
Stay Strong, Stay Safe – Enhancing Reliability of a Secure
Operating System

Dirk Vogt∗, Björn Döbel, and Adam Lackorzynski
Technische Universität Dresden

Department of Computer Science
01062 Dresden, Germany

{dvogt,doebel,adam}@os.inf.tu-dresden.de

ABSTRACT
Current research in operating systems focuses either on secu-
rity or on reliability. However, modern embedded platforms
demand solutions that suit both kinds of requirements. In
this paper, we present L4ReAnimator, a framework that
allows restarting crashed applications and reestablishing lost
communication channels on top of the Fiasco.OC microker-
nel. It therefore effectively combines the already existing
capability-based security architecture of Fiasco.OC with reli-
ability features at a reasonable cost.

1. INTRODUCTION
Research in embedded systems and hardware indicates

that future systems will be much more susceptible to errors
than today’s. Reasons—explained for instance in [1]—are
smaller hardware structure sizes leading to a higher impact
of radiation to transistor state, temperature-induced prob-
lems due to over-heating of some areas of the chip, higher
alterations of transistor aging, and production-induced com-
ponent faults. Therefore, hardware and software mechanisms
need to be found that handle these errors in order to keep
the systems functional.

While some errors, such as permanently non-functional
hardware, at least partially need solutions at the hardware
level, there is a large class of errors that are transient and
can be fixed by restarting a failed component. This class of
errors includes single event upsets at the hardware level as
well as programming errors such as memory leaks.

Current research in operating systems either focuses on
security or on reliability. Microkernels such as seL4 [8] and
Fiasco.OC [9] implement capability-based systems providing
fine-grained access control and improved flexibility. seL4
provides a certain amount of reliability by using a formally
verified OS kernel. However, this verification does explicitly
not take into account errors in user-level applications or errors
in the underlying hardware. On the other hand, systems

∗Now at Vrije Universiteit Amsterdam

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of IIDS Workshop 2010, Paris, France.
Copyright 2010 ACM, ISBN 978-1-4503-0120-6 ...$5.00.

such as Minix 3 [7] and CuriOS [3] provide applications with
efficient restartability in the situation of a crash.

In this paper we present L4ReAnimator, an extension
to the L4 Runtime Environment (L4Re) running on top of
Fiasco.OC. L4ReAnimator provides a framework to semi-
transparently reintegrate crashed applications into a running
system.

We give a short overview of Fiasco.OC and L4Re, our target
operating system and discuss the problems with integrating
restartability into a capability-based operating system in
Section 2. We present the L4ReAnimator framework in
Section 3, show that the required effort and performance
overhead is reasonable in Section 4 and compare our solution
to existing approaches to building reliable operating systems
in Section 5.

2. CAPABILITIES IN L4RE
In this section we give an overview on Fiasco.OC and its

capability system. Detailed information on the underlying
design can be found in [9]. Due to space limitations, we only
examine those features necessary for providing restartability
here.

2.1 L4Re Overview
Our operating system platform comprises the Fiasco.OC

microkernel and the L4Re user-level runtime environment.
The system is organized as a set of interacting objects. The
kernel provides spatial isolation between objects in form
of tasks. The basic unit of execution is a thread. Objects
interact by calling functions of other objects similar to the
idea of object-oriented programming. This invocation is the
only system call present in Fiasco.OC.

An example for the use of such objects is the kernel-
provided IPC gate, an object that allows establishing a com-
munication channel between threads. System-level compo-
nents such as device drivers and protocol stacks implemented
on top of Fiasco.OC use these objects to provide their services
to other applications in terms of client-server relationships.

In order to maintain absolute control over object rela-
tionships, there are no globally accessible objects in L4Re.
Instead, the microkernel manages a per-task table of capabil-
ities referencing objects. Each task can denote the objects
it has access to by their capability slot number in this table.
Keeping the capability space local to the task prevents tasks
from obtaining knowledge about the rest of the system by
simply guessing global names and allows for a fine-grained
setup of access rights to objects.

