Where Have all the Cycles Gone?
Investigating Runtime Overheads
of OS-Assisted Replication

Bjorn Dobel, Hermann Hirtig

Operating Systems Group
TU Dresden
Nothnitzer Str. 46
01187 Dresden
{doebel,haertig } @tudos.org

Abstract: In order to allow user-level applications tolerate transient hardware faults,
we developed Romain, an operating system service that transparently replicates un-
modified binary applications. While replication increases overall system reliability,
it also requires additional resources and runtime. In this paper we evaluate Romain’s
runtime overhead using the SPEC INT 2006 benchmark suite. With most of the bench-
marks being compute-bound they lend themselves to low overhead replication and the
geometric mean of their runtime overhead for triple-modular redundant execution is
only 1.8%.

More surprisingly, during our measurements we also encountered issues not di-
rectly related to replication. We show that improper placement of replicas to CPU
cores as well as unoptimized use of memory management mechanisms can make a
significant contribution to runtime overhead and discuss how Romain avoids these
pitfalls. We finally use our measurement results to model how protecting the Reliable
Computing Base using compiler-based fault tolerance mechanisms impacts replication
overhead.

1 Introduction

Decreasing feature sizes following the predictions of Moore’s law are a driving factor
for innovation at the hardware level. They empower hardware vendors to integrate more
and more cores and functional units into the same physical dies, thereby enabling higher
levels of performance and features. However, these smaller hardware features are more
vulnerable to transient hardware errors that arise due to hardware aging, thermal effects,
as well as cosmic radiation [Bor05]. These effects were studied in the field: Schroeder
et al. found that up to 8% of DRAM DIMMs in a large-scale server installation suffered
from soft errors within a year [SPWQ09]. Fiala et al. estimate that state-of-the-art reliability
measures in High-Performance Computing may require 65% of the available compute time
for checkpoint/restart instead of performing useful computations [FME*12].

Of course, hardware vendors try to implement hardware that meets certain reliability tar-
gets even at lower levels of integration. This is usually achieved by adding hardware-level
reliability extensions, as for instance proposed by DIVA’s checker cores [Aus99]. These

! !
I I
I I

Replica ! Replica ! Replica
I I
I I

..... e essdssssssdssssssdsseseasannn,
\‘ = ‘/Romain Master
User mode
a - - - r— - - —---- it St
. = Kernel mode
Reliable . | Fiasco.OC Microkernel | H
Comput- 1 .
ingBase " awswssswmw Tessssnsnnnnnn Tessnsnnunns -
| I
CPUO | ! | CPU 1 | ! | CPU 2 |
I I

Figure 1: Replicated execution using Romain

additional units mask faults at the hardware level so that software can run oblivious of po-
tential hardware malfunctions. Unfortunately, these solutions are often too expensive to be
applied within commercial-off-the-shelf (COTS) systems. From a research perspective it
is therefore interesting to determine if software-level solutions can help hardware vendors
meet their goals.

COTS machines rely on software to take care of error detection and correction itself. Com-
pilers generating fault-tolerant code, such as SWIFT [RCVT05] and AN-Encoded Pro-
cessing [FSS09] use instruction duplication or arithmetic encoding of data and execution
paths to detect errors without requiring special hardware support. However, being part of
a compiler, these tools require access to the source code of all applications that should
be protected. They cannot deal with binary-only third-party software as it is for instance
provided through internet downloads and mobile phone appstores.

To support resilient execution without having access to the application’s source code, we
implemented Romain, an operating system service on top of the L4/Fiasco.OC micro-
kernel! that replicates binary applications [DHE12] using a software implementation of
redundant multithreading [RMOO]. As shown in Figure 1, Romain consists of a master
process that manages multiple replicas of a binary application. The master loads the bina-
ries into separate address spaces to facilitate fault isolation.

Replicas execute independently on the physical CPU as long as they only modify their
internal state (e.g., perform computations and read/write their private address space). For
now we assume replicas to be single-threaded, which means that as long as they execute
the same code on the same set of inputs, they will deterministically expose identical be-
havior [Sch90].

