
Helping in a multiprocessor environment

Michael Hohmuth Michael Peter

Dresden University of Technology
Department of Computer Science

D-01062 Dresden, Germany
email: fiasco-core@os.inf.tu-dresden.de

Abstract

This report presents Fiasco-SMP, a port of the Fiasco micro-
kernel to the multiprocessor-x86 architecture. We the dis-
cuss design principles we used, and the resulting design for
remote-thread manipulation in Fiasco. In particular, we show
how we extended Fiasco’s implementation of priority inher-
itance to fit a multiprocessor environment.

Our design has two desirable properties. First, it mini-
mizes the number of inter-processor interrupts (IPIs) in the
system. Second, for the normal (uncontented) case, it avoids
synchronous inter-processor notifications (where one CPU
needs to wait for the result of an IPI it sent to another CPU),
thereby removing the effect of IPI latency on CPU-local
execution—even when manipulating remote threads.

Moreover, we propose an extension to the L4 interface that
allows server threads to specify that the kernel is allowed
to schedule them on a remote CPU (i. e., not on their home
CPU) when they become runnable after an IPC. We believe
that this behavior has advantages for an important class of
servers as it cuts out IPI latency from the server-startup de-
lay.

1 Wait-free locking with helping

Fiasco is an implementation of the L4 microkernel interface
[2]. It is a real-time microkernel for x86 CPUs mainly devel-
oped by this report’s first author.

Fiasco aims for low-latency thread activation when inter-
rupts or timeouts occur, and bounded worst-case execution
times. It accomplishes these goals by being completely pre-
emptible, and by synchronizing its kernel data structures us-
ing solely nonblocking synchronization. Fiasco uses lock-
free synchronization for simple operations on global data
structures (such as the ready queue), and wait-free synchro-
nization for more complex operations such as thread manip-
ulation and IPC handshake.

As a wait-free synchronization primitive, Fiasco imple-
ments a CPU-time donation scheme known as “locking with
helping.” Helping occurs when a threadA wants to lock an
object that is already locked by another threadB. Instead of
blocking,A donates time toB, helping it to finish its criti-

cal section. Helping is an implementation of priority inheri-
tance.

In [1], we described an efficient implementation of locking
with helping for uniprocessor systems. However, we only
hinted on how to extend helping for a multiprocessor envi-
ronment. Indeed, there are a number of interesting problems:

• Where should thread-manipulating locked operations
execute—on the locker’s CPU or on the locked thread’s
CPU?

• Where should helping occur on multi-CPU systems—
on the CPU of the helper, or on the CPU of the current
lock owner?

• If a thread is runnable after it has been locked, should
it be scheduled on the CPU of the previous lock owner,
on its previous CPU, or on any other CPU?

In this report, we propose answers to these questions based
on design principles we applied when we designed Fiasco’s
SMP support.

This report is organized as follows. In Section 2, we give
an overview over basic assumptions we made when we de-
signed Fiasco’s SMP support, and derive design principles
for a multiprocessor kernel. Section 3 describes Fiasco’s
SMP thread-locking mechanism in detail, and we discuss
thread lockdown, wakeup, and helping. We conclude the
report in Section 4 with an overview of accomplished and
remaining work.

2 Fiasco’s SMP execution model

To profit maximally from having available multiple CPUs,
it is important to structure a system such that CPUs inter-
act infrequently. We have designed Fiasco to minimize syn-
chronization between CPUs using the following three design
principles:

• Prefer CPU-local data structures when possible.

• Run user threads only on their “home CPU,” that is,
statically bind threads to one CPU.

• Manipulate remote threads locally.



CPU-local data structures. Data structures that must
only be accessed on a specific CPU are preferable in many
cases because they do not cause cache contention and are
very easy to synchronize.

The most important data structures to keep local are the
ready queues. These queues keep track of all runnable
threads in the system and are consulted whenever the kernel
has to make a scheduling decision. In an IPC-intensive sys-
tem such as a microkernel-based one, there are many context
switches, and potentially many ready-queue accesses and up-
dates. Context switches need to be very fast because of their
frequency, and the efficiency of ready-queue accesses has a
very direct influence on the efficiency of context switches.

