determines the base address of the current page
directory for the virtual-memory address translation). For the verification, the semantics
of the Fiasco sources will be interpreted on the hardware model. In order to ensure that
the verification results apply to the real-world Fiasco, it is necessary that our hardware
model models x86 hardware — and nothing more. The conclusion is that the semantics of
data types must not add information to the states of the hardware model, like, for instance,
associating type tags to memory locations.

The second requirement (scalability of the semantics) originates from the following: The
C++ standard is very vague about almost every C++ construct. For the built-in integer
types it does not specify which values they can represent, for signed integer types it is left
open if they can represent negative numbers. One of the few things that are required is
that all built-in integer types are at least 7 bits wide.2 A specific C++ implementation can
define things that are left open in the standard. For instance the gcc compiler uses 8 bits
for char and 32 bits for int. It is impossible to write (and verify!) an operating system
without such implementation-specific knowledge. For instance, Fiasco relies on the fact that
the standard conversion from any pointer type to unsigned and back is the identity function
on the underlying bit representation. The data-type semantics in this paper will easily scale
to (possibly different) implementations. The base version of the semantics formalises the
C++ standard. From the base version one can derive an implementation-specific version
by just adding the additional properties.

Requirement 3 (support for unsafe idioms) is (again) motivated by our long-term goal in
the VFiasco project. The semantics must support all the program idioms that are neces-
sary for writing an operating system. This includes casting (seemingly) arbitrary unsigned
integers into pointers and dereferencing these pointers.

Last but not least we want the semantics to catch all possible programming errors (Re-
quirement 4. Consider the following C++ statement3

T a = * reinterpret cast<T *>(50)

It accesses an object of type T that is located at address 50. At the time where this
statement is executed there might or might not be a valid object of type T stored at address

2Because they all can represent the 96 characters from the basic source character set, see §§ 2.2.1, 3.9.1.2
3The C++ standard says that the behaviour of this statement is undefined. However for gcc it is well

defined.

3



50. Statements of this kind are necessary in an operating system, for instance in the code
that traverses page directories. Therefore we need a semantics for data types that permits
the above statement (with the expected semantics) provided one can prove that there is a
valid object of type T stored at address 50. However, we also want to catch programming
errors where the above statement is executed before the memory at address 50 is properly
initialised. Therefore, without any knowledge about the memory contents one should not
be able to derive anything about the above statement (not even that it does not crash the
hardware).

For a second example about which programming errors we want to catch, consider the
following piece of code:

unsigned a[2] = { 1, 2 };
unsigned b[3];
memcpy(static cast<char *>(static cast<void *>(b)) + 1, a, sizeof(a));
unsigned c = * static cast<int *> (static cast<void *>

(static cast<char *> (static cast<void *> (b)) + 1));
unsigned d = b[1];

The memcpy function copies the two integers 1 and 2 in array a into array b. Note that
the copy is displaced by an offset of 1. According to the C++ standard such a memcpy is
legitimate. Moreover, it specifies that the fourth statement (which reads the integer 1 at
its new address) initialises c correctly with 1 (§3.9.3) provided the alignment requirements
are met. For any compiler we know, also the last statement will execute without problems.
On x86 hardware (with little endian byte ordering) it will combine the most significant
byte of 1 (which is 0) together with the three less significant bytes of 2 to a result of 512
(decimal). However, the C++ standard leaves the behaviour of the last statement open (it
could potentially crash the machine). We would like to view the evaluation of b[1] as an
error (because it reads an integer where none has been stored before). In the semantics we
present here, one cannot even prove that the last program does not crash.

Related Work Traditionally, program verification focuses on well-typed programming lan-
guages (see for instance [2]), which have a relatively simple semantics. However, as explained
before, in the VFiasco project we need to reason about an unsafe programming language.
Recently, in the work on proof-carrying code, type systems and semantics have been devel-
oped for assembly languages [16]. However, the type systems developed for proof-carrying
code are not well suited for complex analysis. With our present work we try to find a
compromise between reasoning on an abstract level and the ability to treat possibly illtyped
programs.

A semantics for C and C++ has also been described in the framework of abstract state
machines [6, 23]. There exist simulators for abstract state machines, but, to our knowledge,
no theorem-proving support.

Our work is very much inspired by the work in the LOOP project for reasoning about
Java programs [22]. Jacobs studies in [14] the integral types of Java. The main difference to
our work is (apart from the source languages) that for Java’s integral types nothing is left
unspecified. Therefore Jacobs can model his semantics as a definitional extention in PVS.
However, with Jacobs semantics one cannot reason about the absence of over- or underflows.

