
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Advanced Components on
Top of A Microkernel
Björn Döbel

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 2 / 54

What we talked about so far

• Microkernels are cool!

• Fiasco.OC provides fundamental mechanisms:
– Tasks (address spaces)

• Container of resources
– Threads

• Units of execution
– Inter-Process Communication

• Exchange Data
• Timeouts
• Mapping of resources

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 3 / 54

Lecture Outline

• Building a real system on top of Fiasco.OC

• Reusing legacy libraries
– POSIX C library

• Device Drivers in user space
– Accessing hardware resources
– Reusing Linux device drivers

• OS virtualization on top of L4Re

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 4 / 54

Reusing Existing Software

• Often used term: legacy software

• Why?
– Convenience:

• Users get their “favorite” application on the
new OS

– Effort:
• Rewriting everything from scratch takes a

lot of time
• But: maintaining ported software and

adaptions also does not come for free

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 5 / 54

Reusing Existing Software

• How?
– Porting:

• Adapt existing software to use L4Re/Fiasco.OC
features instead of Linux

• Efficient execution, large maintenance effort

– Library-level interception
• Port convenience libraries to L4Re and link legacy

applications without modification
– POSIX C libraries, libstdc++

– OS-level interception
• Wine: implement Windows OS interface on top of new

OS

– Hardware-level:
• Virtual Machines

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 6 / 54

Starting Point: Monolithic OS

Linux
Kernel

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application
User mode

Kernel
mode

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 7 / 54

Microkernel: Decomposed System

TCP/IP
Server

Application Application Application Application

Microkernel

User mode

Kernel
mode

File System
Server

Disk
Driver

Network
Driver

COMPLEX!

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 8 / 54

Idea: Central Server

TCP/IP
Server

Application Application Application Application

Microkernel

User mode

Kernel
mode

File System
Server

Disk
Driver

Network
Driver

Linux OS PersonalityFile Descriptor
Management

Socket
Management

- Complexity only hidden in OS personality
- Personality becomes a bottleneck

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 9 / 54

L4Re: Emulation Libraries

TCP/IP
Server

Application Application Application Application

Microkernel

User mode

Kernel
mode

File System
Server

Disk
Driver

Network
Driver

VFS
Library

Socket
Library

C Library
VFS

Library
Socket
Library

C Library
VFS

Library
Socket
Library

C Library
VFS

Library
Socket
Library

C Library

- Applications use common C interface (POSIX)
- Complexity split across “backend” libraries

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 10 / 54

POSIX

• Standard: Portable Operating System Interface (for
UNIX*)

• Interfaces:
– I/O: files, sockets, TTYs
– Threads: libpthread
– ...

• Usually provided by a C library
• Abstractions vs. dependencies:

– memcpy(), strcpy() no deps, simply reuse→

– malloc() depends on mmap() / sbrk()→

– getpwent() depends on file system, notion of →
users, Posix ACLs ...

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 11 / 54

L4Re
Mem
BE

L4Re VFS L4Re
Time
BE

RomFS
BE

ExtFS
BE Backends

POSIX on L4Re

Application

glibC + System
Call Bindings

Application

uClibC

Linux L4Re

Linux Kernel

VFS / Memory
Management

ext4 FAT

System Call
Entry

memcpy()
fopen()

gettimeofday()

open()
read()
mmap()

Roottask

Fiasco.OC Kernel

Memory
Allocator

rom/
File Sys

RTC
Server

Ext4FS
Server

Disk
Driver

L4Re::Env::mem_alloc()
L4::L4fs::open()