Fiasco currently implements CPU-local ready queues.
(Other data structures potentially accessed during a con-
text switch are hardware-interrupt descriptors and timeout
queues. The former are local to the thread attached to the in-
terrupt, and therefore local to the interrupt handler’s CPU.1

We haven’t converted the latter to a CPU-local data structure
yet. Fortunately, they are outside the scope of this report.)

Static CPU binding. Systems that dynamically sched-
ule user-mode threads on multiple CPUs run the danger of
cache pollution: Second-level cache working sets continu-
ously have to be exchanged between CPUs, slowing down
applications and increasing the likelihood of cache-capacity
misses. That’s why the L4 philosophy is to bind threads to a
specific CPU and let a (user-level) scheduler decide when to
migrate a thread between CPUs.

Fiasco follows this belief. It binds threads to a “home
CPU.” Migration only occurs on user request with an inter-
face similar to the one V̈olp proposed in [3].

However, Fiasco supports temporary remote execution of
a thread’s in-kernel part. This feature facilitates helping,
which we explain in Section 3.3. It does not induce more
cache pollution than strict static binding because of two rea-
sons: First, the kernel’s code runs on all CPUs and repeat-
edly reloads its working set into each CPU’s cache, that is,
it always “pollutes” the cache. Second, Fiasco uses this fea-
ture only when two threads interact, that is, when one thread
locks another thread, which indicates that the locked thread’s
kernel data is required on both threads’ CPUs.

Manipulating remote threads locally. When a thread
A wants to lock down and manipulate another threadB run-
ning on a different CPU, there are two basic ways to imple-
ment their interaction:

Remote execution (aka local locking): ThreadA runs the
operation onB’s CPU. ThreadB is locked on its own
CPU.

1Fiasco routes hardware interrupts to the home CPU of the interrupt han-
dler.

Local execution (aka remote locking): ThreadA runs the
operation locally on its own CPU. ThreadB is locked
onA’s CPU.

Remote execution simplifies synchronization as all ac-
cesses to threadB are serialized onB’s CPU. However, it
implies that threadB’s CPU needs to be notified using an
expensive inter-processor interrupt (IPI) each time threadB
is manipulated. Depending on the synchronous nature of the
manipulation, another IPI may be necessary at the end of the
operation. In addition to expensive notification, this solution
is quite complex because it needs to deal with the following
situation: WhenA’s IPI arrives onB’s CPU, threadB might
have migrated to another CPU, so the IPI needs to be resent
to that CPU.

Local execution, on the other hand, saves the costly noti-
fication if threadB is not runnable at the time it is locked—
which is true in the majority of cases (synchronous IPC).
Also, it avoids the thread-migration problem because threads
can be locked on any CPU. However, a precondition for us-
ing this option is the availability of an inexpensive remote-
locking primitive that prevents the thread from being sched-
uled.

Besides IPIs, we must also take into account caching ef-
fects. Remote execution ensures that only one particular
CPU ever touches a thread’s attributes, whereas local exe-
cution implies that critical sections on all CPUs can touch
thread data, leading to cache-line invalidations and cache-
line transfers between CPUs. However, consider that these
transfers occur only when a threadA updates a remote thread
B’s state. The updated data has to be transferred toB’s
CPU’s cache at some point regardless of which synchroniza-
tion scheme is used. It follows that about the same number
of cache-line transfers occur for both options, allowing us to
exclude caching effects from further consideration.

Fiasco implements the second variant, local execution.
Locked operations usually execute on the locker’s CPU (i. e.,
except if helping occurs—see Section 3.3). In the uncon-
tented case, Fiasco’s remote-locking implementation uses a
single compare-and-swap (CAS) operation. If the CAS fails
(because the thread is currently running or because another
thread owns the lock), Fiasco falls back to remote notifica-
tion (to lock down a running thread) or helping (in case the
thread is already locked). We explain remote locking in de-
tail in Section 3.

In Fiasco, locked operations never need tosynchronously
notify the locked thread’s CPU. These operations do not
access CPU-local data structures directly (only unlocked
code—code not executed in a critical section—does). There-
fore, locked operations can run without notification overhead
on any CPU. The only IPI that locked operations sometimes
do generate is anasynchronousready-queue–update notifica-
tion when the locked thread becomes runnable. We describe
the wakeup mechanism in detail in Section 3.2.

