
Operating System Support for Redundant Multithreading

Björn Döbel
TU Dresden

Dresden, Germany
doebel@tudos.org

Hermann Härtig
TU Dresden

Dresden, Germany
haertig@tudos.org

Michael Engel
TU Dortmund

Dortmund, Germany
michael.engel@tu-

dortmund.de

ABSTRACT

In modern commodity operating systems, core functionality
is usually designed assuming that the underlying processor
hardware always functions correctly. Shrinking hardware
feature sizes break this assumption. Existing approaches to
cope with these issues either use hardware functionality that
is not available in commercial-off-the-shelf (COTS) systems
or poses additional requirements on the software develop-
ment side, making reuse of existing software hard, if not
impossible.
In this paper we present Romain, a framework that pro-

vides transparent redundant multithreading1 as an operat-
ing system service for hardware error detection and recov-
ery. When applied to a standard benchmark suite, Romain
requires a maximum runtime overhead of 30 % for triple-
modular redundancy (while in many cases remaining below
5 %). Furthermore, our approach minimizes the complexity
added to the operating system for the sake of replication.

Categories and Subject Descriptors

D.4.5 [Reliability]: Fault-tolerance

General Terms

Design,Reliability

Keywords

Microkernel, Redundant Multithreading

1. INTRODUCTION
Modern processor development exploits smaller hardware

feature sizes to provide more functional units on the same die
size in order to increase processors’ performance and feature
sets. This trend has a major drawback: chips become more

1Note that the term redundant multithreading refers to using
multiple threads for replication, not necessarily to support
multithreaded applications.

This is the authors’ version of the paper. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in
EMSOFT’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

error prone and constantly or temporarily exhibit incorrect
behavior.

Sources for hardware-related errors are manyfold. The
lithographic process used for implementing hardware fea-
tures at sizes as small as 22 nm still uses wavelengths of
193 nm. This may result in processors that don’t work right
from the start [7] or expose a large variety in terms of gate
switch delays [25]. Furthermore, functional units may suffer
from heat-induced errors [37], aging effects, or errors caused
by undervolting or frequency scaling [49]. Finally, radiation
originating from space or the packaging of the chip may lead
to single-event upsets (SEU) [24], transient errors that man-
ifest as bit-flips at the software level.

Coping with these problems at the hardware level has
the advantage that software does not need to be aware
of them. However, such solutions often involve special-
ized hardware circuitry, making these solutions infeasible
in commercial-off-the-shelf (COTS) systems. In contrast,
software-implemented fault tolerance can easily be adapted
by patching the involved applications and integrating with
operating system (OS) resource scheduling. This flexibility
comes at a price: Software developers need to be aware
of potential hardware errors and use the right techniques
to handle them. This requirement decreases developers’
productivity. Therefore, we argue that it should be the op-
erating system’s responsibility to deal with hardware errors
and provide resilience guarantees to user-level applications.

OS support for handling errors has been extensively re-
searched with respect to software errors [15, 19, 29]. Hard-
ware errors have been investigated with respect to I/O de-
vices and device drivers [18,30]. However, tolerance against
CPU failures is often limited to systems that can make use of
specialized hardware components or employ dedicated soft-
ware techniques [5, 12].

Our goal is to have the operating system provide fault tol-
erance against transient hardware errors in the CPU while
still running on cheap COTS hardware and without restrain-
ing the software developers to using dedicated compilers or
programming techniques.

In this paper we make the following contributions:

• We present our implementation of Romain, an operat-
ing system service using software-implemented trans-
parent redundant multithreading [33] (RMT) to detect
hardware errors during the execution of user-level ap-
plications. Romain recovers from detected errors using
n-way modular redundancy.

To minimize runtime overhead, replicas are distributed
across all available CPU cores. Application state is
only compared before externalizing state, e.g. when

performing system calls. In the current implementa-
tion, Romain is restricted to replicate single-threaded
applications. We discuss how to extend our approach
to handle multithreaded programs.

• Romain is implemented within a state-of-the-art
capability-based operating system and we show how
capabilities can efficiently be managed for replicated
applications.

• Shared memory needs special treatment with respect
to replicated execution. We investigate trap & emulate
techniques for shared memory accesses and present a
solution that works without a complex instruction em-
ulator.

• We discuss how Romain fits into ASTEROID, an op-
erating system architecture designed with the possibil-
ity of hardware errors in mind. ASTEROID provides
a critical core of software components, that must be
trusted to work correctly and that need to be hardened
using other techniques than the rest of the system. We
refer to this critical core as the reliable computing base
(RCB). Romain adds less than 3,000 lines of code to
this RCB

After giving an overview of the broad spectrum of avail-
able research in our area in Section 2, we discuss our as-
sumptions about the hardware fault model in Section 3. Sec-
tion 4 introduces the ASTEROID OS architecture and gives
a short introduction to the Fiasco.OC kernel, which pro-
vides the necessary operating system services in our RCB.
In Section 5 we then discuss the implementation of Romain,
before we evaluate Romain with experiments based on the
MiBench benchmark suite [13] in Section 6.

2. RELATED WORK
Research into operating systems fault tolerance often fo-

cuses on preventing or recovering from software errors, be-
cause these occur at a much higher frequency than hardware
errors in today’s systems. The Minix3 operating system [15]
provides fault-tolerant execution by monitoring state-less
applications for crashes and restarting them if necessary.
David and colleagues extended this concept with kernel-
protected state storage that can survive restarts [10]. Vogt
et al. added Minix3-like restartability to the L4/Fiasco mi-
crokernel, focusing on the reintegration of restarted services
into a capability-based system [46]. The SeL4 microkernel
aims at fault avoidance by formally verifying that certain
software errors can never happen [19]. All these approaches
focus on software errors, whereas our approach aims at de-
tecting and recovering from errors in computational hard-
ware.
The existence of faulty hardware has been researched by

the OS community in the context of I/O devices. Hard
disks and network communication were hardened using re-
dundancy at the data and device level [30,31] and these ap-
proaches were widely adopted in practical systems. Apart
from that, most research on device-related issues focuses on
software errors, especially in device drivers [29, 35]. In con-
trast to these works, this paper is mainly concerned with
hardware errors occurring in the CPU instead of I/O de-
vices. As a notable exception, Kadav and colleagues pro-
posed a tool to validate device driver code to not trust data
read from hardware without proper validation [18].
Operating systems for highly available mainframe com-

puters are designed to cope with all potential malfunctions

at the hardware and software level [5, 6, 17]. These systems
rely on tight integration with specialized hardware [16,32].
In our work, we provide tolerance against hardware faults us-
ing a commodity operating system running on COTS hard-
ware.