Romain intercepts replica execution once the replicas try to make their internal state ex-
ternally visible by performing a system call or raising hardware traps, such as page faults.
These externalization events get redirected to the master. The master then waits for all
replicas to reach their next externalization event and compares their states (architectural
register file and Fiasco.OC’s user-visible per-thread state). A watchdog mechanism is used
to make sure the master does not wait infinitely, e.g, because of a faulty replica stuck in an
infinite loop [Kril3].

http://www.tudos.org/fiasco

If the replicas’ states match, the master performs the respective system call or resource
management operation on behalf of the replicas and thereafter resumes independent ex-
ecution of the replicas. Upon a state mismatch, the master triggers recovery. Romain
supports different ways of recovering from faults. When running in triple-modular redun-
dant mode (TMR), the master performs majority voting and overwrites the faulty replica.
If the user wants to save on required resources by only using two replicas (DMR mode),
the master can also trigger reset to a previous application checkpoint.

For replicas to behave deterministically, Romain needs to enforce that they all observe the
same inputs. For this purpose the master process intercepts all potentially non-deterministic
inputs that reach the replicas. In Fiasco.OC most input arrives through synchronous IPC
system calls, which are intercepted and checked by the master anyway. Further non-
determinism is induced for instance by reading the CPU’s time stamp counter. Such op-
erations can be intercepted by the Romain master using software interrupts (INT 3 on
x86) or by exploiting virtual machine extensions in modern hardware [Int13]. Scheduling
in multithreaded applications is a last source of non-determinism. While we are currently
working on a solution to this problem, we only consider single-threaded applications for
our analysis in this paper.

Replicated execution transparently increases applications’ fault tolerance. However, this
reliability comes at the cost of increased resource demand and execution time. This paper
focusses on analyzing the runtime overhead caused by replication. We evaluate Romain
using the SPEC INT 2006 benchmark suite. We introduce our experiment setup in Sec-
tion 2 and describe specific effects caused by placing replicas on different sets of cores in
Section 3. Section 4 discusses the sources of overheads for replicating SPEC INT 2006.

While Romain protects user-level applications from hardware faults, the master process as
well as the underlying microkernel are still left unprotected. We call these components the
Reliable Computing Base (RCB) [ED12]. The RCB needs to be protected from hardware
errors separately, for instance by compiling RCB components using a fault-tolerant com-
piler. In Section 5 we use our benchmark results to estimate the impact that hardening the
RCB using compiler-based methods would have on Romain.

2 Experiment Setup

For our experiments we use the SPEC INT 2006 benchmark suite [Hen06]. We ported
11 out of the 12 benchmarks to Fiasco.OC’s L4Re runtime environment>. We left out the
483 .xalancbmk because it uses deprecated C++ STL features that are not supported
by L4Re’s C++ standard library. SPEC INT is a CPU benchmark suite, which means
the benchmarks represent replication-friendly applications where replicas perform lots of
independent computation and only rarely suffer from overhead for state comparison. Nev-
ertheless, the benchmark suite represents real-world use cases, such as compilers, dynamic
languages, and video decoding.

Our evaluation computer comprises 3 GB of RAM and two processor sockets, each con-
taining 6 Intel Xeon X5650 CPUs clocked at 2.667 GHz. Fiasco.OC, the L4Re runtime,
and the SPEC INT benchmarks were compiled for 32-bit execution, because Romain cur-

2http://www.tudos.org/ldre

____ 0.879x = Native 5 Single
] 0.878x = -

] 0.876x DMR TMR
400.perl 1.00x

0 0.25 0.5 0.75 1 1.25 1.5

Normalized runtime overhead vs. native execution
Figure 2: Overhead for 400 . per1, first experiment

rently only works for 32-bit binaries. We turned off hyperthreading to minimize side ef-
fects, which left us with 12 physical CPU cores to run the benchmarks on. We also turned
off turbo-boost and hardware-level frequency scaling to get stable execution times for the
benchmarks.