4



Acknowledgements We would like to thank Sarah Hoffmann, Matthias Daum, and Shane
G. Stephens for many discussions on the subject.

2 General Properties of C++ Data Types

In this section we analyse the general properties of data types in C++ and explain the
general approach of our semantics. In the standard one can distinguish three types of
descriptions of the behaviour of an operation:

1. The standard leaves the behaviour (explicitly or implicitly) unspecified (permitting
the compiler to reject the program, the program to crash, or to continue with the most
sensible result).

2. The standard says that the evaluation terminates normally but the results are unspec-
ified (the program must not crash but one cannot rely on the result).

3. The standard describes the behaviour in detail.

For the first two points the standard distinguishes between implementation defined and
unspecified behaviour. This distinction is not important for us.

For the development of the semantics we use the following approach: For a description of
Type 1 or 2 we use an undetermined axiomatic specification with uninterpreted constants.
For Type 2 we add appropriate additional axioms that ensure termination. For type 3 we use
a definition. The effect is as follows: The available proof power correlates precisely to what
one knows about an execution of the program on an arbitrarily chosen C++ implementation
(including all hypothetical ones). Consider, for instance, a program that uses an unsigned-
integer operation that is only guaranteed to terminate. The result of that operation will
subsequently be divided by 2 and stored in some variable v. For such a program one can
prove termination under the precondition that the unspecified integer operation does not
return zero. Further, one can derive that the value in v is less than or equal to maximal
unsigned integer divided by 2. Any attempt to prove something more specific will fail.

The standard divides all types into POD (plain old data) types and non-POD types (see
§§3.9 (10), 9 (4)). Basically, POD types are those types that are compatible with C. That
is, all arithmetic types, structs, and unions are POD, provided they do not contain any
virtual functions, constructors, destructors and the like.

The standard describes the C++ memory and object model in §1.7 and §1.8. The in-
teresting point for us is that objects (i.e., memory representations of values of C++ types)
have an address, a type, and occupy some memory. Objects of POD types are stored con-
tiguously in memory and they can be copied or moved (§3.9 (2)). Objects of non-POD type
cannot be moved and one has to use the copy constructor or assignment operator to copy
them. Some common aspects of all types are described in §3.9, the built-in types (called
fundamental types) are described in §3.9.1. The properties of classes, structures, unions,
and bit fields are laid out in §9.

For any type T the standard distinguishes between its value type (i.e., the set of values
of T ), the value representation (i.e., the bit string that represents a value), and the object
representation (i.e., the bit string that is stored in memory). There are special require-
ments for the three character types that we discuss below. For all other types the object
representation can be different from the value representation (which is indeed the case on

5



all little-endian machines). The mapping from the value representation to the values might
not be injective (for instance it is possible to use one-complement encoding for integers with
two different representations of zero: +0 and −0).

The value representation is only used in the description of the bit-wise operations in §§5.8,
5.11–5.13. However, the standard either defines the bitwise operations precisely in terms
of the argument values or leaves the result undefined. We therefore decided to ignore the
value representation. In our semantics we model values and their object representation.

To relate object and value representation the standard states in §3.9 (4):

For POD types, the value representation is a set of bits in the object represen-
tation that determines a value . . .

It is a fundamental observation that the preceding citation it the only requirement that the
standard puts on the connection of object and value representation. In particular, the object
representation might contain more bits than the value representation. These additional bits
can be used for arbitrary purposes. The C++ runtime system can, for instance, use them to
encode the object type into the object representation and to perform Lisp-like runtime type
checking. For non-POD types one could even encode the memory location of the object into
the object representation to detect (at runtime) if the object has been illegally moved with
memcpy. We can therefore derive the following observation.

Observation 1 A C++ program that does not crash on any C++ implementation must be
type correct in the following sense:

• For any type T which is not a character type, it accesses objects of type T only at
memory locations that contain a correctly initialised object of type T .

• It accesses members of any non-POD type T only at memory locations that have been
initialised by a constructor or assignment operator for T .

To summarise: For the semantics of a data type we need a value type and functions
that translate values into their object representation and back. These functions (and if
necessary the value type) must be undetermined to a certain extent to model all possible
C++ implementations. To prove type correctness of a C++ program it is then sufficient to
prove that the program does not crash.

3 Common PVS Formalisation

This section describes the common infrastructure that we use for all types. Let us fix some
notions before we turn to the PVS sources. Consider a C++ data type T . Any C++
implementation defines a value type and an object representation for T . We call such an
implementation of a type T a model of T . As semantics of T we develop a specification for
all possible models of T .