Chip manufacturers produce hardware that masks errors,
so they never become visible to software. A prominent exam-
ple for such technologies is the application of error-correcting
codes (ECC) [24] to protect memory and CPU registers. Re-
searchers also proposed hardware extensions to handle er-
rors in functional units: The DIVA architecture suggested
to augment a non-reliable CPU core with a checker core
built in a less complex and less error-prone way [4]. IBM’s
Power6 CPUs enhanced the processor pipeline with signa-
ture checks [32]. IBM’s PowerPC 750GX allows executing
software redundantly on lockstep processors [16].

Hardware error detection, masking and recovery is attrac-
tive, because it simplifies the lives of software developers.
However, integrating these measures into a platform is costly
and it takes a long time (if it happens at all) until these so-
lutions reach the COTS market. We therefore develop an
operating system architecture that solely relies on hardware
features available in COTS hardware.

A range of software-only solutions dealing with hardware
errors have been proposed. Oh et al. implemented check-
ing of application control-flow using compiler-generated sig-
natures [26] and duplicated instructions to detect computa-
tional errors [27]. Reis et al. integrated control-flow checking
and error detection into one compiler, SWIFT [34]. SWIFT
still had a couple of vulnerabilities that were addressed by
Fetzer et al. [11] using arithmetic coding techniques.

Software-only solutions work without any support from
the underlying hardware. However, they usually come as
compiler extensions and require the whole software stack
to be recompiled, which is impossible for proprietary third-
party software. Our solution replicates execution at the bi-
nary code level and therefore works for all kinds of applica-
tions. Furthermore, it is transparent and does not require
cooperation by the replicated application.

Hardware-level redundant multithreading executes the
same code on multiple hardware threads and validates the
order and content of memory accesses [33]. Wang et al. pre-
sented a compiler solution that achieves the same without
the need for specialized hardware [47], but requires to re-
compile the whole software stack with their compiler. Shye
and colleagues presented a runtime approach to RMT [38].
Their solution runs applications redundantly and uses bi-
nary recompilation to redirect system calls and accesses to
shared memory to a master process that compares replica
states. We chose the same approach with Romain and take
Shye’s approach to the operating system level, but provide
three advantages: First, we also inspect OS-level events
such as page faults, increasing the amount of monitored
events for the sake of earlier error detection. Second, we
do not rely on a binary recompiler to replicate applications,
and thereby can come up with a solution less complex to
comprehend. Third, by using a microkernel as the basis
of our work, we enable to use replication to harden OS
services, such as device drivers and protocol stacks.

3. FAULT MODEL
The design and experiments described in this paper as-

sume a single event upset (SEU) fault model [50]. SEUs are
transient errors caused by cosmic or environmental radia-

tion, which can cause a transistor state change, resulting in
a bit turning from 0 to 1 or vice versa.
Computer memory was the first device found to suffer

from SEUs [50]. ECC techniques have been developed to
detect and recover from memory SEUs and we observe
these techniques to be widely available in today’s COTS
systems [24]. Hence, we focus our efforts on SEUs that
affect the functional units of the CPU.
The probability of radiation effects depends on the ge-

ographical location (natural radiation levels vary) and the
height above sea level [24,41]. Time does not influence SEU
probabilities. Therefore, we assume SEUs to be distributed
uniformly over time. In line with related research we assume
that SEUs occur rarely enough so that only a single error in
a single functional unit is active at a given point in time [34].
Several studies show that a significant amount of SEUs are

masked either by the hardware or by application code before
they manifest as observable deviation in program behavior.
Saggese injected microarchitectural faults in a simulator and
found hardware to mask between 0.5 and 30 percent of all
SEUs before they propagate to the software level [36]. Ar-
lat et al. injected faults into a microkernel operating sys-
tem and found between 25 and 30 percent of all faults to
be masked by the hardware or the OS [2]. Wang and col-
leagues identified programming constructs that make the ap-
plication execute correctly even if SEUs cause the CPU to
take a wrong branch. These outcome-tolerant branches were
found to make up between 20 and 30 percent of all branches
in the SPEC CPU 2000 benchmarks [48]. Romain bene-
fits from these observations and delays state comparisons
between replicas until the point where this state becomes
visible to external applications.
Despite focusing on SEUs, we believe that the error detec-

tion mechanisms used in Romain will also detect other fault
classes, such as permanent errors, as well as semi-permanent
errors that occur for instance when heat crosses a certain
threshold and vanish once the chip cools down. We think
the difference between these error models is not in detection
but in the way recovery works. While SEUs can be fixed
by overwriting faulty state with correct state, non-transient
errors need more complex recovery such as migrating the
faulty job to another hardware node [8] or switching to an
alternative implementation that does not make use of faulty
hardware circuitry [23].

4. SYSTEM ARCHITECTURE
The ASTEROID system architecture is depicted in Fig-

ure 1. The hardware consists of COTS components, which
are manufactured to come at a cheap price and for this rea-
son do not incorporate specialized hardware fault tolerance
mechanisms. As an exception, we assume memory hardware
to be protected by ECC, which is a widespread feature of
COTS memory devices these days.
The software stack is split into two layers. The critical

core includes all services user-level applications need to rely
on. These services include fundamental operating system
services such as resource scheduling, multi-tasking and ad-
dress space isolation. Additionally, the core also provides
functionality that allows higher-level components to cor-
rectly execute in the presence of hardware faults. In our
case, this includes the Romain framework.
The higher-level application layer comprises all applica-

tions running on top of the ASTEROID system and making
use of its services. These applications are implemented by

Figure 1: ASTEROID System Overview

developers without specific knowledge about system and
hardware internals. Furthermore, we observe a growing
body of software that is delivered only in binary form, rang-
ing from mobile applications downloaded from AppStores
to device drivers that are distributed without their source
code. Therefore, our goal is to run unmodified applications
and have the critical core provide the necessary mechanisms
to transparently detect and recover from hardware errors.

While the critical core provides all means to safely exe-
cute applications in the application layer, the core’s fault
tolerance mechanisms cannot be used to protect core soft-
ware itself. Therefore, other mechanisms need to be used at
this level to ensure correct execution. In contrast to the ap-
plication layer, we have full control over the software stack
running in the critical core. This allows us to make use
of potentially expensive techniques available at the software
level such as applying basic block signatures [26], operand
encoding [11], and compiler-inserted assertions [45].