To get a performance baseline, we ran the benchmarks on a Fiasco/L4Re base system con-
sisting of the kernel and the user-level resource managers. To obtain reproducible results,
we did not run any other workloads on the system while performing our measurements.
We refer to these baseline measurements as native execution in the remainder of this paper.
We report normalized overheads for Romain running a single replica. This allows us to
evaluate the overhead caused by the master’s system call interception and replica resource
management. Furthermore we report normalized overheads for fault-tolerant execution
with Romain running two (DMR) and three (TMR) replicas. For multi-replica runs we pin
each replica thread to a dedicated physical CPU core to get the least possible interference
between the replicas.

3 Core Placement — Doing it Right?

With this setup in place we started benchmarking with the 400 . perl benchmark. The
results of our measurements are shown in Figure 2. We expected replication to slow exe-
cution down. Now, to our very surprise the benchmarks were running about 12% faster!
We repeated the benchmark run several times and the results remained the same. Further-
more, these 12% amounted to a wall clock time difference of about 30 seconds for this
benchmark, which rules out measurement inaccuracies.

We then suspected cache effects to be responsible for our observations. To validate this,
we used the processors’ built-in performance counters and measured the ITLB_MISSES,
DTLB_-MISSES, L2 MISSES, and L3_MISSES performance counters for every CPU core
participating in these runs. If the caches were responsible for this strange behavior, the
number of cache misses for a Romain run should be lower than the one for native execu-
tion. However, it turned out that these numbers were nearly exactly the same and hence,
caches were not the problem here.

Exploring the available parameters, we noticed that the native run got faster if we ex-
ecuted it on any physical CPU except CPU 0. This hinted at a configuration problem.
Fiasco.OC is a microkernel and therefore requires a couple of other components to run in
user space, even if we only execute a single benchmark as our workload. One of these
components is the logging component responsible for printing output written by functions
such as printf. The 400.perl benchmark prints several thousand lines of data, but

Repica2 [© F---- - - - - - - - -

Replica 1

Master - - - - - @ | ©)

Figure 3: Replication: Fault Handling. (0) - Replicas execute independently. (1) - Externalization
event is propagated to the master. (2) - Master compares replica states. (3) - Master handles system
call. (4) - Master returns control to the replicas.

our intuition told us this should not be a problem: as both the native and replicated runs
perform these operations, the time for the respective system calls should be identical.

A closer look at how output works on Fiasco.OC taught us differently. Calling the C
library’s printf function results in an IPC message being sent to the log thread. This
higher-priority thread is part of the runtime’s log server and by default executes on CPU
0. The log thread receives this message and then prints it. The default method of printing
is to send this output to the serial console, which in turn is rather slow.

If the benchmark runs on CPU 0, as was the case for our native measurement, the log
message causes the log thread to occupy the CPU for the whole duration of the output
operation due to its higher priority. This prevents the benchmark application from making
further progress. However, if we move the benchmark to a different CPU, it is only blocked
until the log IPC message was delivered. Thereafter, both threads can execute concurrently
and therefore the benchmark runs faster. To our slight humiliation, the reason for Romain
performing faster in our initial measurement was merely that the Romain master starts
placing replicas on CPU 1 and therefore coincidentally avoided being slowed down by the
log thread.

The lesson to take away from this experience is: Small differences in system configuration
(e.g., placement of threads not directly related to our benchmark application) can have a
significant impact on performance. We will see in Section 4 that the 12% difference we
observed here is much higher than the real replication-induced performance. The measure-
ments in the remainder of this paper avoid logging slowdown by sending their output to
an in-memory buffer similar to redirecting output to a file on Linux. The corrected results
for 400 .perl are shown in Section 4.

Motivated by the previous measurement we also re-evaluated how assigning replicas to
CPUs influences replication overhead. Figure 3 shows how a system call is handled by the
Romain master for the case of two replicas. Both replicas execute independently (0) until
they raise an externalization event on their local CPU (1) and block. If one replica lags
behind the other, some wait time may arise. Next, the event is propagated to the master,
which then performs checksum computation (2) and handles the system call (3). Finally,
the master returns control to the replicas (4).