To ease capability management at the user-level, a task’s

Loader

Client Server

SNC NS

Figure 1: Session start up
The server creates a service management capability (S) and
registers it in its name space

Loader

Client Server

SC

1

2

NC NS

Figure 2: Session initialization
The loader initiates a session using the S capability (1). The
server creates and returns a new session capability C (2).

Loader

Client Server

SCNC NS

1

2

Figure 3: Session use
The client queries its name space for a service capability
(1) and gets C mapped into its capability table. Thereafter,
client and server use C for communication (2).

base set of capabilities is organized in a name space containing
mappings from task-local names to remote object names.
These mappings are maintained by a task’s name space
manager, which is usually identical to the task’s creator.

An advanced feature of L4Re name spaces are session
capabilities. These represent a dynamically created client-
server communication channel. This dynamism allows servers
to implement multiple services within a single task and to
provide explicit per-client communication channels. Sessions
are not created directly by the client, but by its name space
manager. This allows for client implementations that are
completely agnostic of how service capabilities are obtained
and in turn for server implementations to be replaced without
the need of modifying any clients.

2.2 Example Problem
Figures 1-3 depict the initiation of a client-server session.

In this scenario, client and server are started by a binary
loader that also acts as both tasks’ name space manager
by providing them with name service capabilities NC and
NS respectively. Upon start up, the server creates a service
management capability S and registers it in its name space
(by invoking NS) as shown in Figure 1. For the client to use a
service it needs to be able to query the corresponding session
capability in its name space. To provide such a capability,
the name space manager in Figure 2 invokes a session open
call through the service management capability. In response,
the server creates a new session capability C and returns it

Loader

Client Server

SC NSNC

Figure 4: Crash
After a crash, the session and service capabilities get de-
stroyed and client and loader possess dangling references to
these capabilities.

to the loader. Later on, the client will query its name space
for the required service as depicted in Figure 3. The loader
then maps the C capability to the client and thereafter, client
and server use C as a direct communication channel for the
duration of the client session.

Figure 4 shows the situation after the server is terminated,
for instance because an underlying error detection mecha-
nism detected a soft error. Both, the service management
capability S as well as the session capability C are destroyed.
The first step in recovery is to restart the server. However,
this does not suffice, because both, the loader and the client
still have dangling capabilities to the old server instance’s
objects and therefore cannot continue normal operation, be-
cause future invocations of these missing capabilities will
fail.

The system is lacking a mean to detect such capability
faults and handle them properly. In the next section we
introduce L4ReAnimator, a framework that steps in for help
under these circumstances and takes care of re-establishing
lost communication channels.

3. CAPABILITY FAULT HANDLING
In this section we review the requirements posed on a

restart mechanism: fault containment, reintegration of re-
started components, persistence of session state, and trans-
parency. As we aim at retrofitting an existing system with
such a mechanism, we consider the tradeoffs between the
effort involved in implementing a feature and the respective
benefit. Thereafter, we describe the concrete implementation
of these features in L4ReAnimator, a restartability framework
for L4Re.

L4ReAnimator focuses on the process of restarting failed
applications. It is orthogonal to other approaches that cover
error detection and we believe it can be combined with
techniques such as software-encoded processing [14].

3.1 Restartability Requirements
Analyzing several existing fault-tolerant systems, we found

that all of them can be assessed by how far they go in reaching
four properties and how much effort these properties place
on the system’s users. We discuss the properties here and
postpone discussion of the differences between our solution
and existing systems to Section 5.

Fault containment aims at limitting propagation of errors
throughout the system. Fiasco.OC provides fault contain-
ment by (1) using capability-based communication channels,
and (2) separating tasks’ address spaces. The former leads
to explicit communication channels that can be interposed
to add fault detection and checking if necessary. The latter
leads to containment of memory access errors to a single task.

As we will explain in Section 3.2.3, the remaining problem
is resource sharing between tasks, which is supported by
Fiasco.OC and needs to be treated carefully with respect to
containment.