4.1 Reliable Computing Base
In the context of secure systems, the term trusted comput-

ing base (TCB) refers to the set of hardware and software
components an application needs to trust in order to main-
tain certain security goals [14]. To reduce testing and vali-
dation efforts, it has been proposed to minimize the TCB as
much as possible [9,39]. Similar to the TCB, we think of the
critical core as the software components that are necessary
to provide transparent replication to applications and that
itself need to be hardened using different means. Hence,
we coined the term reliable computing base (RCB) for the
critical core.

The mechanisms used to harden the RCB will be poten-
tially expensive in terms of implementation effort or runtime
overhead [11]. Therefore, we strive to minimize the amount
of time spent executing in the RCB as well as the amount
of code requiring special treatment. To this end, we make
three design decisions: First, we minimize interaction be-
tween a replicated application and the RCB during normal
runtime by only inspecting replica states at points where
this state is externalized. Second, we minimize the amount
of code that is added to the system by Romain. This rules
out using large code bases, such as a binary recompilation
tool used in Shye’s work [38]. The runtime recompiler alone
would add about 100,000 lines of code to the RCB. Instead,
we use facilities that already exist in the operating system
and augment them for our purposes where needed.

Third, the operating system kernel is part of the RCB.
However, not all OS functionality lies on the critical path

for providing fault tolerant execution. By using a compo-
nentized microkernel, we minimize the RCB and addition-
ally enable Romain to be applied to system-level compo-
nents such as device drivers and protocol stacks, so that
these components are executed outside the RCB.

4.2 Fiasco.OC: Minimizing the RCB
The ASTEROID operating system is based on the Fi-

asco.OC microkernel [43]. Software running on top of Fi-
asco.OC consists of objects implemented in dedicated pro-
cesses.
Similar to other third-generation microkernels such as

Nova [40] and SeL4 [19], Fiasco.OC enables fine-grain ac-
cess control over kernel objects by implementing object
references as kernel-protected capabilities. A thread of exe-
cution can only use functionality of an object if it possesses
a capability for this object. Capabilities are managed by the
kernel on a per-process basis and are stored in a capability
table. Similar to file descriptors in POSIX operating sys-
tems, a process only references its capabilities using indices
into this capability table, but it never knows where the
object behind this capability is implemented and cannot
forge capabilities it did not explicitly obtain.
If owning an object capability, an application can use

its functionality through a system call, which translates a
function call into a message sent through the kernel’s inter-
process communication (IPC) mechanism. The parameters
for a system call are passed through architectural registers
and through the user-level thread control block (UTCB),
a thread-specific memory region shared between the kernel
and the user process. Fiasco.OC’s IPC mechanism does not
only support sending messages, but also attaching capabili-
ties to a message. This is called a mapping and can be used
to transfer access rights to memory pages or object capabil-
ities between processes.
Memory management for Fiasco.OC applications is per-

formed at the user-level using an implementation of hier-
archical paging which has been derived from SawMill [3].
Every process runs a dedicated memory manager that is re-
sponsible for managing this process’s address space. The
memory manager knows about all sources of memory map-
pings (dataspaces in SawMill’s terms). Whenever another
thread of this process raises a page fault, the kernel reflects
this fault to the memory manager, which in turn resolves the
page fault by obtaining a memory mapping from the proper
memory source.
Fiasco.OC has another feature, which aids our goal of

transparently replicating binary applications: A thread can
execute user-level code within an address space. If at any
point in time, this thread causes a CPU exception, for in-
stance by issuing a system call or raising a page fault, it
is migrated to another process, where this exception can
be handled before resuming execution. This whole mecha-
nism [20] is fully transparent to the thread in question.

5. TRANSPARENT REDUNDANT MULTI-

THREADING
Romain provides tolerance against hardware SEUs by

using software-implemented redundant multithreading to
replicate program execution. The replication approach is
transparent to user-level applications and allows execution
of any program written to run on Fiasco.OC without relying
on source code availability or cooperation. Our prototype
implementation was done on x86/32, but there are only

Replica Replica Replica

Romain Master

=
Memory Manager

System Call

Handler

Proxied

System

Call

Replicated Application

CPU exceptions

Page faults

System calls

Figure 2: Romain architecture

few platform-specifics in Romain and we are convinced that
it will in the end work on all platforms that Fiasco.OC is
running on, which includes “real” embedded platforms, such
as ARM.

Figure 2 depicts the internal layout of an application repli-
cated using Romain. Every replica is run in a separate ad-
dress space, leveraging hardware memory isolation to avoid
propagation of an error from one replica to others. The
amount of replicas is configurable and allows for n-way mod-
ular redundancy. A master process is responsible for man-
aging the replicas of a single application, comparing their
states, and performing recovery if necessary. It is further-
more the only part of the replicated application that per-
forms any communication with other applications. This
master is part of the RCB as defined in Section 4.1.

At application startup, the master serves as the program
loader for the replicated application. It creates the initial
replica address spaces and sets up an environment consisting
of an initial stack, environment variables, and an initial set of
capabilities. These actions are identical to those a program
loader performs in the Fiasco.OC environment.

After the initial setup phase, the master creates one initial
thread for each replica and configures it to start running
within the respective replica address space. Whenever the
replica thread raises a CPU exception, such as a page fault
or a system call, the Fiasco.OC kernel migrates this thread
to the master address space, where an exception handler is
executed.

This handler function is the entry point to the second
role performed by the master: runtime state comparison.
A faulting replica thread is blocked until all other replica
threads raise their next exception. The master then com-
pares their states to make sure that all replicas raised the
same exception and their architectural states match. The
state comparison includes architectural registers, kernel-
level exception state, and UTCB contents.

If the master finds the replica states to be identical, it is
responsible for handling the respective exception. In Romain
this handling is implemented by observer modules, which get
notified whenever an exceptional situation is encountered.
An observer handles the exception by inspecting the state
of one replica and acting upon it. Then, the result of this
operation (e.g., system call return values) are injected into
the other waiting replicas by overwriting their thread states.
This allows the master to remain in full control of all inter-
actions between the replicated application and the rest of
the system. After successful exception handling, every re-

Master1 2 3 4 5 6

Replica 2

1 2 3 4 5 6

Replica 1

1 2 3 4 5 6

(a)

(b)

Master1 2 3 4 5 6

Replica 2

1 2 3 4 5 6

Replica 1

1 2 3 4 5 6

Master-Private

Marked used

Figure 3: Matching capability tables between mas-
ter and replicas

plica thread is migrated back to its respective address space
and continues execution.
While the master is able to determine that the replicas’

outputs to the external world match, it still needs to main-
tain control over inputs reaching the replicas. In Fiasco.OC
this exclusively happens through synchronous system calls,
which are covered by the exception handling mechanism.
This is slightly different for shared memory, as we will dis-
cuss in Section 5.2.