Our semantics will be independent of the underlying (model of the) memory. This makes
it possible to reuse the same data-type semantics for all the memory abstractions that
we are developing in the VFiasco project [12]. However, it may be helpful to imagine an

6



oversimplified memory model, consisting of a type State containing all memory states, and
two functions (in PVS syntax):

memory read : [State, Address −> Byte]
memory write : [State, Address, Byte −> State]

Here, Byte is the type of all values that can be stored in a byte and Address is the type of
addresses (as a subtype of natural numbers). The precise definition of these two types does
not matter for the contents of this paper.

These memory-access functions can be extended in the obvious way to

memory read list : [State, Address, nat −> list[Byte]]
memory write list : [State, Address, list[Byte] −> State]

In our semantics, every C++ data type T is modelled in PVS by its value type together
with a record that contains the basic common operations. The operations in the record
depend on the value type. Its definition in PVS is:

Data type structure : Type = [#
size : nat,
to byte : [Data, Address −> list[Byte]],
from byte : [list[Byte], Address −> lift[Data]] #]

The types Address and Byte are as before. The type parameter Data stands for the value
type of T . The first field size contains the length of the object representation (in bytes). It
corresponds to the sizeof operator of C++. The functions to byte and from byte convert
values into their object representation and back. As an additional argument they take
the address of the object representation in the memory. This way the function to byte
could encode the address in the object representation and from byte can check it to prevent
illegal copying. Naturally from byte is a partial function that is only defined on valid object
representations. We use the traditional PVS approach and represent a partial function
X ⇀ Y as X → lift[Y ] in PVS.4

For any model of a C++ type we require some basic properties. They are combined in a
predicate as follows:

data type? : PRED[Data type structure] = Lambda(ct : Data type structure) :
(Forall(d : Data, a : Address) : length(to byte(ct)(d,a)) = size(ct)) And
(Forall(d : Data, a : Address) : up?(from byte(ct)(to byte(ct)(d,a), a))) And
(Forall(d : Data, a : Address) : down(from byte(ct)(to byte(ct)(d,a), a)) = d ) And
(Forall(l : list[Byte], a : Address) : up?(from byte(ct)(l, a)) Implies length(l) = size(ct))

This predicate requires that

• the object representation of all values is size(ct) bytes long.

• from byte is a left inverse of to byte (i.e., from byte is defined on all results of to byte
and yields the original value).

• from byte fails on objects of the wrong size
4The type constructor lift corresponds to option in Isabelle. In PVS (the representation of) a partial function

returns bottom if it is undefined and up(-) otherwise.

7



In contrast to the standard that requires all objects to occupy some memory (§1.8 (5))
we do not require the size field to be positive. A size of zero makes sense for void, see
Subsection 4.5. Inhabitants of the predicate subtype (data type?[Data]) are models of C++
types with Data as value type.

For objects of a POD-type the standard requires that one can copy the object to a different
memory location. Therefore we strengthen the data type? predicate for POD types:

pod data type? : PRED[Data type structure] =
Lambda(ct : Data type structure) : data type?(ct) And

(Forall(d : Data, a1,a2 : Address) : up?(from byte(ct)(to byte(ct)(d,a1), a2)))

This addition ensures that the from byte function is successful regardless of the address on
which we find a valid object representation.5

For any model dt of type (data type?[Data]) one can now define two functions that attempt
to read or write a value into the memory:

read data(dt)(s : State, addr : Address) : lift[Data] =
from byte(dt)(memory read list(s, size(dt), addr), addr)

write data(dt)(s : State, addr : Address, data : Data) : State =
memory write list(s, addr, to byte(dt)(data, addr))

We can now precisely define what we mean with the semantics and a model of a data type.
Note that in PVS any constant or function definition6 determines a specific value, even if
the axiom of choice is used in the definition. Therefore the only way to achieve the needed
undeterminedness in our semantics is to use declarations in an axiomatic specification. This
approach requires special efforts to maintain soundness.

Definition 2 (Semantics) The semantics of a C++ type T in PVS consists of

• a type definition Semantics T for the value type

• a constant declaration of type Data type structure providing the common operations;
for non-POD types this constant must be in data type?[Semantics T] and for POD
types in pod data type?[Semantics T]

• a finite number of axioms stating additional properties

Note that one can add further axioms to any existing semantics of a type T to obtain
a new semantics of T . This feature ensures scalability in the sense of Requirement 2 from
the introduction. We will exploit this feature in the following way: First we develop a
semantics for the data types as described in the standard. In a second step we derive a
specific semantics for the GNU gcc compiler by adding more axioms.