2



3 Locking remote threads

In this section, we look at Fiasco’s remote-locking mecha-
nism in detail. We explore design alternatives and explain
the choices we have made for Fiasco.

Locking remote threads raises the questions of dealing
with threads that currently execute on another CPU (lock-
down) and with wakeups. We discuss these issues in Sec-
tions 3.1 and 3.2. In Section 3.3, we discuss cross-CPU
helping—the mechanism that provides system-wide priority
inheritance.

3.1 Lockdown

When a threadA wants to manipulate another threadB that
is currently executing on another CPU, it must first cause
B to stop running before it can proceed with its operation
(“lockdown”).

Fiasco implements local execution of locked operations.
That implies that locking of a remotely running threadB
occurs on the locker’s (A’s) CPU.

In the uncontented case (B is neither locked nor running),
A can acquireB’s thread lock using a single atomic CAS
operation. In that case, no IPI, spinning, or helping is neces-
sary.

In Fiasco,A locks downB after it has acquiredB’s thread
lock. OnceB is locked, it cannot be activated on any CPU,
nor can it migrate to any other CPU. However, it might still
be running. WhenA detects that this is the case, it sends an
IPI to B’s current execution CPU (which might not beB’s
home CPU ifB is being helped2; see Section 3.3). This IPI
causes an immediate reschedule onB’s CPU. Meanwhile,A
pollsB’s status, waiting forB to be deactivated.

Please note that whileA is polling, waiting forB to stop
running,A can still be preempted. This does not limit the
throughput of operations that lockB, as another thread that
wishes to lockB can helpA to finish its critical section.

The lockdown operation requires additional synchroniza-
tion to prevent deadlock when two threads try to lock down
each other. Fiasco secures the thread-lock operation using
one simple (test-and-set) lock per thread. ThreadA tries to
acquire both its own andB’s lock before proceeding with
the IPI. If sequentially acquiring both locks fails, a thread
releases the locks and idles for a short amount of time, us-
ing an randomized exponential backoff, before it retries the
operation.

3.2 Wakeup

When a locked operation wakes up the locked thread, the
kernel must make a scheduling decision once the locked op-
eration finishes: Should it run the previously locked thread
immediately, or should it put the thread on the ready queue?

2For example,B has lockedD; C also wants to lockD and helpsB by
lending it CPU time onC ’s CPU.

On which CPU should the thread run, and on which CPU
should the kernel carry out the enqueue operation?

In the uniprocessor case, the solution is very straightfor-
ward: In the thread-unlock operation, check whether the
locked thread is runnable, and if so, switch to it if it has a
higher priority; otherwise, enqueue it in the ready queue.

Fiasco’s multiprocessor solution is based on the CPU-
local data structures and static CPU binding principles: It
never runs unlocked kernel code (or user code) on a CPU
other than a thread’s home CPU. Instead, it queues the thread
in its home CPU’s wakeup queue and asynchronously noti-
fies that CPU using an IPI. When a CPU receives this no-
tification, it enqueues the thread in its ready queue, or—if
the thread has the highest priority—directly switches to the
thread.3

Alternative: Wakeup binding. Let us discuss an alter-
native approach: Not enforcing the static CPU binding prin-
ciple upon wakeup. Instead, if the thread has a higher prior-
ity than the locker, immediately run the thread on the locker’s
CPU (“Wakeup binding”).

This method has two interesting benefits for servers that
usually answer within the same time slice, such as a small
name server or even L4Linux: First, there is no latency in-
duced by IPIs, and second, it implies that the kernel can use
its “fast local IPC path” to deliver short messages.

There are a number of drawbacks with this approach. A
small but obvious drawback is that user code can not any-
more assume strict priority order of execution, and synchro-
nization schemes that rely on priority order (such as the one
currently used in L4Linux) will fail.

The major drawback, of course, is the cache pollution
problem the static CPU binding principle was intended to
solve. However, for certain types of servers such as very
small servers or frequently-used system-level servers like
L4Linux, this may not be a problem at all.