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 12 / 54

L4Re Backend Example: time()

time_t time(time_t *t)
{
 struct timespec a;

 libc_be_rt_clock_gettime(&a);

 if (t)
 *t = a.tv_sec;

 return a.tv_sec;
}

time_t time(time_t *t)
{
 struct timespec a;

 libc_be_rt_clock_gettime(&a);

 if (t)
 *t = a.tv_sec;

 return a.tv_sec;
}

uint64_t __libc_l4_rt_clock_offset;

int libc_be_rt_clock_gettime(struct timespec *t)
{
 uint64_t clock;

 clock = l4re_kip()­>clock();
 clock += __libc_l4_rt_clock_offset;

 t­>tv_sec = clock / 1000000;
 t­>tv_nsec = (clock % 1000000) * 1000;

 return 0;
}

uint64_t __libc_l4_rt_clock_offset;

int libc_be_rt_clock_gettime(struct timespec *t)
{
 uint64_t clock;

 clock = l4re_kip()­>clock();
 clock += __libc_l4_rt_clock_offset;

 t­>tv_sec = clock / 1000000;
 t­>tv_nsec = (clock % 1000000) * 1000;

 return 0;
}

Replacement of POSIX'
time() function

Call L4Re-specific
backend function

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 13 / 54

L4Re Backend: mmap

• libC implements memory allocator
• Uses mmap(... MAP_ANONYMOUS …) to allocate

backing memory
• Can reuse libC's allocator if we provide mmap()

• L4Re VFS library:
– mmap(MAP_PRIVATE|MAP_ANONYMOUS):

 use dataspace as backing memory→
 attach DS via L4RM interface→

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 14 / 54

Summary: Legacy Reuse

• L4Re provides C (and C++) standard library

• OS-specific functionality wrapped by backend
libraries
– Virtual file system
– Memory allocation
– Time
– Signals
– Sockets

• POSIX support nearly directly enables a wide
range of other libraries:
– libpng, freetype, libcairo, Qt, ...

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 15 / 54

Moving on: Device Drivers

• Now that I have a virtual file system, I'd
actually like to access the disk …
– … or the network
– … or my USB webcam.

• Microkernel philosophy: run non-essential
components in user space

• But: device drivers might need privileged
hardware access.

TU Dresden, 2012-07-24

Some statistics

• [Swift03]: Drivers cause 85% of Windows XP crashes.

• [Chou01]:
– Error rate in Linux drivers is 3x (maximum: 10x)

higher than for the rest of the kernel
– Bugs cluster (if you find one bug, you're more likely

to find another one pretty close)
– Life expectancy of a bug in the Linux kernel (~2.4):

1.8 years

• [Rhyzyk09]: Causes for driver bugs
– 23% programming error
– 38% mismatch regarding device specification
– 39% OS-driver-interface misconceptions

TU Dresden, 2012-07-24

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network
cards rendered broken by Linux 2.6.27-rc
– overwritten NVRAM on card

TU Dresden, 2012-07-24

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network
cards rendered broken by Linux 2.6.27-rc
– overwritten NVRAM on card

• Oct 1st 2008 Intel releases quickfix
– map NVRAM somewhere else

TU Dresden, 2012-07-24

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network
cards rendered broken by Linux 2.6.27-rc
– overwritten NVRAM on card

• Oct 1st 2008 Intel releases quickfix
– map NVRAM somewhere else

• Oct 15th 2008 Reason found:
– dynamic ftrace framework tries to patch __init code,

but .init sections are unmapped after running init code
– NVRAM got mapped to same location
– Scary cmpxchg() behavior on I/O memory

TU Dresden, 2012-07-24

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network
cards rendered broken by Linux 2.6.27-rc
– overwritten NVRAM on card

• Oct 1st 2008 Intel releases quickfix
– map NVRAM somewhere else

• Oct 15th 2008 Reason found:
– dynamic ftrace framework tries to patch __init code,

but .init sections are unmapped after running init code
– NVRAM got mapped to same location
– Scary cmpxchg() behavior on I/O memory

• Nov 2nd 2008 dynamic ftrace reworked for Linux
2.6.28-rc3

TU Dresden, 2012-07-24

Idea: User-level Drivers

• Isolate components
– device drivers (disk, network, graphic, USB cruise

missiles, ...)
– stacks (TCP/IP, file systems, …)