We aim to produce an ideal environment for our experiment and do not run any other
applications on our system during benchmark runs. Hence, the wait time that arises at
externalization is negligible. Furthermore, the cost of system call handling (step 3) is in

most cases identical to native execution, because the master simply performs the system
call that would have been issued by the application otherwise.

Replication overhead stems from steps 1, 2, and 4. We used a microbenchmark to estimate
the cost of these steps. Checksum computation is a simple sum operation and takes about
100 CPU cycles per replica. This is rather fast compared to the notifications sent in steps
1 and 4. By default, Fiasco.OC’s virtual CPU mechanism [LWP10] is used for sending
an event and the corresponding replica state to the master. On our test machine, a plain
vCPU exception costs about 2,200 CPU cycles when replica and master execute on the
same CPU. As Romain replicas run on dedicated cores, event notifications need to be
sent across CPUs, which adds expensive inter-processor interrupts (IPIs) to the number.
In our two-socket system we need to additionally distinguish between IPIs sent within a
single socket and those sent across socket boundaries. We measured the average cost of an
exception sent across CPUs to be 5,900 cycles for intra-socket communication and 14,300
cycles for cross-socket messages.

Based on these microbenchmarks we implemented a core placement algorithm in Romain
that prefers to assign replicas to CPUs on the same socket, because thereby we save about
8,000 cycles (or 60%) for steps 1 and 4 as opposed to distributing replicas across sockets.
The results reported in the next section were obtained using this placement algorithm.

4 Replicating SPEC INT 2006

After overcoming the previously discussed hurdles, we ran all 11 of the SPEC INT 2006
benchmarks. Figure 4 shows the runtime overheads normalized against native execution.
The geometric mean overhead for running three replicas is 2.51%. This matches our initial
expectations, because the benchmarks are mostly CPU-bound and these computations can
happen concurrently on the replica’s cores while overhead for externally visible events
only occurs rarely. Four benchmarks, 403.gcc, 429 .mcf, 462.1libguantum, and
471 .omnetpp experience higher overheads. Therefore, we focussed our further investi-
gations on these applications.

The 403 . gcc benchmark carries out a large amount of memory remap operations (using
the C library’s mremap and realloc functions). This behavior stresses Romain’s mem-
ory management capabilities by requiring a large amount of allocations and page fault
handling. We actually ran out of memory for four out of the nine compiler runs when run-
ning with three replicas. Furthermore, the benchmark also triggers some bugs in Romain’s
memory manager, which is why we take these numbers with a grain of salt.

4.1 Improving Replica Memory Management

Observing that memory management appears to be a bottleneck, we revisited Romain’s
memory management. The master process always keeps one copy of every memory region
per replica and uses Fiasco.OC’s user-level memory management mechanisms to manage
the replicas’ address spaces based on those copies. On 32-bit Fiasco.OC, every address
space can contain 3 GB of user-addressable memory. As a consequence, Romain can only
run three replicas as long as a single replica does not use more than 1 GB of memory. This

Runtime normalized
vs. native execution

400 401 403 429 445 456 458 462 464 471 473
perl bzip2 gcc mcf gobmk hm- sjeng lib h264ref om- astar
mer quan- net++
tum

Figure 4: Overhead for replicating the SPEC INT 2006 benchmarks with one, two, and three replicas
compared to native execution. Geometric mean overheads: GM (DM R) = 0.66%, GM (TMR) =
2.51%

problem can only be fixed once we port Romain to a 64-bit architecture that allows to use
larger address spaces.

There is one thing we can do to reduce memory management overhead, though: By de-
fault, both Romain and native L4Re use 4 kB pages to manage address spaces. If an
application uses large regions of memory, we will observe a page fault for every of these
pages, which leads to several thousands of memory management operations. These opera-
tions become increasingly expensive for replicated execution, because with N replicas the
Romain master has to perform N times the amount of memory allocations and handle N
times the amount of page faults.