5.1 Replica Resource Management
The exceptions caused by replicas and handled by the

master fall into one of two categories: operations on ker-
nel objects and operations on memory. Kernel objects are
represented by capabilities, which Fiasco.OC maintains in
a per-process capability table. To remain in control of all
actions performed by a replica, the master needs to possess
a capability to every object the replicas access. In addition,
the master also requires capabilities to objects that are only
used by itself. This means that over time the master’s ca-
pability table will diverge from the replicas’ ones.
To handle a replica’s system call, the master needs to

identify the kernel object the replica is referring to. This re-
quires a data structure virtualizing each replica’s capability
table and mapping its entries to those owned by the master
as shown in Figure 3 a). This approach complicates sys-
tem call handling: for every system call, the master needs
to identify all capabilities within the replica’s architectural
state and its UTCB. Then it must translate them to master
capabilities and execute the system call. As the system call
reply may also contain capabilities, these need to get trans-
lated back to replica capabilities before resuming execution.
To avoid the complexity of translating capabilities, Ro-

main partitions the master’s capability table as shown in
Figure 3 b). One part is used by the master to obtain pri-
vate capability mappings. This part is marked as reserved
when setting up the initial environment for each replica,
thereby making sure that replicas will only obtain mappings
in the remainder of their capability tables. Due to this par-
titioning scheme, the master can carry out system calls on
behalf of a replica and receive capability mappings into the
replica-specific partition of its capability table. Capabilities

are mapped to the same index in the master and the repli-
cas. The master does not have to perform any translation
upon a system call.

While this approach allows redirecting all system calls
without modifying their parameters or emulating their be-
havior, there remains a subset of system calls that need to
be emulated by the master. First, some objects exist locally
in the replicated task and are therefore existent in every
replica. Modifications to these objects need to be applied
in all replicas. Second, all system calls relating to the lay-
out of the replicas’ address spaces and requests for memory
mappings are executed by the master as well.

To manage memory at the user level, Fiasco.OC assigns
every thread a memory manager capability, which is pro-
vided during application startup. This capability is used a)
by a thread to attach a memory object to its address space
in order to use it, and b) by the Fiasco.OC kernel to reflect
page faults occurring at runtime. The Romain master vir-
tualizes this capability for the replicas in order to remain in
control of how replica address spaces are laid out.

The master maintains a representation of every replica’s
address space and distinguishes between read-only and
writable regions. As discussed in Section 4 we rely on
memory to be protected by ECC techniques. This allows
the master to use a single copy of every read-only memory
region and share it among all replicas. In contrast, the
master allocates a dedicated copy of writable memory re-
gions for each replica. This increases the memory overhead
imposed by Romain. However, the alternative would be
to maintain a single copy of the region, map it to replicas
read-only and emulate the write operation whenever a write
page fault occurred in this region. This trap & emulate
approach would drastically increase the runtime overhead
for replication.

5.2 Shared Memory
The mechanisms discussed so far provide replicated execu-

tion under the assumption that all interactions between the
replicated application and the outside world can be trapped
and handled by the master. This assumption does not hold
in the case of shared memory, as its content may be modi-
fied by a thread outside of the master’s control at any time.
The master still needs to make sure that whenever replicas
access shared memory, they read the same data regardless
of the timing or order of access. Therefore, in contrast to
anonymous memory that is only used internally by the repli-
cated application, a trap & emulate approach is required for
handling shared memory regions.

Trap & emulate

Fiasco.OC applications obtain anonymous memory by in-
voking a memory allocator capability. The returned anony-
mous memory region is thereafter attached to the local ad-
dress space by invoking the previously discussed memory
manager capability. Romain virtualizes the memory alloca-
tor capability in order to keep track of all memory regions
that have been allocated through it. Thereby the master is
able to distinguish between anonymous memory that can be
directly mapped to the replicas’ address spaces and shared
memory objects that require special handling.

When a replica attaches a shared memory region to its
address space, the master does not add a memory mapping,
but lets the replica continue execution as if a mapping had
been established. Thereby every future memory access to

pushad

mov eax, [replica->eax]

mov ebx, [replica->ebx]

mov ecx, [replica->ecx]

[...]

mov esp, [replica->esp]

nop

nop

nop

[...]

nop

mov [replica->esp], esp

[..]

mov [replica->ebx], ebx

mov [replica->eax], eax

popad

Prefix

NOP sled

Suffix

Figure 4: Executing a replica’s instruction in the
master

the respective region will lead to a page fault that is then
handled by the master in a trap & emulate observer module.
Emulating read and write operations on shared memory

regions is expensive in terms of overhead and implementa-
tion complexity. It requires an instruction emulator which
in our case needs to cope with the full semantics of x86/32
memory operations and addressing modes. As a matter of
fact, we started implementing such an emulator using the
udis86 disassembler library [42], which consists of about
6,000 lines of code. We added an instruction emulator of
about 500 lines of code, restricting it to handle the instruc-
tions mov, push/pop, stosd, movsd, and call. This emula-
tor was by far not complete, but allowed to replicate a tiny
Fiasco.OC application using trap & emulate for accessing
memory. Still, a full emulator would add thousands of lines
of code to the RCB. This does not fit well with our goal of
minimizing the RCB.

Copy & Execute

Looking closer at shared memory accesses, an instruction
emulator needs to perform two tasks: First, it needs to
translate virtual addresses in the replica’s address space to
virtual addresses in the master’s address space so that emu-
lation operates on the proper region. Second, the emulator
needs to perform the memory operation.
As the master is in full control of the replica’s address

space layout, it can make sure that shared memory regions
are mapped to the same virtual address in the master and re-
plica address spaces. Thereby, if a replica raises a page fault
in shared memory, the master can directly deduce where to
perform this operation in its own address space. To addi-
tionally avoid the complexity and overhead of emulating the
current instruction, we decided to make the master execute
this instruction on the fastest and most complete instruction
emulator available to us: the physical CPU.
To execute the replica’s instruction locally in the master,

the master maintains a buffer as shown in Figure 4. It con-
tains prefix code, a NOP sled, and suffix code. The prefix
code is responsible for storing the master’s architectural reg-
isters on the stack (using pushad) and copying the trapping
thread’s register state to the architectural registers. The
suffix code is responsible for reverting these actions. The
NOP sled is patched with the instruction from the remote
replica. To do so, we determine the instruction length using
the MLDE32 instruction length decoder [44] and then copy the
instruction into the NOP sled, before executing the instruc-
tion sequence in the buffer. Implementing this approach

requires less than 300 lines of code and therefore minimizes
the RCB complexity for emulating remote memory accesses.