Once a crashed component is restarted, it needs to be
reintegrated into the running system. In terms of a capability
system, this means, that all other applications that were
using a capability for a service provided by the crashed
component need to have these capabilities replaced with
ones referring to objects within the new component instance.
Additionally, Fiasco.OC supports sharing memory between
tasks, so previously established memory mappings including
the crashed component need to be updated as well.

Server applications usually keep a certain amount of client-
related state. When restarting the server, this state needs
to be rescued in order to transparently continue serving the
client. This requirement is called persistence. We have imple-
mented a checkpoint/restore facility that leverages L4Re’s
memory management infrastructure to store a checkpoint of
a task’s address space and the state of its threads and is able
to recover from such a checkpoint upon application restart.
This approach is similar to the transparent user-level check-
pointing done by libckpt [10]. The mechanism is orthogonal
to the main problem of recovering lost capabilities and we
omit further details due to space limitations.

Another commonly mentioned requirement for a restarta-
bility mechanism is transparency. No application but the
restarted one should be bothered to take part in the recovery
process. The major disadvantage of a transparent mechanism
is that the whole system needs to be properly designed to
support it. When retrofitting an existing system with the
ability to restart components, this would mean a huge effort
of modifying existing components. On the contrary side,
completely dismissing transparency would also mean a huge
effort, because all clients needed to be modified in order to
be aware of potential service faults and of the necessary steps
to be taken upon encountering a fault situation.

In the rest of this section, we present L4ReAnimator, a
framework that supports reintegration of L4Re applications
into a running system using a semi-transparent restart mech-
anism. This means that the burden of implementing recov-
ery code is placed on the server programmer, because she
is best aware of the steps required to re-establish a client
connection. This code can be provided to clients through a li-
brary, which in combination with the framework provided by
L4ReAnimator allows clients to remain completely unaware
of the recovery process.

3.2 Capability Fault Handling in L4Re
The L4ReAnimator framework consists of the components

shown in Figure 5. As in every basic Fiasco.OC setup, the
kernel maintains a set of kernel objects that are referenced
by kernel-protected capabilities. An L4Re task includes
a capability index table into whose slots the kernel maps
capability references. The slot number is then used by the
L4Re task to denote this capability. It is up to the user-level
task to manage the slots in this table and decide, where
capability are mapped to.

L4ReAnimator adds additional infrastructure to this setup,
which we are going to describe in detail in the next subsec-
tions: (a) we add means to detect the loss of a capability,
which we call a capability fault, (b) we provide functions
containing the recovery code that is run upon a fault, which

Microkernel

Object

Object

Capability
index table

1 2 3 4 5 6

Capability
Registry

Fault & unmap
handlers

Capability
watcher

L4 task

Figure 5: L4ReAnimator Architecture

we call capability fault handlers and functions which contain
additional cleanup code that needs to be executed when a
capability is lost, which we call unmap actions, and (c) a
capability registry that maintains a list of mappings between
active capabilities and the respective capability fault handlers
and unmap actions.

3.2.1 Detecting Capability Faults
In order for clients to continue using a service capability

beyond termination and restart of the service provider, we
need a mechanism to notify clients about such situations.
One approach to this problem is to implement a notification
service that clients can subscribe to and that upon a restart is
used to notify interested clients of this situation, so that they
can adapt to this problem [7]. This has the disadvantage,
that clients need to pay the performance overhead involved in
reestablishing a channel even if they don’t need this service
right now. Therefore, we’d prefer to handle such situations
lazily.

When a capability disappears, an application will be in
one of two situations:

1. The application is currently not in the process of invok-
ing the capability. In this case re-establishment of the
capability mapping is postponed until the application
invokes the capability again. This invocation will result
in an error notifying the application that a non-existing
capability has been invoked.

2. The application is currently blocked on a capability
invocation. In this case the kernel will report an error
indicating that the invocation was cancelled.

We detect both situations by hooking into L4Re’s system
call bindings. If we detect one of the two error conditions
and L4ReAnimator is enabled in this application, a capa-
bility fault is raised. All this is done by the L4ReAnimator
framework without client interaction.