The x86 architecture allows to handle memory using 4 MB sized huge pages [Int13].
This reduces the number of page faults that need to be handled by a factor of 1,024. To
use this feature, the respective memory regions need to be aligned to an address that is a
multiple of 4 MB. L4Re’s memory manager provides a mechanism to request huge pages,
but applications need to do so explicitly, which the SPEC INT benchmarks don’t. We
extended Romain to inspect the parameters of replicas’ memory management system calls.
If the application wishes to allocate a memory region larger than a predefined threshold?,
Romain automatically sets the respective flags to allocate memory that can be managed
using huge pages.

We used a microbenchmark to validate the results of this optimization. Our application
allocates a region sized 800 MB and then sequentially runs over this region reading and
writing all pages. Table 1 shows the time required to execute this benchmark natively
to Romain executing one, two, and three replicas. First, we see that using 4 MB pages
reduces the benchmark’s runtime by 50% because page fault handling clearly dominates
this benchmark.

Second, we see that replicated execution has a much higher overhead than we observed for
the SPEC INT benchmarks. This is due to the benchmark’s nature: Replicas only execute

3We empirically found that 1 MB is a good threshold value for our experiments.

4 kB Pages | 4 MB pages
Native L4Re 0.72 sec 0.38 sec
Romain, 1 replica 0.80 sec 0.38 sec
Romain, 2 replicas 2.23 sec 0.58 sec
Romain, 3 replicas 3.12 sec 0.91 sec

Table 1: Effect of using huge pages for replica memory management

concurrently for short periods before raising the next page fault. The majority of time is
then spent managing memory in the master. As explained above, the number of replicas
is directly proportional to the amount of memory management work the master needs to
perform here and hence TMR’s cost is about three times as high than native execution.

We re-ran the whole SPEC INT 2006 benchmark suite again with our memory optimiza-
tion in place. It turns out that these benchmarks are not dominated by memory manage-
ment overhead at all and the results were the same as already shown in Figure 4. Only for
the 400 . perl benchmark we observed a measurable overhead reduction: TMR overhead
was reduced from 4.3% to 2.5% by using huge pages.

4.2 Reducing Replica Cache Misses

Reducing the amount of page faults unfortunately did not reduce the overhead for the
429.mcf, 462.1libguantum, and 471 .omnetpp benchmarks. Our next attempt to
explain their behavior was to profile the benchmarks with the help of hardware perfor-
mance counters. Table 2 shows the amount of L2 and L3 misses we observed for the three
benchmarks.

429.mcf | 462.1libgquantum | 471.omnetpp
DMR: L2 Misses x 1,000 2,600 2,500 270,000
DMR: L3 Misses x 1,000 1,300,000 570 6,900,000
TMR: L2 Misses x 1,000 | 11,000,000 440,000 35,000,000
TMR: L3 Misses x 1,000 5,200,000 387,000 21,200,000

Table 2: L2 and L3 cache misses for 429 .mcf, 462 .1libgquantum, and 471 .omnetpp.

We see a manifold increase in L2 and L3 misses for all three benchmarks when moving
from two replicas to three replicas. This indicates that these benchmarks are extensively
relying on data in the cache. While all replicas execute the same operations on the same
data, they do so using dedicated copies of this data and cannot benefit from prefetching
effects. Instead, the replicas compete for the limited cache space and this appears to be the
reason for their high replication overheads.

In Section 3 we argued that we place replicas on cores on the same CPU socket to reduce
the CPU cycles required for sending inter-core events. It turns out that this optimization
was pre-mature for the benchmarks in question. While running these benchmarks we see
a couple of thousand externalization events handled by the master opposed to millions of
cache misses. According to Intel’s documentation, an L3 cache miss costs about 60 ns

or 160 CPU cycles on our test machine [Lev09]. We therefore concluded that we should
optimize for reducing cache misses instead of minimizing signalling performance.

Our test machine’s CPU sockets each have an L3 cache that is shared by all six of the
local CPU cores. In order to reduce L3 miss rates, we can make more efficient use of
the available L3 caches by distributing replicas across sockets. We therefore adjusted
Romain’s replica placement to place one replica on the second socket when running in
both DMR and TMR modes. This lead to the reduced cache miss rates shown in Table 3.