Our solution has two limitations: if the remote instruction
executed within the master performed a memory-indirect
branch (such as ’jmp [eax]’), execution would divert and
never reach the suffix code. This can be mitigated by us-
ing CPU support for single-stepping to ensure that only one
instruction is executed before control is handed back to the
master’s code. However, this would increase runtime over-
head because of the need for handling the additional single-
step interrupt. So far we did not find any use case, where
an application makes use of indirect branch targets that are
stored in shared memory and we assume that this would al-
ready be an exceptional case for non-replicated execution.
Therefore, we chose to not address this limitation in our
implementation of Romain yet.

Furthermore, executing the shared memory access di-
rectly in the master does not replicate this single instruc-
tion. Therefore, execution is vulnerable against hardware
errors for this single instruction.

Leveraging application knowledge

As we will see in Section 6.2, executing the replica’s shared
memory instruction in the master yields a better perfor-
mance than emulating the instruction using a custom-built
emulator. Nevertheless, it is still much slower than letting
the replica execute shared-memory access directly without
any interaction with the master.

In some scenarios, it is possible to leverage application
knowledge to decrease the replication overhead in the pres-
ence of shared memory usage. One such scenario is the use
of shared memory regions that are used mostly for static,
read-only data.

The Fiasco.OC kernel provides applications with a ker-
nel info page (KIP), which contains mostly static informa-
tion, such as the kernel version number and configured fea-
tures. Its most prominent content, is the code for enter-
ing the kernel, which is provided by Fiasco.OC similar to
Linux’ vsyscall page. The KIP also contains dynamic data:
whenever the kernel decides to schedule a thread, it up-
dates a time field within the KIP, which the thread can
then use to obtain the current wall clock time through the
C library’s gettimeofday function. In a replicated appli-
cation, the master needs to consider the dynamic time an
external input and only if we can make sure that all replicas
see the same value upon an access, we can make sure that
their behavior will be consistent after this event.

The static nature of its content and the requirement to
access the KIP for every system call prohibit emulating ac-
cesses to it. Instead, we currently statically analyse the repli-
cated binary for memory accesses to the well-known clock
address within the KIP. We then place a software break-
point on these instructions and provide an observer module
that emulates accesses to the clock field. While patching
with interrupt instructions is a generic solution, which can
be applied to an arbitrary amount of mostly-static shared
memory regions, it still requires the binary to be analysed
beforehand. An alternative would be to use hardware break-
points provided by most of today’s CPUs. Then, one could
set a data breakpoint on the addresses of interest and pro-
vide handler code to emulate the corresponding accesses.
However, we did not do so yet, because hardware break-
points are a limited resource.

5.3 Recovery
Romain uses n-way modular redundancy and can there-

fore perform majority voting if it detects replica states to
mismatch. Faulty replica state can then be overwritten
with the state of a correct replica. This approach has the
advantage of nearly instant recovery and does not require
a combination with sophisticated checkpoint and rollback
techniques, which could impose additional overhead.
As we will see in Section 6, replicated execution leads

to runtime overhead. Therefore, it depends on the work-
load and usage scenario, whether a user is willing to run the
minimum amount of three replicas necessary for using ma-
jority voting. One might instead opt to use double-modular
redundancy and only detect errors. In this case, we believe
Romain can be paired with restart strategies such as the one
used by Minix [15], or application-level checkpointing [1].

6. EVALUATION
One fundamental assumption we based our work on was

that a substantial amount of SEUs does not lead to erro-
neous behavior and it therefore makes sense to delay state
comparison between replicas in order to decrease our solu-
tion’s runtime overhead. We validate this assumption using
fault injection experiments in Section 6.1. Thereafter, we
evaluate Romain’s overhead for double- and triple-modular
redundancy in Section 6.2 and give an overview of our solu-
tion’s code complexity in Section 6.3.

6.1 Fault Injection Experiments
We implemented a fault injection suite as an observer

module within Romain. Using this suite, we simulated SEU
injections of four types of errors in functional units. The
error types were selected to mimic the hard error types in-
jected by Li [21]:

• Register flip: We set a breakpoint on a random in-
struction from the application’s code section and in
the breakpoint handler trigger a flip of a random bit
in a random general-purpose register to simulate SEUs
in the register file.

• Decode: We simulate an SEU during instruction de-
coding by sampling a random instruction, flipping a
bit in this instruction, single-stepping over the newly
generated instruction and reverting the bit flip after-
wards.

• ALU: We select a random arithmetic instruction and
upon encountering it, randomly do one of three things:
(1) modify the instruction to perform another arith-
metic operation, (2) randomly flip a bit in one of the
input operands, or (3) modify the output target. This
simulates SEUs occurring in the arithmetic-logic unit.

• RAT: The register-allocation table (RAT) maintains
a mapping between the general purpose registers
(GPRs) exposed to an application and the physical
register file provided by the underlying CPU. We sim-
ulate an SEU in the RAT by randomly intercepting
an instruction that uses register operands. We then
modify this instruction to use a random index within
the RAT – in 10 % of the cases another register from
the available GPRs is selected, in the other 90 % the
register access is skipped, simulating writing to an
unused register file index. This is a simplification: the
register file entry might be used by another hardware

 0

 20

 40

 60

 80

 100

ad
pc

m
bi

tc
nt

cr
c3

2 fft
gs

m
m

at
h

qs
or

t
su

sa
n

ad
pc

m
bi

tc
nt

cr
c3

2 fft
gs

m
m

at
h

qs
or

t
su

sa
n

ad
pc

m
bi

tc
nt

cr
c3

2 fft
gs

m
m

at
h

qs
or

t
su

sa
n

ad
pc

m
bi

tc
nt

cr
c3

2 fft
gs

m
m

at
h

qs
or

t
su

sa
n

O
ut

co
m

e
fr

ac
tio

n
in

 %

Benchmark

Register Flip Decode ALU RAT

Infinite
Silent Data Corruption
Crash
Success

Figure 5: Distribution of benchmark outcomes for
fault injection experiments

thread and thereby the write would influence the
computations of this thread.