3.2.2 Handling Capability Faults
Once a capability fault is raised using the previously de-

scribed mechanism, the capability registry is used to look
up a capability fault handler for the capability that caused
the fault. The fault handler is a function that is executed
to re-establish a lost capability mapping. In order to do
so, the fault handler needs to know about the type of the
underlying capability and about the protocol that is used for
re-establishment.

Memory allocator

Application A

Physical
Memory
Manager

Data space 2

Data space 1

Application B

1

2

DS

3

4

Figure 6: L4Re Memory management

Because of the specific knowledge involved, writing capa-
bility fault handlers is up to the implement or of a service.
Our approach is to let server programmers write capability
fault handlers for their applications and distribute them to
clients among with their server-specific libraries. The L4Re-
Animator framework provides the infrastructure to make
using these fault handlers transparent to the client. The
server library therefore only needs to register capability fault
handlers whenever it uses L4Re’s methods to allocate a capa-
bility slot. Thereafter, the framework makes sure that this
handler is called upon a fault on this capability.

3.2.3 Reintegrating Shared Resources
In addition to communicating via capabilities, L4Re allows

applications to share resources. This allows implementation
of shared-memory communication channels such as in the
scenario depicted in Figure 6.

Establishing such a channel takes place in three phases.
First, the communication initiator (application A) requests
the creation of a new shared memory area from its memory
allocator (1). The allocator therefore creates a data space
(an abstract memory container) from a provider such as the
physical memory manager (2), in this case data space 1.
The data space is represented by a capability (DS) that is
mapped to application A in reply to its memory request (3).
In order to establish a shared-memory channel to application
B, A will map this capability to B as well (4). Now both
applications attach the DS capability to their local address
space manager and as soon as they touch the respective
memory regions, a page fault will be raised and using the
DS capability be routed to the physical memory manager
that will then establish a mapping of physical pages.

If application A now terminates, all the capabilities it
mapped to other applications are invalidated. This includes
the mapping of DS to application B, so once B tries to raise
a page fault in the shared memory channel thereafter, it
will detect that the capability is invalid and use a capability
fault handler to reestablish access to the channel. However,
even though A crashed, the resources belonging to data
space 1 are still present, because they belong to the memory
manager which did not crash. This means that all existing
page mappings from the memory manager to application B
still exist and B may read and write these regions at will.

This may lead to a situation where B never realizes that A
has been restarted: If the whole data space was mapped to
B before A crashed, it will never again raise a page fault on
this memory region, therefore never invoke the invalidated
DS capability and thus never detect that the communication
channel needs to be updated. So, even if A is successfully
restarted and creates a new shared-memory channel (e.g.,
data space 2), B will never be able to use it.

The problem can be solved in three ways:

1. The physical memory manager mapped the DS capabil-
ity to exactly one client: application A, which thereafter
mapped it to B. The Fiasco.OC kernel provides a mech-
anism to detect whether a capability does still have
child mappings. If A crashes, the DS mapping vanishes,
the physical memory manager can use periodic check-
ing of all its capabilities to detect such a situation and
withdraw all resource mappings related to the dangling
capability.

2. Application B can employ periodic checking of all the
capabilities it knows to be valid and thereby detect
whether one of these capabilities has become invalid.
It can then free the related resources from its address
space.

3. The Fiasco.OC kernel can be extended to send resource
revocation notifications to either the creator of a ca-
pability (the physical memory manager), or the users
of a capability (e.g., application B) and these can han-
dle such messages by revoking corresponding resource
mappings.

We currently use the second approach to solve this problem
as it places the overhead of periodic checking on the users
of a resource. Thereby clients can chose whatever checking
period seems suitable for their purposes and the resource
manager does not become a central bottleneck because of
one client’s reliability requirements.
L4ReAnimator supports this solution by running a capa-

bility watcher thread within each address space. Resource-
related capabilities can be registered with this thread and it
will then periodically check their validity and raises a capabil-
ity fault upon an error. The capability registry allows that,
in addition to a capability fault handler, for each capability
slot a resource unmap handler can be registered, which is
used to revoke all resource mappings related to a capability
once it becomes invalid.