For some types the standard leaves the value type implementation-defined. A semantics
of such a type will fix the the super type of all value types of all models. The value
type Semantics T can then be defined as a predicate subtype that involves an uninterpreted
constant (such that the precise range of Semantics T stays undefined). We use this technique
for all signed integer types, see Subsection 4.2 below.

5We ignore alignment issues here, see Subsection 6.
6Here we mean interpreted constant definitions in the sense of the PVS Language Reference [19]. We refer

to Uninterpreted constant definitions as declarations.

8



Definition 3 (Model) A model of a C++ type T in PVS consists of a type defini-
tion Model T and a constant definition of type (data type?[Model T]), or, if T is POD,
(pod data type?[Model T]) such that these two definitions

• do not involve uninterpreted constants or types

• fulfil the axioms from the semantics of T

In principle the model relationship can be established with the notion of theory interpre-
tations [18] that have been introduced in PVS recently. A theory interpretation provides
definitions for uninterpreted constants. Axioms involving the constants reappear as proof
obligations. With theory interpretations it is possible to establish the soundness of an ax-
iomatic specification whithin PVS. However, in the current PVS version there remain a few
issues7 to be resolved before theory interpretations can be applied in our context.

To maintain consistency we develop a model for every data type together with its seman-
tics. We also plan that our C++ semantics compiler will generate both the semantics and
a model for every used data type.

Closely related with the data types are the C++ standard conversions. Here we treat
the semantics of data types and that of the conversions separately although they are very
closely related: Sometimes the standard specifies a property of a data type in an indirect
way by putting requirements on the conversion functions.

The semantics of a conversion function is an appropriately typed constant declaration. It
is accompanied with axioms in case the standard restricts the behaviour of the conversion.
As one expects, a model of a conversion is a function definition.

4 Fundamental Types

In this section we describe the semantics of the fundamental types of C++.

4.1 Booleans

For booleans the standard is very clear: “Values of type bool are either true or false.” (§3.9.1
(6)). For the semantics of bool we set

Semantics bool: Type = bool
dt bool exists : Axiom Exists (x: (pod data type?[Semantics bool])): true
dt bool : (pod data type?[Semantics bool])

We need the axiom on the second line to discharge the existence TCC8 for the declaration
dt bool. Note that the semantics does not stipulate that the value true is represented as
a non-zero byte. The standard only says that the result of converting true into an integer
type is one.

7See PVS bug reports 757–760 on http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/.
8A Type check condition (TCC) is a proof obligation generated by the type checker when it cannot decide

whether an expression is type-correct or not. For PVS TCC’s are necessary because the type system is
not decidable.

9



For a model of bool we only have to define dt bool (in a different theory):

dt bool : (pod data type?[Semantics bool]) = (#
size := 1,
to byte := Lambda(b : bool, a : Address) : IF b Then (: 1 :) Else (: 0 :) Endif,
from byte := Lambda(bl : list[Byte], a : Address) :

IF bl = (: 1 :) Then up(true)
Elsif bl = (: 0 :) Then up(false)
Else bottom Endif #)

Note that for this definition PVS generates a TCC that requires us to prove that the
POD data-type properties hold. Now one can use theory interpretations to show that the
semantics of booleans is sound. A more simple-minded approach is to copy the only axiom
from the semantics of booleans and prove it as a lemma:

dt bool exists : Challenge Exists (x: (data type?[Semantics bool])): true

4.2 Signed Integers

There are four signed integer types in C++: signed char, short int, int, and long
int. Character types are treated separately in Subsection 4.4 because of their special
requirements. For the other signed integer types the standard does not say much. For
instance it is not required that they can hold negative numbers. We only show the semantics
of int here, the semantics of the other types is very similar.

Cxx Int : Theory
Begin

int bits: posnat
semantics int pred : PRED[int]

Importing Cxx Sshort
int longer : Axiom sshort bits <= int bits
int contains sshort : Axiom subset?(semantics sshort pred, semantics int pred)

Semantics int : Type = (semantics int pred)
Importing Abstract Data[Semantics int]
dt int exists : Axiom Exists (x: (pod data type?[Semantics int])): True
dt int : (pod data type?[Semantics int])

End Cxx Int

The identifiers with sshort refer to the corresponding items from the semantics of signed
short. First we declare the size of the value representation, this becomes important for the
unsigned integer types, see below. We define the value type Semantics int as a predicate
subtype of the PVS integer type int. The axioms int longer and int contains sshort formalise
the requirement that “[short int] provides at least as much storage as [int]” (§3.9.1 (2)).