As Romain’s purpose is to handle hardware errors occur-
ring during the execution of user-level applications, we per-
formed fault injection experiments targetting such applica-
tions. We ran fault injection campaigns on applications from
the MiBench [13] embedded benchmark suite, observed the
outcome of the experiments and classified them into four
categories:

• Success: Execution continued and produced a correct
result. This indicates that the SEU did not influence
the outcome of execution at all.

• Crash: Execution terminated prematurely with an ab-
normal result. Such SEUs represent fail-crash errors
which Romain immediately detects.

• Infinite: Execution did not terminate within a spec-
ified amount of time. This amount was selected to
be double the amount of an error-free benchmark run.
Such errors most likely represent the program being
stuck in an infinite loop. Romain can detect them us-
ing a watchdog mechanism.

• Silent data corruption (SDC): Execution continued
and produced an incorrect result. Romain detects
such errors at the point the results are externalized,
e.g., by making a system call.

We selected 8 benchmarks from the MiBench suite for fault
injection experiments and performed injection runs for each
of the error types and applications. On average we ran 7,000
GPR injections, 3,000 instruction flips, 2,000 ALU flips, and
750 RAT flips for each benchmark. The results in Figure 5
show that depending on the benchmark up to 60 % of the
fault injections resulted in no observable misbehavior by the
application.

It should be noted, that our fault injection campaigns tar-
getted applications of little complexity (leading to few po-
tential candidates for fault injection) and were biased in the
way we selected the fault injection point, because we always
injected a fault on the first hit of an instruction. We believe
that these properties make our results appear overly opti-
mistic in comparison to the studies we cited in Section 3.
Nevertheless, the combination of our experiments and those

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

Bitcount

Basicm
ath

QSort

Susan

CRC32

FFT
ADPCM

GSM
Dijkstra

Patricia

SHA
PGP

Rijndael

Stringsearch

ISpell

JPEG

E
xe

cu
tio

n
ov

er
he

ad
 in

 %
Double Modular Redundancy
Triple Modular Redundancy

Figure 6: MiBench execution overheads for double-
and triple-modular redundancy using Romain

Access type Execution time
Direct mapping 0.16 s
Trap & emulate 400.39 s
Copy & execute 219.20 s

Table 1: Execution times for writing a 256 MB mem-
ory chunk word-wise using direct mapping and the
two evaluated shared memory access mechanisms

studies confirms the assumption that a significant amount
of transient faults causes no visible application misbehavior.
Instruction-level state comparison, such as lock-stepping

or compiler-generated signatures, would detect mismatches
between replicas here and trigger recovery (implying addi-
tional runtime overhead), whereas Romain continues execu-
tion unnotified. Crashes and SDC, which Romain also de-
tects at the system call level, make up most of the remainder
of the failures.

6.2 Execution overhead
To evaluate Romain’s overhead, we ran the benchmarks

from the MiBench suite as a single instance, as well as
in double- (DMR) and triple-modular redundancy (TMR)
mode and compared their runtimes. We executed this test
on a computer with 12 physical Intel Core2 CPUs running at
2.6 GHz. Hyperthreading was turned off and every replica
as well as the master were pinned to a dedicated CPU. Fig-
ure 6 shows the normalized runtime overheads, which vary
between 0.5 % and 30 %, and in many cases are below 5 %.
These results are comparable with Shye’s PLR work [38].
We further investigated what behavioral difference causes

a benchmark to exhibit 30 % TMR overhead in comparison
to having less than 5 % overhead. We counted the amount
of memory management requests the master handles during
a benchmark run and normalized the results with respect
to benchmark execution times. Benchmarks allocating lots
of dynamic memory cause higher rates of memory-related
exceptions (page faults, mapping requests) that need to be
handled. As can be seen in Figure 7, these benchmarks yield
higher runtime overheads when running replicated.
Also in line with other replication approaches, CPU uti-

lization and memory overhead are multiplied when using
replication. We try to limit memory overhead by sharing
read-only regions among replicas.
We additionally performed a microbenchmark to estimate

the overhead of trap & emulate on shared memory accesses.

 0

 5

 10

 15

 20

 25

 30

10^-1 10^0 10^1 10^2 10^3 10^4 10^5

O
v
e
rh

e
a
d
 i
n
 %

Memory faults per second

DMR runs

TMR runs

Figure 7: Normalized overhead is related to the
amount of memory management requests (logarith-
mic x scale)

Base code (main, logging, locking) 325
Application loading 375
Replica management 628
Redundancy 153
Memory management 445
System call handling 311
Shared memory handling 281
Total Romain 2,518

Fault injection module 668
GDB server stub 1,304

Table 2: Romain complexity in lines of code

We measured the time for memsetting 256 MB of mem-
ory with a) the memory directly mapped to the replica,
b) the memory accesses emulated with our trap & emulate
approach, and c) the memory accesses handled using the
copy & execute mechanism discussed in Section 5.2. We see
that handling each memory access as an exception in a dif-
ferent process is much more expensive than direct accesses.
However, we also see that our copy & execute approach is
not only less complex, but also faster than using an instruc-
tion emulator.

6.3 Complexity
The main reason to implement Romain as an OS service

was to keep the solution’s complexity, and thus the RCB,
minimal. Table 2 gives an overview about our tool’s com-
plexity in terms of lines of code. The features described in
this paper amount to 2,518 lines of code. To put these num-
bers into a context, we also show the lines of code needed for
the fault injection module used in Section 6.1 and for a GDB
stub we implemented to aid debugging on top of Romain.

Especially for the system call handling module, we added
code only as far as it was required by our test applications.
We expect the lines of code to grow over time as we explore
further use cases. Additionally, adding multithreading sup-
port to Romain will realistically also add several hundreds
of lines of code.

7. LIMITATIONS AND FUTURE WORK
In its current implementation, Romain has three major

limitations, which we intend to address in future work. First,
so far we enabled replicated execution only for the single-
threaded applications from the MiBench benchmark suite.