429 .mcf 462 .libquantum 471 .omnetpp
DMR: L2 Misses x 1,000 2,600 +4/-0 2,500 +/-0 290,000 +11%
DMR: L3 Misses x 1,000 930,000 -29% 323 -43% 5,500,000 -20%
TMR: L2 Misses x 1,000 | 11,000,000 +/-0 | 385,000 -12% | 34,900,000 +/-0
TMR: L3 Misses x 1,000 3,600,000 -30% 8,700 -97% | 16,400,000 -22%

Table 3: L2 and L3 cache misses for 429.mcf, 462.1libgquantum, and 471 .omnetpp with
one replica running on a different CPU socket

We see a significant decrease in L3 misses across all benchmarks. Additionally, we also
observed that these decreases manifest themselves in reduced runtimes when replicating
the benchmarks. We compare the improved runtimes to the previously measured results
in Figure 5. All benchmarks show lower overheads for DMR and TMR execution. The
geometric mean overhead for TMR execution for all SPEC INT benchmarks is now 1.8%.

429.mcf and 471 .omnetpp still have non-negligible overheads when running with
three replicas. Based on the numbers in Table 3, we attribute these overheads to the re-
maining L3 misses. Lower overheads would then only be possible with a larger cache.

1.3
1.25
1.2
1.15
1.1
1.05

Runtime normalized
vS. native execution

429 429 462 462 471 471

mcf mcf lib lib om- om-
adj quan- quan- net++ net++
tum tum adj
adj

(0singedmomrERTVR

Figure 5: Overhead for replicating the SPEC INT 2006 benchmarks with one, two, and three replicas
compared to native execution. Plain benchmark names refer to the previous results (see Fig. 4),
benchmark names with adj refer to modified core placement.

We conclude from these cache experiences that a replication mechanism needs to be aware
of the underlying hardware platform and its specific cache and memory architecture. This
observation has already been made in other contexts. The Barrelfish OS [BBD109] for in-

stance uses a system knowledge base to perform efficient message routing between cores.
We plan to explore the potential of combining replication with platform- and load balanc-
ing in future work.

5 How Much is RCB Hardening?

Our experiments so far showed that Romain is able to replicate applications efficiently
with an acceptable overhead. Nevertheless, replication only protects user-level code. The
system still remains unprotected against hardware errors that occur while executing code
within the Reliable Computing Base.

To protect the RCB, we need to apply additional measures. In contrast to user-level code,
where our main motivation was to support binary-only applications, we have full control
over the RCB’s source code. Therefore, applying compiler-based fault tolerance meth-
ods may be feasible. Duplicated instructions [RCVT05] as well as redundant arithmetic
codes [FSS09] provide such protection without requiring specific hardware support. How-
ever, they add additional runtime overhead. We are therefore interested in how this addi-
tional overhead will influence replicated execution and ultimately our benchmark results.

Unfortunately, existing compiler-based fault tolerance has only been evaluated using user-
level applications and we are not aware of any existing tool that can be used to compile
our microkernel. Therefore, instead of performing measurements with a real system, we
conduct a thought experiment based on our previous results.

Native execution time Replication overhead

|
|
|
Kernel: |'| Romain Additional
- Har r Il
Application Code System : Master Kernel In- (:ngair?i:%)s
Calls I Code vocations &
|
|
tapp tkern I tmaster thorn thw

Figure 6: Breakdown of time for replicated execution

To model replicated execution time, we break this time down into its components as shown
in Figure 6. Native execution time consists of the time for executing application code 4,
and the time required for executing system calls in the kernel ?j.,,. When replicating
execution, we add time spent in the Romain master t,,,qster. Furthermore the master may
execute additional system calls ¢}, ... Finally, we suffer from wait times due to unsynchro-
nized replicas, signalling overhead for sending exception messages, and from hardware
effects, such as cache thrashing as seen in Section 4, all of which we subsume as ..