The standard further requires that the value representation uses a pure binary numeration
system (§3.9.1 (7)). However, it is unclear to us in which way a program could rely on the
use of a pure binary numeration system. Programs that do use integers usually rely on the
fact that at least a certain interval can be represented in the integer types. Most C++
implementations specify the value type of the integer types. Therefore we do not bother to

10



axiomatise pure binary numeration systems. Instead we rely on additional assumptions on
the value type of the integers. To obtain the integer type of the GNU C++ compiler on
x86 one could use the following theory:

Gnu IA32 Int : Theory
Begin

Importing Cxx Int
int bits ia32 : Axiom int bits = 32
int pred ia32 : Axiom semantics int pred = { i : int | −2^31 <= i And i < 2^31}

End Gnu IA32 Int

The models for the integer types are the obvious ones. We skip their presentation here.

4.3 Unsigned Integers

For each signed integer there is a corresponding unsigned integer. For the unsigned integer
types the standard specifies arithmetic modulo 2n, where n is the number of bits in the
value representation. The formalisation of the type unsigned is as follows:

Cxx Unsigned : Theory
Begin

unsigned bits: posnat
semantics unsigned pred : PRED[nat] = { n : nat | n < 2^unsigned bits }

Importing Cxx Int, Cxx Ushort
unsigned same size : Axiom unsigned bits = int bits
unsigned inclusion : Axiom

Forall(i : Semantics int) : i >= 0 Implies semantics unsigned pred(i)
unsigned longer : Lemma ushort bits <= unsigned bits
unsigned contains ushort : Lemma

subset?(semantics ushort pred, semantics unsigned pred)

Semantics unsigned : Type = (semantics unsigned pred)
Importing Abstract Data[Semantics unsigned]
dt unsigned exists : Axiom Exists (x: (pod data type?[Semantics unsigned])): True
dt unsigned : (pod data type?[Semantics unsigned])

End Cxx Unsigned

For unsigned integers the value type depends only on the number of bits in the value
representation. The two axioms unsigned same size and unsigned inclusion formalise that
the value representation of int and unsigned int has the same size and that a positive
value of int is also a value of unsigned int. Other requirements of the standard follow
now as lemma: for instance that the value representation of unsigned int is longer than
that of unsigned short.

4.4 Character Types

There are three different character types in C++, unsigned char, signed char, and char.
The value type of char coincides with either signed char or unsigned char. Note that
character types are integer types, that is, their values are integers and not characters. The
special property of the character types is that one can copy every POD object into an array

11



of a character type of sufficient length (see §3.9 (2) and issue 350 in [1]). This must work
even if the memory of the source object has not been correctly initialised. The semantics of
signed characters is as follows:

Cxx Schar : Theory
Begin

schar bits: posnat
semantics schar pred : PRED[int]
Semantics schar : Type = (semantics schar pred) 5

Importing Abstract Data[Semantics schar]
dt schar exists : Axiom Exists (x: (pod data type?[Semantics schar])): True
dt schar : (pod data type?[Semantics schar])

dt schar from byte total: Axiom Forall (l: list[Byte], a : Address):
length(l) = size(dt schar) Implies up?(from byte(dt schar)(l, a)) 10

dt schar injective: Axiom Forall (l: list[Byte], a : Address):
length(l) = size(dt schar) Implies

to byte(dt schar)(down(from byte(dt schar)(l, a)), a) = l
End Cxx Schar

Up to line eight we have the usual semantics for signed integer types. The remainder
formalises the ability to copy POD objects. The axiom on line nine expresses that one can
interpret every piece of memory as signed character (the from byte function never fails). The
last axiom ensures that the data does not change when it is copied (the from byte function
is injective on byte lists of the right length).

Both properties need not hold for any non-character type T : There might be a bit pattern
that does not describe a value of T , such that from byte fails. There also might be two bit
patterns that describe the same value (like +0 and −0 in a one’s-complement representa-
tion), such that from byte is not injective.