While this is in line with other related work [11, 33, 34, 38,
47] and while these benchmarks represent widespread work-
loads, it is insufficient with respect to our goal of addressing
operating system services.
To successfully replicate OS services, Romain needs to

support multithreaded execution, which is inherently non-
deterministic, complicating state comparison between repli-
cated threads. Additionally, multithreading also includes
the problem of handling memory shared between threads
of a replica. Both issues can be addressed by making exe-
cution of replicated threads deterministic, because then the
events generated by replicated threads will match their repli-
cated counterparts and racy memory accesses will produce
the same outcome in all replicas. (Note, that we don’t want
to fix data races, we only want to verify that racy accesses
produce the same outcome in all replicas.)
These problems are similar to the issues solved by deter-

ministic multithreading [22, 28]. They rely on instrument-
ing synchronization events to make sure that all executions
chose the same path. In terms of Fiasco.OC, these synchro-
nization points are exposed through kernel objects, which
Romain is able to instrument at the system call boundary.
Enhancing Romain to support device driver software, re-

quires taking care of I/O memory and registers. These are
represented by kernel objects and memory pages, both of
which are in control of the master process. However, per-
forming replicated I/O accesses implies all kinds of troubles
because I/O devices’ behavior may differ from traditional
memory. We think that the copy&execute method presented
in Section 5.2 may be used to handle I/O operations.
We will furthermore look into decreasing memory-related

overhead. To decrease space overhead, we will use copy-
on-write mappings of writable memory regions instead of
dedicated copies as they are used right now. To reduce the
runtime overhead related to handling memory exceptions,
we will look into memory management strategies that allow
handling page-faults at a coarser granularity. For instance
mapping super-pages instead of single 4 kB pages might de-
crease the amount of exceptions that need to be handled and
therefore decrease the related runtime overhead.
Close integration with Fiasco.OC enables us to minimize

Romain with respect to the RCB, but leaves open the ques-
tion whether our approach can be transferred to other sys-
tems. We will investigate whether similar mechanisms to
ours can be implemented based on Linux’ ptrace or virtu-
alization features.

8. CONCLUSION
In this paper we presented Romain, a framework that

provides software-implemented redundant multithreading to
unmodified binary-only applications on top of the Fiasco.OC
operating system. The framework allows to detect and re-
cover from hardware single-event upsets. The induced run-
time overhead is less than 30 %, and in most cases even less
than 5 % for the MiBench benchmark suite. The required
additions to reliable computing base could be minimized to
less then 3,000 lines of code. Romain therefore provides the
same features as previous works at lower complexity.
Romain is part of the L4 Runtime Environment (L4Re)

running on Fiasco.OC. Download and build instructions can
be obtained from http://www.tudos.org/l4re.

Acknowledgment

This work was partially supported by the German Research
Foundation (DFG) as part of the priority program ”Depend-
able Embedded Systems”(spp1500.itec.kit.edu). We fur-
thermore thank our colleagues Carsten Weinhold, Adam
Lackorzynski, Michael Roitzsch and Thomas Knauth for
their feedback on drafts of this paper.

9. REFERENCES
[1] Ansel, J., Arya, K., and Cooperman, G. DMTCP:

Transparent checkpointing for cluster computations and the
desktop. In 23rd IEEE International Parallel and
Distributed Processing Symposium (Rome, Italy, May
2009).

[2] Arlat, J., Fabre, J.-C., Society, I. C., Rodriguez, M.,
and Salles, F. Dependability of COTS microkernel-based
systems. IEEE Transactions on Computers 51 (2002),
138–163.

[3] Aron, M., Deller, L., Elphinstone, K., Jaeger, T.,
Liedtke, J., and Park, Y. The SawMill framework for
virtual memory diversity. In Proceedings of the 8th
Asia-Pacific Computer Systems Architecture Conference
(Bond University, Gold Coast, QLD, Australia,
Jan. 29–Feb. 2 2001).

[4] Austin, T. DIVA: a reliable substrate for deep submicron
microarchitecture design. In Microarchitecture, 1999.
MICRO-32. Proceedings. 32nd Annual International
Symposium on (1999), pp. 196–207.

[5] Bartlett, J. F. A nonstop kernel. In Proceedings of the
Eighth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 1981), SOSP ’81, ACM, pp. 22–29.

[6] Bernick, D., Bruckert, B., Vigna, P., Garcia, D.,
Jardine, R., Klecka, J., and Smullen, J. Nonstop:
Advanced architecture. In Dependable Systems and
Networks, 2005. DSN 2005. Proceedings. International
Conference on (june-1 july 2005), pp. 12–21.

[7] Borkar, S. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. IEEE Micro 25, 6 (Nov.-Dec. 2005), 10–16.

[8] Bressoud, T. C., and Schneider, F. B. Hypervisor-based
fault tolerance. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (New York,
NY, USA, 1995), SOSP ’95, ACM, pp. 1–11.

[9] Brown, J., and Knight, T. F. A minimal trusted
computing base for dynamically ensuring secure
information flow. Tech. rep., 2001.

[10] David, F. M., Chan, E. M., Carlyle, J. C., and
Campbell, R. H. CuriOS: Improving Reliability through
Operating System Structure. In USENIX Symposium on
Operating Systems Design and Implementation (San Diego,
CA, December 2008), pp. 59–72.

[11] Fetzer, C., Schiffel, U., and Süsskraut, M.
AN-encoding compiler: Building safety-critical systems
with commodity hardware. In Proceedings of the 28th
International Conference on Computer Safety, Reliability,
and Security (Berlin, Heidelberg, 2009), SAFECOMP ’09,
Springer-Verlag, pp. 283–296.

[12] Gray, J. Why do computers stop and what can be done
about it? In Symposium on Reliability in Distributed
Software and Database Systems (1986), pp. 3–12.

[13] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin,
T. M., Mudge, T., and Brown, R. B. MiBench: A free,
commercially representative embedded benchmark suite. In
Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop (Washington,
DC, USA, 2001), IEEE Computer Society, pp. 3–14.

[14] Hendricks, J., and van Doorn, L. Secure bootstrap is
not enough: shoring up the trusted computing base. In
Proceedings of the 11th workshop on ACM SIGOPS
European workshop (New York, NY, USA, 2004), EW 11,
ACM.

[15] Herder, J. N. Building a dependable operating system:
Fault Tolerance in MINIX3. Dissertation, Vrije Universiteit
Amsterdam, 2010.

[16] IBM. PowerPC 750GX Lockstep facility. IBM Application
Note, 2008.

[17] IBM. z/OS – a smarter operating system for smarter
computing. http://www-03.ibm.com/systems/z/os/zos/,
2011.

[18] Kadav, A., Renzelmann, M. J., and Swift, M. M.
Tolerating hardware device failures in software. Proceedings
of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (2009), 59.

[19] Klein, G., Elphinstone, K., Heiser, G., Andronick, J.,
Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and
Winwood, S. seL4: Formal verification of an OS kernel. In
Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP) (Big Sky, MT, USA, Oct. 2009), ACM,
pp. 207–220.