3.3 Capability Fault Handlers
One of the early experiences we already made using L4Re-

Animator is that in many client-server scenarios there is no
need to implement a protocol-specific capability fault handler,
but a generic one suits the application’s needs. A common
scenario in an L4Re application is to obtain a capability
using a name space query. Such capabilities can be reinte-
grated by simply re-querying the name space manager for
the corresponding name. L4ReAnimator therefore provides
a generic name space capability fault handler that can be
registered upon a successful name space query.

Another common operation is opening a client session. In
this case, we need to keep track of the service capability that
is used to perform the session open call and of the parameters
used for establishing the session. Again, this can be done
generically by tracking session open calls and registering a
respective session capability fault handler after successful
session establishment.

Additionally, we also implemented several handlers for
more complex protocols. One example is a shared-memory
consumer-producer buffer, which is implemented using a
shared memory buffer (represented by a data space capabil-
ity) and two capabilities for signalling (one for the consumer,
one for the producer). This can be solved by registering
the same capability fault handler for all three capabilities

Loader

Client Server

SCNC NS
2

1

3
4

5

Figure 7: Re-establishing a server session

because depending on which capability is invoked first, rein-
tegration of the buffer needs to take place. Furthermore,
capability watching is used to detect if the shared memory
buffer disappears, and an unmap action for the shared buffer
is needed that unmaps the respective memory pages.

3.4 Recursive Reanimation
The framework presented so far allows us to resolve the

situation initially described in Section 2.2 and Figure 7.
During session setup, client and loader register capability
fault handlers for capability C. The client obtains C through
a name space lookup and therefore registers a name space
capability fault handler. The loader obtains C by invoking
a session open call through the service capability S and
therefore registers a session capability fault handler for C.

Once the client invokes the session capability C and detects
that it has become invalid (1), a capability fault is raised
and the respective name space capability fault handler is
called that retries to look up the name for this capability in
the name space NC (2). The loader being also the client’s
name space manager will try to map C again and detect
C’s invalidity as well. This will raise another capability
fault, this time invoking the loader’s session capability fault
handler, retrying to open the client session using capability
S (3). However, this will only succeed after the server has
been restarted (4) and registered a new service capability
through its name space (5). Once this is done, the session is
re-opened, a new session capability C is created and client
and server can use this capability to communicate.

This recursive approach to reintegrating components into
the system fits well into the hierarchical resource manage-
ment policies traditionally used in L4-based microkernel
systems [5].

3.5 Generalization to Other Systems
Although our implementation focuses on Fiasco.OC and

L4Re as a target system, we believe our ideas can be applied
to other capability systems such as seL4 [8], or Genode [4].
These systems share the common concept of using capabilities
for referencing objects. Hence, they also share the need for
reintegrating a component after restart by reviving existing
communication channels.

In order to reuse L4ReAnimator on an arbitrary capability
kernel, two features need to be provided: (1) invocation of an
invalid capability needs to raise an error, and (2) user-level
needs to be able to check the validity of a capability. (1) is
necessary for lazily re-establishing a communication channel,
(2) is required for reintegrating shared resources, which can
also be achieved using kernel-provided resource revocation
notifications.

4. EVALUATION
We deem the effort for implementing L4ReAnimator to be

reasonable. The whole C++ implementation of capability
registry, capability watcher thread, hooks within the L4Re

Figure 8: Capability watching overhead

system call bindings, and the generic capability fault handlers
comprises about 1,600 lines of code.

We furthermore performed microbenchmarks to evaluate
L4ReAnimator’s influence on performance. IPC between
tasks is a common operation in a microkernel-based operating
system and we found that the system call instrumentation
L4ReAnimator employs to detect invalidated capabilities
leads to an 8.66% overhead for a CPU-local IPC operation
on an AMD Phenom X3 clocked at 2.11GHz.