Our axiomatisation of signed characters implies that there is a bijective correspondence
between the value type (Semantics schar) and the object representation (byte lists of length
size(dt schar)). This can be proved within PVS (where List len(l) is the type of lists of
length l):

schar iso : Lemma
Exists(f : [Semantics schar −> List len[Byte](size(dt schar))]) : bijective?(f)

The semantics of unsigned char is very similar to the one of signed characters. It only
fixes the value type (like all other unsigned types). For the semantics of char we add the
following to the usual setup:

signed or unsigned : Axiom
(semantics char pred = semantics uchar pred) Xor
(semantics char pred = semantics schar pred)

char same size : Axiom
(semantics char pred = semantics uchar pred Implies size(dt char) = size(dt uchar)) And
(semantics char pred = semantics schar pred Implies size(dt char) = size(dt schar))

12



These axioms require that the value type of char coincides with either unsigned char
or signed char. Further the object representation must have the right size. With these
assumptions it is possible to prove in PVS that also char has the ability to copy POD
objects:

dt char from byte total: Lemma Forall (l: list[Byte], a : Address):
length(l) = size(dt char) Implies up?(from byte(dt char)(l, a))

dt char injective: Lemma Forall (l: list[Byte], a : Address):
length(l) = size(dt char) Implies to byte(dt char)(down(from byte(dt char)(l, a)), a) = l

The proof is not trivial: Consider the function to byte and fix the second argument of
type Address. The data type? predicate implies that this function is injective with a finite
codomain (byte lists of a fixed length). Therefore also its domain, the value type of char,
must be finite. The Lemma schar iso and the two axioms for char imply that the value type
and the object representation of char have the same cardinality. So the to byte function
(with fixed second argument) must also be surjective. The preceding two lemmas follow
now because from byte is a left inverse of to byte.

4.5 Void

The type void is very special. In C++ it is used as return type for functions that only
produce side effects. Besides that, any value can be converted into type void, so there
are expressions of type void. Nevertheless the standard specifies void as an empty type
(§3.9.1.(9)). For a set-theoretic interpretation all this does not make much sense.

For the semantics of void we see the following alternative:

• Model void as the empty type (which does exist in PVS). In this case all functions
and conversions with a codomain of void must be specially treated such that they do
not create inhabitants in the empty type.

• Model void as an one-element type. In this case it is difficult to stay consistent with
most C++ implementations, which optimise away any value of type void. One possible
way is to allow that the only inhabitant of void does not occupy any memory.

We opt for the second alternative and explicitly permit models of void with empty object
representation (i.e., size(dt void) = 0).

4.6 Standard Conversions

The formalisation of the standard conversions is straigthforward. Here we show only three
examples:

cnv sc2b(sc : Semantics schar) : Semantics bool = sc /= 0
cnv b2sc(b : Semantics bool) : Semantics schar = IF b Then 1 Else 0 Endif

cnv uc2sc(uc : Semantics uchar) : Semantics schar
cnv uc2sc prop: Axiom Semantics schar pred(uc) Implies cnv uc2sc (uc) = uc

The first two conversions from signed char to bool and back are completely specified in
§4.7 (4) and §4.12 (1). Therefore we define the semantics of these conversions as functions.
The behaviour of the third conversion from unsigned char to signed char is only partially
specified in §4.7 (3), so we use a declaration together with an axiom.

13



5 Structures

Recall that we aim at a shallow embedding of C++ in PVS. Therefore we cannot formalise
the semantics of all structures or all union types. We can only describe rules how to generate
a semantics for a specific compound type. These rules will be compositional in the sense
that the semantics of a compound type T that contains a member of type Tm, relies on
the semantics of Tm. Our semantics compiler will implement these rules and generate a
semantics for every compound type in the source. In this section we describe the semantics
of structures. The other compound types remain future work, see Section 6.

The C++ version of the cartesian product is called struct. A structure combines several
members of different types. Here is a typical example:

struct Z { int x; char y; };

It defines a new type Z. Any object of that type contains an integer and a character. Both
can be accessed independently. There are several specific things for C++ structures: First
one can access the whole structure or individual fields. The access to one field is independent
of whether the other fields are initialised or not. It is perfectly legitimate to work with partly
initialised structures, as long as one accesses only the initilized fields. Further, structures
may contain padding, that is, there might be unused memory between any two fields of a
structure (for instance, to satisfy alignment requirements). However, for POD structures,
there is no padding at the beginning (§9.2 (17)). If there is no intervening access specifier
the members are allocated in the same order as they are declared in the source code.

Note that classes in C++ are structures with a different default for the access specifier
(private for classes, public for structures). In the semantics we do not distinguish between
classes and structures.