• Separate address spaces each
– More robust components

• Problems
– Overhead

• HW multiplexing
• Context switches

– Need to handle I/O privileges

TU Dresden, 2012-07-24

Hardware Resources: Interrupts

• Signal device state change
• Programmable Interrupt Controller (PIC, APIC)

– map HW IRQs to CPU's IRQ lines
– prioritize interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory

TU Dresden, 2012-07-24

Hardware Resources: Interrupts (2)

• Handling interrupts involves
– examine / manipulate device
– program PIC

• acknowledge/mask/unmask interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory

TU Dresden, 2012-07-24

L4: Interrupt handling

• IRQ kernel object
– Represents arbitrary async notification
– Kernel maps hardware IRQs to IRQ objects

• Exactly one waiter per object
– call l4_irq_attach() before

– wait using l4_irq_receive()

• Multiple IRQs per waiter
– attach to multiple objects
– use l4_ipc_wait()

• IRQ sharing
– Many IRQ objects may be chain()ed to a master

IRQ object

TU Dresden, 2012-07-24

Hardware Resources: I/O ports

• x86-specific feature
• I/O ports define own I/O address space

– Each device uses its own area within this address
space

• Special instruction to access I/O ports
– in / out: I/O read / write
– Example: read byte from serial port
mov $0x3f8, %edx
in (%dx), %al

• Need to restrict I/O port access
– Allow device drivers access to I/O ports used by its

device only

TU Dresden, 2012-07-24

I/O Bitmap

• Per task IO privilege level (IOPL)
• If IOPL > current PL, all

accesses are allowed
(kernel mode)

• Else: I/O bitmap is checked
• 1 bit per I/O port

– 65536 ports -> 8kB
• Controls port access

(0 == ok, 1 == GPF)
• L4: per-task I/O bitmap

– Switched during task switch
– Allows per-task grant/deny of

I/O port access

I/O Map Base AddressI/O Map Base Address

. . .
#0x0000

#0xffe0

#0xfff0

TSS

11 1111 11 1111 11 1111 11 1111 11 1111 11

11 1111 11 1111 11 1111 11 0011 11 0011 11

11 1111 11 1111 11 1111 11 1111 11 1111 11

TU Dresden, 2012-07-24

Fiasco.OC: I/O Flexpages

• Reuse kernel's map/grant mechanism for mapping
I/O port rights -> I/O flexpages

• Kernel detects type of flexpage and acts
accordingly

• Task with all I/O ports mapped is raised to IOPL 3

1111 Base Port log2#Ports0000 0

Map/GrantMap/Grant

L4.Fiasco I/O flexpage format

TU Dresden, 2012-07-24

Hardware Resources: I/O Memory

• Devices often contain on-chip memory (NICs, graphcis
cards, ...)

• Instead of accessing through I/O ports, drivers can
map this memory into their address space just like
normal RAM
– no need for special instructions
– increased flexibility by using underlying virtual

memory management

CPUCPU ChipsetChipset

MemoyMemoy

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver MemoryMemory

TU Dresden, 2012-07-24

Hardware Resources: I/O memory (2)

• Device memory looks just like phys. memory
• Chipset needs to

– map I/O memory to exclusive address ranges
– distinguish physical and I/O memory access

CPUCPU ChipsetChipset

MemoryMemory

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver

TU Dresden, 2012-07-24

I/O memory in L4

• Like all memory, I/O memory is owned by sigma0
• Sigma0 implements protocol to request I/O memory

pages
• Abstraction: Dataspaces containing I/O memory

CPUCPU ChipsetChipset

MemoryMemory

Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

Driver 1Driver 1

Device 1Device 1 Device 2Device 2

Driver 2Driver 2

Sigma0Sigma0

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 31 / 54

Can I trust my driver?

• Scenario: devices attached to a PCI bus
• Driver needs access to PCI configuration space

– I/O resource discovery
– Enable/disable device interrupts

• PCI config space access:
– Write (bus, device, function#) to I/O port 0xCF8
– Read/write data to/from I/O port 0xCFC

• Problem:
– Who makes sure that my driver uses the proper

(bus, device, function) tuple?