[20] Lackorzynski, A., Warg, A., and Peter, M. Generic
Virtualization with Virtual Processors. In Proceedings of
Twelfth Real-Time Linux Workshop (Nairobi, Kenya,
October 2010).

[21] Li, M.-L., Ramachandran, P., Sahoo, S. K., Adve,
S. V., Adve, V. S., and Zhou, Y. Understanding the
propagation of hard errors to software and implications for
resilient system design. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems (New
York, NY, USA, 2008), ASPLOS XIII, ACM, pp. 265–276.

[22] Liu, T., Curtsinger, C., and Berger, E. D. Dthreads:
efficient deterministic multithreading. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2011), SOSP ’11, ACM,
pp. 327–336.

[23] Meixner, A., and Sorin, D. J. Detouring: Translating
software to circumvent hard faults in simple cores. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN) (2008), pp. 80–89.

[24] Mukherjee, S. Architecture Design for Soft Errors.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[25] Nassif, S. R. The light at the end of the CMOS tunnel. In
Int. Conf. on Application-specific Systems Architectures
and Processors (july 2010), pp. 4–9.

[26] Oh, N., Shirvani, P., and McCluskey, E. Control-flow
checking by software signatures. IEEE Transactions on
Reliability 51, 1 (mar 2002), 111–122.

[27] Oh, N., Shirvani, P. P., and McCluskey, E. J. Error
detection by duplicated instructions in super-scalar
processors. IEEE Transactions on Reliability 51 (Mar
2002), 63–75.

[28] Olszewski, M., Ansel, J., and Amarasinghe, S. Kendo:
efficient deterministic multithreading in software.
SIGPLAN Not. 44 (Mar. 2009), 97–108.

[29] Palix, N., Thomas, G., Saha, S., Calvès, C., Lawall, J.,
and Muller, G. Faults in Linux: Ten years later. In
Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2011), ASPLOS
’11, ACM, pp. 305–318.

[30] Patterson, D. A., Gibson, G., and Katz, R. H. A case
for redundant arrays of inexpensive disks (RAID). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA,
1988), SIGMOD ’88, ACM, pp. 109–116.

[31] Postel, J. Transmission Control Protocol. RFC 793
(Standard), Sept. 1981. Updated by RFCs 1122, 3168, 6093.

[32] Reick, K., Sanda, P., Swaney, S., Kellington, J.,
Mack, M., Floyd, M., and Henderson, D. Fault-tolerant
design of the IBM Power6 Microprocessor. IEEE Micro 28,
2 (march-april 2008), 30–38.

[33] Reinhardt, S. K., and Mukherjee, S. S. Transient fault
detection via simultaneous multithreading. SIGARCH
Comput. Archit. News 28 (May 2000), 25–36.

[34] Reis, G. A., Chang, J., Vachharajani, N., Rangan, R.,
and August, D. I. SWIFT: Software implemented fault
tolerance. In Proceedings of the International Symposium
on Code Generation and Optimization (2005), IEEE
Computer Society, pp. 243–254.

[35] Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., and
Heiser, G. Automatic device driver synthesis with Termite.
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles SOSP ’09 (2009), 73.

[36] Saggese, G. P., Wang, N. J., Kalbarczyk, Z. T., Patel,
S. J., and Iyer, R. K. An experimental study of soft errors
in microprocessors. IEEE Micro 25 (November 2005),
30–39.

[37] Schroder, D. K. Negative bias temperature instability:
What do we understand? Microelectronics Reliability 47, 6
(2007), 841–852.

[38] Shye, A., Moseley, T., Reddi, V. J., Blomstedt, J.,
and Connors, D. A. Using process-level redundancy to
exploit multiple cores for transient fault tolerance. In
Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(Washington, DC, USA, 2007), DSN ’07, IEEE Computer
Society, pp. 297–306.

[39] Singaravelu, L., Pu, C., Härtig, H., and Helmuth, C.
Reducing TCB complexity for security-sensitive
applications: three case studies. SIGOPS Oper. Syst. Rev.
40 (April 2006), 161–174.

[40] Steinberg, U., and Kauer, B. NOVA: a
microhypervisor-based secure virtualization architecture. In
Proceedings of the 5th European conference on Computer
systems (New York, NY, USA, 2010), EuroSys ’10, ACM,
pp. 209–222.

[41] Taber, A., and Normand, E. Single event upset in
avionics. IEEE Transactions on Nuclear Science 40, 2 (apr
1993), 120–126.

[42] Thampi, V. udis86 - disassembler library for x86 and
x86-64. http://udis86.sourceforge.net/, 2009.

[43] TU Dresden OS Group. L4/Fiasco.OC microkernel.
http://www.tudos.org/fiasco, 2012.

[44] uNdErX. Micro length-disassembler engine 32.
http://vx.netlux.org/vx.php?id=em24, 2004.

[45] Venkatasubramanian, R., Hayes, J., and Murray, B.
Low-cost on-line fault detection using control flow
assertions. In On-Line Testing Symposium, 2003. IOLTS
2003. 9th IEEE (july 2003), pp. 137–143.

[46] Vogt, D., Döbel, B., and Lackorzynski, A. Stay strong,
stay safe: Enhancing reliability of a secure operating
system. In Proceedings of the Workshop on Isolation and
Integration for Dependable Systems (IIDS 2010), Paris,
France, April 2010 (New York, NY, USA, 2010), ACM.

[47] Wang, C., Kim, H.-s., Wu, Y., and Ying, V.
Compiler-managed software-based redundant
multi-threading for transient fault detection. In Proceedings
of the International Symposium on Code Generation and
Optimization (Washington, DC, USA, 2007), CGO ’07,
IEEE Computer Society, pp. 244–258.

[48] Wang, N., Fertig, M., and Patel, S. Y-branches: when
you come to a fork in the road, take it. In Parallel
Architectures and Compilation Techniques, 2003. PACT
2003. Proceedings. 12th International Conference on
(sept.-1 oct. 2003), pp. 56–66.

[49] Zhu, D., Melhem, R., and Mosse, D. The effects of
energy management on reliability in real-time embedded
systems. In IEEE/ACM International Conference on
Computer-Aided design (Washington, DC, USA, 2004),
ICCAD ’04, IEEE Computer Society, pp. 35–40.

[50] Ziegler, J. F., and Lanford, W. A. Effect of cosmic rays
on computer memories. Science 206, 4420 (1979), 776–788.