Additionally, we measured the overhead imposed by the
capability watcher mechanism, which occurs due to the wat-
cher thread periodically waking up and checking all watch
objects. Figure 8 presents the results for a CPU-intensive
application (matrix multiplication) and shows that this over-
head grows with the number of watched objects. Even for
1,000 watched objects the overhead becomes negligible with
a high-enough wake-up period. The choice of the right watch
period constitutes a trade-off decision between the involved
overhead and the error detection and recovery latency.

5. RELATED WORK
The idea of restarting an application for fixing transient

errors is nothing new and has already been adapted to operat-
ing systems components. In this section we analyze existing
solutions and compare them to our design.

The BirliX operating system [6] architecture is a distri-
buted system comprising of objects. Each object inherits
from a primary type that also provides generic means of check-
pointing and recovering an object. Objects interact through
RPC via communication channels identified by globally uni-
que IDs. This enables re-connecting objects after a crash at
the cost of sacrificing the security advantages of having only
task-local name spaces as provided by modern capability sys-
tems. Our work combines object-level restartability with an
existing capability-based access control mechanism in order
to achieve security and fault tolerance.
Nooks [13] is an extension to the Linux kernel putting

device drivers into dedicated lightweight protection domains
that are separate from the rest of the kernel. A layer of wrap-
per functions intercepts all calls between driver domains and
the kernel and maintains replicas of all data shared between
those domains. Further additions employ shadow drivers [12]
that log all interaction between a driver and its clients. Upon
driver failure, the shadow driver manager initiates a restart.
During recovery, the shadow driver handles all client requests
to the driver. Additionally, the shadow driver’s log is used
to reset the device to the state it was in before the crash.

While it has been shown that Nooks provides restartability
at a reasonable performance cost, it does explicitly not target
malicious software and the effort involved in implementing
the wrapper layer and shadow drivers is non-negligible. Our
work explicitly targets a secure operating system and tries to
keep the effort for providing restartability as low as possible
by providing a generic framework for programmers to plug
their restartable applications into.

Minix 3 [7] is a microkernel-based operating system explic-
itly designed for supporting restartability of its components.
A reincarnation server keeps track of the system state and de-
tects crashed components at termination or using a heart beat
mechanism. A data storage server enables components to
store their state across instantiations. Recovery of a crashed
application is performed by the reincarnation server, which
also notifies interested clients of this situation. The burden
of re-establishing communication channels to the crashed
components is then completely upon these clients, which
eases implementation of the recovery process, but hardens
life for the client. However, most of the recovery work can be
hidden in libraries. Our work shares Minix’ idea that fully
transparent application restart can only be achieved with
a large effort and that less transparent solutions exhibit a
better cost-benefit ratio.

EROS [11] is similar to the operating system used in this
work in that it uses capabilities to enforce access control at the
object level. EROS also takes into account fault tolerance by
incorporating a mechanism to create checkpoints at runtime.
These checkpoints always include the whole running system.
This eases reinstantiation, because one does not need to
care about re-establishing capability mappings for single
components. Our approach provides a more fine-grained
level of restartability, by allowing to restart and reintegrate
single objects.

The CuriOS microkernel [2, 3] achieves fully transparent
restart of applications, but does not incorporate any access
control mechanism. Transparency for clients of a crashed
component is implemented by always locating the failed
component at the same memory address, so that clients
can keep using references to objects over multiple instances.
Kernel-provided server-state regions are used to keep client-
related server state independent from restarted servers and
by controlling when these regions are accessible by the server,
CuriOS prevents wild overwrites caused by programming
bugs. The price paid for these features is that all applications
need to be rewritten to adhere to CuriOS application model.
While being reasonable for designing a new operating system,
this effort appears to be too high when retrofitting an existing
system with restartability. We chose to reduce this effort
drastically by giving up on the full-transparency requirement
in L4ReAnimator.