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 32 / 54

L4Re: Device Management

• Solution: only provide access to those
devices, a driver is supposed to access

• I/O server + virtual buses

NIC Disk 1 Disk 2 Sound card

PCI bus

I/O server

Network
Driver

Disk
Driver

Sound
Driver

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 33 / 54

Summary: Fiasco.OC/L4Re Device Drivers

• Interrupts Mapped to IPC→

• I/O ports Managed as kernel resource→

• I/O memory Cleanly integrates with L4 →
memory management

• PCI bus Managed by separate I/O server→

TU Dresden, 2012-07-24

Implementing Device Drivers

• Just like in any other OS:
– Specify a server interface
– Implement interface, use the access methods

provided by the runtime environment
• Highly optimized code possible
• Hard to maintain
• Implementation time-consuming
• Unavailable specifications
• Why reimplement drivers if there are already

versions available?
– Linux, BSD – Open Source
– Windows – Binary drivers

TU Dresden, 2012-07-24

Reusing Legacy Device Drivers

LinuxLinux

Windows
Driver
Code

Windows
Driver
Code

Glue Code

• NDIS-Wrapper: Linux glue
library to run Windows WiFi
drivers on Linux

• Idea is simple: provide a
library mapping Windows API
to Linux

• Implementation is a problem.

TU Dresden, 2012-07-24

Reusing Legacy Device Drivers (2)

• Generalize the idea: provide a Linux
environment to run drivers on L4

 Device Driver Environment (DDE)→

TU Dresden, 2012-07-24

Emulating Linux: DDE/Linux

• Multiple L4 threads provide a Linux environment
– Workqueues
– SoftIRQs / Bottom Halves
– Timers
– Jiffies

• Emulate SMP-like system (each L4 thread
assumed to be one processor)

• Wrap Linux functionality
– kmalloc() L4 Slab allocator library→
– Linux spinlock pthread mutex→

• Handle in-kernel accesses (e.g., PCI config space)

TU Dresden, 2012-07-24

Multiple Donator OSes

TU Dresden, 2012-07-24

DDEKit – another abstraction

• Pull common abstractions
into dedicated library
– Threads
– Synchronization
– Memory
– IRQ handling
– I/O port access

 → DDE Construction Kit
 (DDEKit)

• Implement DDEs against the
DDEKit interface

TU Dresden, 2012-07-24

DDEKit (2)

• Implementation overhead for single DDEs gets
much smaller

• Performance overhead still reasonable
– e.g., no visible increase of network latency in user-

level ethernet driver
• L4-specific parts (sloccount):

– standalone DDE Linux 2.4: ~ 3.000 LoC
– DDEKit ~ 2.000 LoC
– DDEKit-based DDE Linux 2.6: ~ 1.000 LoC
– Standalone Linux VM (DD/OS): > 500.000 LoC

• Highly customizable: implement DDE base library
and support libs (net, disk, sound, ...)

TU Dresden, 2012-07-24

DDEKit: portability

• Reversing the DDE idea: port DDEKit to host
environment reuse whole Linux support lib→

• Has been done for:
– L4Env, L4Re
– Genode OS Framework
– Minix 3
– GNU/Hurd
– Linux

TU Dresden, 2012-07-24

Device Drivers: Isolation vs. Performance

L4Re Socket Backend

Application

uClibC

Network Server

Fiasco.OC Kernel

DDELinux
Network
Driver DDEKit

TCP/IP Stack

Full Protection: Isolated
Address Spaces

L4Re Socket Backend

Application

uClibC

Fiasco.OC Kernel

DDELinux
Network
Driver DDEKit

TCP/IP Library

Best performance: all
in one address space

?

TU Dresden, 2012-07-24

Device Sharing?

TCP/IP Library

Application
uClibC

TCP/IP Library

Application
uClibC

Network Server

DDELinux
Network
Driver DDEKit

• Problem: Devices often
don't support shared access
from multiple applications

?