In the following we present the semantics of the example structure Z. The general seman-
tics for structures becomes clear from that. First we define the value type for the structure
Z as a record of its member types. Next we define a second record for keeping the offsets of
the individual members in the structure:

Semantics Z : Type = [# x: Semantics int, y: Semantics char #]
Offsets Z : Type = [# x offs: nat, y offs: nat #]

Next we have the usual declarations for the common data type structure together with a
constant offsets Z that provides the indices of the members in the object representation of
Z:

dt Z exists : Axiom Exists (x: (pod data type?[Semantics Z])): true
dt Z : (pod data type?[Semantics Z])
offsets Z : Offsets Z

The semantics is completed with three axioms. The first one describes the order of the
indices in offsets Z and requires that the individual objects in the structure do not overlap:

offs order Z: Axiom 0 = x offs(offsets Z) And
x offs(offsets Z) + size(dt int) <= y offs(offsets Z) And
y offs(offsets Z) + size(dt char) <= size(dt Z)

14



If the declaration of the structure contains access specifiers, then this axiom changes slightly
and fixes only the order of members that are not separated by an access specifier (§9.2 (12)).

The second axiom states that one can access the individual fields if one can access the
whole structure. Further, it does not matter whether one accesses one field or accesses the
whole structure and selects that field in the value type.

from byte whole Z: Axiom
Forall(bl: list[Byte], a : Address): up?(from byte(dt Z)(bl,a)) Implies

Let x = down(from byte(dt Z)(bl,a)),
lift a = from byte(dt int)(sublist(x offs(offsets Z), size(dt int))(bl),

a + x offs(offsets Z)),
lift b = from byte(dt char)(sublist(y offs(offsets Z), size(dt char))(bl),

a + y offs(offsets Z))
IN

up?(lift a) And down(lift a) = x(x) And
up?(lift b) And down(lift b) = y(x)

The function sublist(offs, len)(l) cuts out the sublist of length len of l that starts at offs. The
third axiom is kind of inverse: If one can access all fields then one can access the whole
structure and get the expected result:

from byte parts Z: Axiom
Forall(bl: list[Byte], a : Address): length(bl) = size(dt Z) Implies

Let lift x = from byte(dt Z)(bl, a),
lift a = from byte(dt int)(sublist(x offs(offsets Z), size(dt int))(bl),

a + x offs(offsets Z)),
lift b = from byte(dt char)(sublist(y offs(offsets Z), size(dt char))(bl),

a + y offs(offsets Z))
IN

up?(lift a) And up?(lift b) Implies
up?(lift x) And down(lift a) = down(lift x)‘x And down(lift b) = down(lift x)‘y

To prove consistency one can use a model that stores all members one after each other in one
byte string of sufficient length. The required proofs are easy once one has the appropriate
rewrite lemmas about sublist.

In this simple example we have neglected a few issues because their treatment is rather
obvious: Inheritance of structures becomes a substructure hierarchy in the semantics. If
sharing occurs (virtual base classes) one has axioms that state that different substructures
are identical. Static member functions are not part of the structure, they are modelled as
part of the program. The semantics of a structure with virtual member functions contains
an additional field that holds its dynamic type. This field is used for the semantics of late
binding. The details will be described in [10].

6 Future Work

In this section we remark on those parts of the semantics that have not been fully worked
out yet.

15



Unions Unions are like structures with the important difference that all members are
stored in it with offset zero. So in a union only one of its members can be active at any
time. For the semantics of unions we need to express the value type of a union in the PVS
type system. For this we cannot use disjoint unions because in the usual model of unions
one cannot decide which member is active. The construction of a type constructor that is
suitable for the value types remains future work.

Pointers The standard guarantees only very few things about pointers. One can, for
instance, convert any pointer into a void pointer and back, without loosing information.
For all the other pointer conversions the standard only requires that they preserve the null
pointer. For the efficient implementation of an operating system one needs much more
properties. For the verification of Fiasco it makes sense to identify the address type of the
memory abstraction with the value type of all pointer types. In this case the semantics
cannot detect if a pointer moves past the array bounds. For a general semantics of C++
it would be nice to permit also smart pointers as models of the pointer types. A smart
pointer keeps information about its associated array and its type to detect errors of pointer
arithmetic. To permit smart pointers it is necessary to leave the value type for pointers
open.

Constant Objects In C++ one can qualify any object as constant. Intuitively a const
object should never be changed after its initialisations (but compare the open issue 290
in [1]). The general setup of our semantics cannot faithfully model constant objects. There
are the following two possible solutions.

• The semantics compiler rejects any program that casts a constant type into a non-
constant type. For the remaining program one can check statically if they treat con-
stant objects correctly.

• One enriches the memory interface to permit an operation that changes memory areas
to read-only at runtime. In this case the semantics is able to detect an attempt to
write to a constant object. One can then verify programs that need to cast away the
const modifier because some arguments of a library function are (erroneously) not
declared as constant.

For the VFiasco project the first solution is suffient.