6. CONCLUSION
In this paper we presented L4ReAnimator, a generic frame-

work for providing restartable applications within the L4Re
runtime environment. In order to keep the effort for en-
hancing the existing system small, we dismissed the goal
of providing a mechanism that is fully transparent to the
client. Instead, we use semi-transparent restart, a mecha-
nism that requires service implementers to write and deploy
reintegration code in form of capability fault handlers. For
clients, L4ReAnimator provides a generic framework that
allows them to use service-provided fault handlers without

further modifications to the client.
Using L4ReAnimator we enhanced the capability-based

L4Re operating system with the ability to reintegrate re-
started components into a running system at a reasonable
cost.

Acknowledgements
This research was sponsored by the EU FP7 project eMuCo.

7. REFERENCES
[1] Borkar, S. Designing reliable systems from unreliable

components: The challenges of transistor variability and
degradation. IEEE Micro 25 (2005), 10–16.

[2] David, F. M., and Campbell, R. H. Building a self-healing
operating system. In DASC ’07: Proceedings of the Third
IEEE International Symposium on Dependable, Autonomic
and Secure Computing (Washington, DC, USA, 2007), IEEE
Computer Society, pp. 3–10.

[3] David, F. M., Chan, E., Carlyle, J. C., and Campbell,
R. H. Curios: Improving reliability through operating
system structure. In Usenix Symposium on Operating
Systems Design and Implementation (2008), R. Draves and
R. van Renesse, Eds., USENIX Association, pp. 59–72.

[4] Feske, N., and Helmuth, C. Design of the Bastei OS
architecture. Tech. Rep. TUD-FI06-07-Dezember-2006, TU
Dresden, 2006.

[5] Gefflaut, A., Jaeger, T., Park, Y., Liedtke, J.,
Elphinstone, K., Uhlig, V., Tidswell, J., Deller, L.,
and Reuther, L. The SawMill multiserver approach. In
ACM SIGOPS European Workshop 9/00 (2000).

[6] Härtig, H., Kühnhauser, W. E., Lux, W., and Reck, W.
Operating System(s) on Top of Persistent Object Systems —
The BirliX Approach —. In Proceedings of 25th Hawaii
International Conference on Systems Sciences (1992), vol. I,
IEEE Press, pp. 790–799.

[7] Herder, J. N., Bos, H., Gras, B., Homburg, P., and
Tanenbaum, A. S. Reorganizing UNIX for Reliability,
vol. 4186/2006 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, pp. 81–94.

[8] Klein, G., Elphinstone, K., Heiser, G., Andronick, J.,
Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and
Winwood, S. seL4: Formal verification of an OS kernel. In
Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP) (Big Sky, MT, USA, Oct. 2009), ACM,
pp. 207–220.

[9] Lackorzynski, A., and Warg, A. Taming Subsystems:
Capabilities as Universal Resource Access Control in L4. In
IIES ’09: Proceedings of the Second Workshop on Isolation
and Integration in Embedded Systems (Nuremberg,
Germany, 2009), ACM, pp. 25–30.

[10] Plank, J. S., Beck, M., Kingsley, G., and Li, K.
Libckpt: Transparent checkpointing under Unix. In Usenix
Winter Technical Conference (January 1995), pp. 213–223.

[11] Shapiro, J. S., Smith, J. M., and Farber, D. J. Eros: a
fast capability system. In SOSP ’99: Proceedings of the
seventeenth ACM symposium on Operating systems
principles (New York, NY, USA, 1999), ACM, pp. 170–185.

[12] Swift, M. M., Annamalai, M., Bershad, B. N., and Levy,
H. M. Recovering Device Drivers. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (San Francisco, CA, Dec. 2004).

[13] Swift, M. M., Bershard, B. N., and Levy, H. M.
Improving the Reliability of Commodity Operating Systems.
In Proceedings of the 19th ACM Symposium on Operating
System Principles (SOSP) (Bolton Landing, NY, Oct. 2003),
pp. 207–222.

[14] Wappler, U., and Fetzer, C. Software encoded processing:
Building dependable systems with commodity hardware. In
Lecture Notes in Computer Science on Computer Safety,
Reliability and Security (SafeComp 2007) (2007).