TU Dresden, 2012-07-24

Device Sharing?

TCP/IP Library

Application
uClibC

TCP/IP Library

Application
uClibC

Network Server

DDELinux
Network
Driver DDEKit

• Problem: Devices often
don't support shared access
from multiple applications

• Solution: Introduce
“virtualized” intermediary
interfaces

• Networking on L4Re: Ankh
network multiplexer
– Shared memory NIC for

each client
– Virtual MAC addresses

VNIC VNIC

Mutiplexing

TU Dresden, 2012-07-24

Virtual Machines

• Extreme approach to
reusing existing software:
– Run application inside the

real OS
– Wrap the OS in a virtual

machine
– Run the Virtual Machine on

top of microkernel

• Advantages:
– Full guest OS interface

supported
– Runs any binary that has

been compiled for the guest
OS without modification

• Problem: someone needs
to implement a VMM!

Microkernel

Microkernel Runtime

Virtual Machine
 Monitor

VM 1 VM 2

Windows Linux

TU Dresden, 2012-07-24

Approaches to Virtualization

• Goal: Make guest OS think it runs on real HW

• Emulation: simulate every instruction
– Very slow
– Allows for incompatible guest and host hardware

• Trap&Emulate: when guest and host HW are
identical
– Execute on real processor as long as possible
– Privileged instructions lead to processor traps
– Handle those traps in VMM
– Requires virtualizable instruction set!

TU Dresden, 2012-07-24

Virtualizing Broken Instruction Sets

• Original x86 instruction set is not virtualizable
– Some instructions behave differently in user and kernel

mode
– Not all such instructions cause a trap when executed in

user mode

• Fix 1: Binary rewriting (VMware products)
– Transform binary code so that broken instructions lead to

a trap that can be handled by the VMM

• Fix 2: Correct the instruction set
– Intel VT / AMD-V

TU Dresden, 2012-07-24

VMM Implementation Choices

Physical HW

Host OS == VMM

Guest OS

Virtual HW

App App

Physical HW

Host OS

User-level VMM

Guest OS

App App

Physical HW

Host OS

Guest OS

Virtual HW

App App

Bare-Metal VMM
- no OS overhead
- complete control
- high effort

VMM on OS
- reuse infra-
 structure
- may have worse
 performance

Paravirtualization
- port guest OS to
 host interface
- no VMM overhead
- maintenance cost

TU Dresden, 2012-07-24

Paravirtualizing Linux

Linux
Kernel

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application
User mode

Kernel
mode

Hardware
CPU, Memory, PCI, Devices

TU Dresden, 2012-07-24

L4 Task L4 Task L4 TaskL4 Task

L4Linux kernel task

Paravirtualizing Linux

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application

User mode

Kernel
mode

Hardware
CPU, Memory, PCI, Devices

Fiasco.OC

L4 Runtime Environment

Adapt to L4 IPC

L4Re as HW
architecture

TU Dresden, 2012-07-24

L4Linux

• L4 as new “hardware” platform in Linux, relay
tasks to Fiasco.OC
– Thread switching + state management
– MMU handling
– Use Fiasco.OC interrupts

• Linux applications are L4 tasks
– IPC used for

• Kernel entry
• Signal delivery
• Copying from/to user space

TU Dresden, 2012-07-24

L4Linux: Kernel Entry

• Linux application executes INT 0x80 instruction

• Fiasco.OC receives CPU trap
• Fiasco.OC relays handling to user-level handler

– Every thread has an exception handler assigned
– Similar to a page fault, kernel generates exception

IPC message
• Contains whole CPU state

• Linux kernel task is exception handler for user
applications

• Receives exception IPC
• Handles system call
• Replies to let user app continue

TU Dresden, 2012-07-24

Simplifying Exception Handling

• Fiasco.OC extension: vCPU
– Thread with additional properties:

• “kernel” task
• “user” task

– l4_vcpu_resume() move thread to user task and →
let it execute

– Upon CPU exception: move whole thread to kernel
task and set it to dedicated kernel EIP/ESP

– Kernel then calls l4_vcpu_resume() again

• Greatly simplifies L4Linux implementation:
– Same mechanism used for interrupts, page faults,

system calls, ...