Alignment Alignment describes the inability of some CPU’s to access all data on all pos-
sible addresses. For instance on a sparc architecture a 2 byte memory access is only possible
on even addresses. The x86 architecture has no alignment requirements. The framework
presented in this paper does not support alinment requirements. An easy way to support
alignment is to make the to byte function partial. It can then fail if alignment requirements
are not met. At the moment it is not clear to us how to model alignment requirements such
that it applies to all possible architectures.

Float and Double The standard says almost nothing about the floating point types (apart
from that they exist). For the VFiasco project the floating point types are not necessary.
For the verification of C++ floating point programs one needs more assumptions than the

16



standard provides. For this one can reuse one of the several floating point formalisations,
for instance [13].

Miscellaneous A complete semantics for the C++ data types must also treat references,
bit fields, and volatile objects. For the VFiasco project only bit fields are relevant.

7 Conclusion

In this paper we describe a semantics of the data types of the C++ programming language.
The semantics can deal with dynamically allocated objects, pointer conversion, and even
with typing errors. The semantics can easily be adjusted to model additional features of a
specific C++ implementation. This paper reports on work-in-progress. Here, we describe
the general setup, the semantics of the fundamental or builtin types, and that of structures.
We only comment on the other data type constructions.

References

[1] JTC1/SC22 Working Group 21. C++ standard core language active issues, revision
26, April 2003. available via http://std.dkuug.dk/JTC1/SC22/WG21/.

[2] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer, Berlin, 1991.

[3] R. M. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 7, pages 23–50.
Edinburgh University Press, Edinburgh, Scotland., 1972.

[4] Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 285–299, October 1995.

[5] International Organization for Standardization. ISO/IEC 14882:1998: Programming
languages — C++. International Organization for Standardization, Geneva, Switzer-
land, September 1998.

[6] Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In
E. Börger, H. Kleine Büning, G. Jäger, S. Martini, and M. M. Richter, editors, Com-
puter Science Logic, volume 702 of LNCS, pages 274–309. Springer, 1993.

[7] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter. DROPS: OS support for distributed multi-
media applications. In Proceedings of the Eighth ACM SIGOPS European Workshop,
Sintra, Portugal, September 1998.

[8] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The performance
of µ-kernel-based systems. In 16th ACM Symposium on Operating System Principles
(SOSP), pages 66–77, Saint-Malo, France, October 1997.

17



[9] M. Hohmuth and H. Härtig. Pragmatic nonblocking synchronization for real-time
systems. In USENIX Annual Technical Conference, Boston, MA, June 2001.

[10] M. Hohmuth and H. Tews. The C++ object model: A semantics for late binding and
pure virtual functions. In preparation.

[11] M. Hohmuth and H. Tews. A semantics for C++ statements: Formalising harmful
goto’s, Duff’s device and other monstrosities. In preparation.

[12] M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code verification to a
microkernel — the VFiasco project (extended abstract). In Proceedings of the Tenth
ACM SIGOPS European Workshop, September 2002.

[13] C. Jacobi. Formal verification of a theory of ieee rounding. In R.J. Boulton and
P.B. Jackson, editors, TPHOLs 2001: Supplemental Proceedings, Informatics Research
Report EDI-INF-RR-0046, Edinburgh, UK, 2001.

[14] B. Jacobs. Java’s integral types in pvs, 2003. Manuscript.

[15] F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In
F. Baader, editor, Automated Deduction — CADE-19, Lecture Notes in Computer
Science. Springer, 2003.

[16] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):527–568,
May 1999.

[17] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci-
fication, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors,
Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages
411–414. Springer, Berlin, 1996.

[18] S. Owre and N. Shankar. Theory interpretations in pvs. Technical Report SRI-CSL-
01-01, Computer Science Laboratory, SRI International, Menlo Park, CA, April 2001.

[19] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference, Version 2.4. SRI International, Menlo Park, CA, December 2001.

[20] B. Stroustrup. The C++ Programming Language: Third Edition. Addison-Wesley
Publishing Co., Reading, Mass., 1997.

[21] H. Tews, H. Härtig, and M. Hohmuth. VFiasco — towards a provably correct µ–
kernel. Technical Report TUD-FI01-1 – January 2001, Dresden University of Tech-
nology, Department of Computer Science, 2001. Available via http://wwwtcs.inf.tu-
dresden.de/∼tews/science.html.

[22] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Margaria
and W. Yi, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 2031 of Lecture Notes in Computer Science, pages 299–312, 2001.

[23] C. Wallace. The Semantics of the C++ Programming Language. In E. Börger, editor,
Specification and Validation Methods, pages 131–164. Oxford University Press, 1995.

18