For our experiment we therefore model native execution time as

tnar = tapp + tkern (1)

whereas replicated execution time is described by

tREP = tNAT + tmaster + t;cern + thw (2)

If we protect the RCB using a compiler-based mechanism, the kernel as well as the mas-
ter process will experience additional slowdown and hence their execution times will be
multiplied by a factor C depending on the chosen mechanism. The same applies to the
kernel part of ¢t 4. In contrast, the application itself is not modified and therefore does
not suffer from additional overhead. Hence, ¢, remains constant.

We can therefore model the time required for replication based on a protected RCB as

tPROT = tapp + C x (tkern + tmaster + t;cern) + thw (3)

From the results discussed in Section 4 we conclude that applications dominate cache
effects, whereas the additional master code and data do not have a significant impact.
Even though redundant encoding or additional checking instructions will also add code
and data, we still assume this to be negligible in contrast to the application’s influence.
Therefore, we assume for our model that ¢, also remains unchanged with a protected
RCB.

We analyzed the SPEC INT 2006 benchmarks to determine how much of their native
execution time can be attributed to txe,,. We programmed two performance counters
to count the CLK_UNHALTED_REF event, which counts the unhalted bus cycles. The
first counter used the USER bit to count cycles spent in the user application. The second
counter was configured with the OS flag to only count kernel-level cycles. For all of the
benchmarks we observed kernel execution time to be less than 0.2% of the whole execution
time. To ease modelling, we can therefore safely set ¢y, := 0 and set £, to the native
execution times measured in Section 4.

We also set tp,, := 0 for our analysis, even though we showed that ¢;,, can be a large
contributor to replication overhead. Unfortunately, it is hard to precisely determine the
ratio of hardware effects to actual additional execution. To get a practical result, we assume
the replication overheads measured in Section 4 to be solely software-induced. This will
lead to an overestimation of the impact of compiler-based RCB hardening. Nevertheless it
allows us to establish an upper bound on the expected overhead.

Our reduced model now becomes

t/PROT = tupp + C x (tmuster + t;ce’rn) (4)
tvar +C X trep ®)]

To determine the factor C', we consulted an analysis of software-implemented hardware
error detection mechanisms done by Schiffel et al. [SSSF10]. The authors compared
software-implemented fault tolerance (SWIFT [RCV105]) and several mechanisms based
on arithmetic AN-encoding, such as [FSS09], regarding their runtime overheads and reli-
ability guarantees. They found that SWIFT (Csw jpr := 1.095) delivers low overheads,
but misses a significant number of hardware errors. In contrast, AN-encoding detects
nearly all errors, but has higher runtime overheads (C4anpp := 3.896).

We selected the TMR overheads reported in Section 4 and computed the resulting TMR
overheads according to our model if we applied either SWIFT or ANBD-encoding to the

0 1 Romain only [1 0 Romain+SwIFT Il B Romain+ANBD
1.6 |
15|
T C
o O
S5 14l
es 13|
0.2 [
£ £ 1.25
e
fos 4 Ao
Z 1af
1.05 |
1 - - = R

400 401 429 445 456 458 462 464 471 473
perl bzip2 mcf gobmk hm- sjeng lib h264ref om- astar
mer quan- net++
tum

Figure 7: Modelled TMR overhead when protecting RCB execution with software-based fault tol-
erance mechanisms. Geometric means: GM (SWIFT) = 1.97%, GM(ANBD) = 7.03%

components of our RCB. The results are shown in Figure 7. Applying SWIFT to the RCB
adds only tiny amounts of overhead, whereas applying ANBD-encoding would magnify
the overheads for those benchmarks that already suffer from high replication overheads
when only using Romain.

We conclude that the combination of compiler-based fault tolerance and an OS service
for replicating binary applications is a promising path for further research as it allows
to support a larger range of applications (binary-only) than pure compiler-based meth-
ods. Furthermore, the overall system overhead is decreased when combining low-overhead
replication with encoding techniques that are selectively applied to those components that
cannot be protected by replication. However, we must note that our analysis only con-
sidered the performance implications of such a combination. It remains to be researched
whether replicated execution can keep up with the reliability guarantees provided by strong
arithmetic encoding.