TU Dresden, 2012-07-24

Assignment #3

L4Linux

Linux
App

Linux
App

Linux
App

Isolated VM

L4
Crypto
Server

X

Make your encryption server (from assignment
#2) accessible to an L4Linux user application.

TU Dresden, 2012-07-24

Assignment #3

L4Linux

Linux
App

Linux
App

Linux
App

Isolated VM

L4
Crypto
Server

Make your encryption server (from assignment
#2) accessible to an L4Linux user application.

/dev/l4crypt

L4Crypt
Linux
Driver

TU Dresden, 2012-07-24

Step 1: Download and build L4Linux

• Instructions: http://os.inf.tu-dresden.de/L4/LinuxOnL4/

• You will need a bunch of additional L4 packages
– Route A: the build system complains about missing

packages fetch them with “svn up” in l4/pkg directory→
– Route B: this is the list you'll need:

acpica drivers examples fb-drv input io
libevent libio-io libirq libvcpu lxfuxlibc
mag mag-gfx rtc shmc x86emu zlib

• When configuring L4Linux:
– Leave L4 options as they are (only set proper L4Re build

directory)
– Disable as much HW options (PCI, SATA, SCSI,

Networking, …) as you can
• Faster builds
• We don't need hardware right now

http://os.inf.tu-dresden.de/L4/LinuxOnL4/

TU Dresden, 2012-07-24

Step 2: Running L4Linux

• Example files in l4/conf/examples:
– l4lx-x86.io Config file for virtual PCI bus (that will →

contain PS2 input device, frame buffer and any PCI
devs … but you disabled PCI in step 1, remember?)

– l4lx-gfx.cfg Lua init script to launch L4Linux and →
a graphical console

• There's also an entry in l4/conf/modules.lst
already.

• For a root file system:
– Download an initrd, e.g., from

http://os.inf.tu-dresden.de/download/
– Build your own initrd

http://os.inf.tu-dresden.de/download/

TU Dresden, 2012-07-24

Step 3: Implementing the Driver

• Linux side: use a standard chardev for
communication between driver and
applications

• L4 side:
– L4Linux kernel modules are built as any other

Linux kernel module
– You may include and use L4 headers as in any

other L4 application
– For IPC: no C++ streaming – Linux is C code,

so write to the UTCB yourself

TU Dresden, 2012-07-24

Happy Hacking!

Don't perform any L4 system call
between writing the UTCB and

sending the IPC message to your
server!

Log output (printk, …) is an L4 system call!

TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 60 / 54

Further Reading

• H. Weisbach et al. “Generic User-Level PCI Drivers”
http://os.inf.tu-dresden.de/papers_ps/rtlws2011-dde.pdf
Bringing the DDE approach to Linux

• Lackorzynski et al. “Generic Virtualization with Virtual
Processors”
http://os.inf.tu-dresden.de/papers_ps/rtlws2010_genericvirt.pdf
Introducing the L4Linux vCPU model

• Steinberg et al.: “NOVA: A Microhypervisor-based Secure
Virtualization Architecture”
http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf
A bare-metal microhypervisor

• Singaravelu et al.: “Enforcing Configurable Trust in Client-
side Software Stacks by Splitting Information Flow”
http://os.inf.tu-dresden.de/papers_ps/git-cercs-07-11.pdf
Splitting applications into trusted and untrusted parts

http://os.inf.tu-dresden.de/papers_ps/rtlws2011-dde.pdf
http://os.inf.tu-dresden.de/papers_ps/rtlws2010_genericvirt.pdf
http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf
http://os.inf.tu-dresden.de/papers_ps/git-cercs-07-11.pdf

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60