6 Conclusion

This paper analyzed the overheads incurred by the Romain replication service when ap-
plied to the SPEC INT 2006 benchmark suite. We found that replication cost for these
CPU-intensive benchmarks is low with a geometric mean of 1.8% for triple-modular re-
dundant execution. We pointed out that proper placement of replicas on the available CPU
cores and the interaction with other services in the system can have a significant impact on
the measured overheads and discussed how we avoid those pitfalls in Romain.

Given the rising heterogeneity in today’s hardware we believe that making system ser-
vices aware of the underlying platform and finding the right abstractions to let services
make platform-aware decisions is an important research goal. Our evaluation shows that
reliability mechanisms can also benefit from such knowledge.

Based on our measurements we then developed a model to estimate how combining low-
overhead replication with a Reliable Computing Base protected by compiler-based fault
tolerance mechanisms would impact our results. Our estimations show that replication can
significantly reduce the expected overhead in contrast to applying ANBD-encoding every-
where. It remains to be researched whether this improved performance can be achieved
while maintaining strong reliability guarantees.

Acknowledgments

This work was supported by the German Research Foundation (DFG) as part of the priority
program “Dependable Embedded Systems” (SPP 1500 — spp1500.itec.kit.edu).
Adam Lackorzynski provided valuable feedback on our measurement setups. Christiane
Berndt gave feedback on drafts of this paper.

References

[Aus99] T.M. Austin. DIVA: a reliable substrate for deep submicron microarchitecture design.
In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International Sym-
posium on, pages 196-207, 1999.

[BBDT09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The mul-
tikernel: A new OS architecture for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP *09, pages 29—
44, New York, NY, USA, 2009. ACM.

[Bor05] S. Borkar. Designing reliable systems from unreliable components: The challenges of
transistor variability and degradation. IEEE Micro, 25(6):10-16, Nov.-Dec. 2005.

[DHE12] Bjorn Dobel, Hermann Hértig, and Michael Engel. Operating System Support for Re-
dundant Multithreading. In /2th International Conference on Embedded Software (EM-
SOFT), 2012.

[ED12] Michael Engel and Bjorn Dobel. The Reliable Computing Base: A Paradigm for
Software-Based Reliability. In Workshop on Software-Based Methods for Robust Em-
bedded Systems, 2012.

[FMET12] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron
Brightwell. Detection and correction of silent data corruption for large-scale high-
performance computing. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC *12, pages 78:1-78:12,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[FSS09] Christof Fetzer, Ute Schiffel, and Martin Siisskraut. AN-Encoding Compiler: Building
Safety-Critical Systems with Commodity Hardware. In Proceedings of the 28th Inter-
national Conference on Computer Safety, Reliability, and Security, SAFECOMP ’09,
pages 283-296, Berlin, Heidelberg, 2009. Springer-Verlag.

[Hen06] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1-17, September 2006.

[Int13] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Number 325384-046US. March 2013.

[Kril3]

[Lev09]

[LWP10]

[RCVT03]

[RMO00]

[Sch90]

[SPW09]

[SSSF10]

Martin Kriegel. Bounding Error Detection Latencies for Replicated Execution. Bache-
lors thesis, TU Dresden, 2013.

David Levinthal. Performance Analysis Guide for Intel® Core'" i7 Processor and
Intel® Xeon' Processors. 2009.

Adam Lackorzynski, Alexander Warg, and Michael Peter. Generic Virtualization with
Virtual Processors. 12th Real-Time Linux Workshop, 2010.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault Tolerance. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization, CGO’05, pages 243-254.
IEEE Computer Society, 2005.

Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via simul-
taneous multithreading. SIGARCH Comput. Archit. News, 28:25-36, May 2000.

Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM Errors in the
Wild: A Large-Scale Field Study. In SIGMETRICS, 2009.

U. Schiffel, A. Schmitt, M. Siisskraut, and C. Fetzer. Software-Implemented Hardware
Error Detection: Costs and Gains. In Dependability (DEPEND), 2010 Third Interna-
tional Conference on, pages 51-57, 2010.