Clearly, there is a tradeoff between IPC latency and cache-
pollution cost. Therefore, we propose to make wakeup bind-
ing an optional, user-controllable feature of L4.

3.3 Helping a remote thread

Helping is an implementation of priority inheritance. It
avoids priority inversion by donating CPU time of high-
priority threads that want to acquire a lock to low-priority
lock holders, effectively pushing the low-priority thread out
of its critical section and preventing a mid-priority thread
from blocking the high-priority thread.

Priority inheritance is desirable even across CPU bound-
aries: We want to avoid situations in which a mid-priority
thread on one CPU prevents a high-priority thread on an-
other CPU from running. Therefore, we explored ways to

3Ready-queue removal does not need to be signaled as Fiasco uses a lazy
ready-queue–update discipline.

3



provide a helping mechanism that works in a multiprocessor
environment.

Cross-CPU helping occurs when a threadA on one CPU
wants to acquire a lock held by a threadB on another CPU.
There are two basic variants for implementing helping:

Remote helping: Helping occurs on threadB’s CPU.
ThreadA migrates toB’s CPU. If its priority is higher
than that of a currently running thread on that CPU, it
can lend the priority toB.

Local helping: Helping occurs on threadA’s CPU. Thread
B temporarily runs onA’s CPU for the duration of its
critical section.

These two variants have slightly different semantics: With
local helping, it is possible that threadA helps a threadB
that has ahigher priority, but is blocked on its CPU by a
thread with an even higher priority. With remote helping,
threadA would be put to sleep in this case, and no helping
at all would occur. We prefer local helping’s behavior.

Apart from semantics, remote helping is less preferable
also because it is more complex to implement (and there-
fore, has a higher run-time cost): Like remote locking (see
Section 2), it must deal with the thread-migration problem:
At the time threadA arrives atB’s CPU, threadB might
have migrated elsewhere.

On the other hand, local helping is a low-overhead op-
eration. During helping, no cross-CPU synchronization is
needed; the helping thread just passes the CPU to the cur-
rent lock owner. Also, this operation does not require a re-
mote ready-queue update: The remote, lock-holding thread
is runnable per definition (lock owners are not allowed to
sleep, as that would violate the nonblocking predicate), but
not running. It follows that it is already enqueued in its home
CPU’s ready queue. The helping thread executes only locally
on its home CPU, so the normal CPU-local lazy-queueing
discipline applies.

For these reasons, Fiasco implements local helping.
Let us now discuss two design issues that arise with lo-

cal helping: Behavior when the current lock owner actually
executes on some CPU, and scheduling after helping.

“Helping” a running thread. What happens if a thread
A that wants to help another threadB on a different CPU
finds thatB is already running on that CPU? We considered
two alternatives:

Sleep and callback.ThreadA registers a callback IPI with
thread B’s CPU and goes to sleep, allowing other
threads to run. As soon asB finishes its critical section
or stops running,B sends an IPI toA’s CPU (and all
other helpers’ CPUs), wakingA (and all other helpers)
up again.

Polling. ThreadA does nothing except pollingB’s thread
state and the lock’s state, waiting forB to stop running
or leaving the critical section.

Both synchronization cost and latency are higher with the
callback method: It requires extra checks in the unlock and
thread-deactivation code paths and an IPI to wake up helpers.
However, the callback method can result in higher CPU uti-
lization as other threads can run while a threadA is wait-
ing for threadB to finish, whereas the polling method po-
tentially burns a whole time slice doing nothing. Yet, this
danger does not contradict real-time principles (the critical
section delaying the high-priority threaddoesexecute), nor
is it very probable given that critical sections usually only
execute for a fraction of a time slice.

Therefore, we went with the polling method.
There is a fixed order in which helping (or polling) threads

acquire a lock: Helpers enqueue in the lock’s wait queue, or
rather “helper queue,” which is sorted by global priority,4

and a thread that releases the lock transfers lock ownership
to the highest-priority helper. Consequently, low-priority
threads cannot starve high-priority threads from accessing
the lock.

Scheduling after helping. When a threadA has been
helped and has executed its critical section on a CPU dif-
ferent from its home CPU (the “guest CPU”), which thread
should run on that CPU onceA leaves its critical section?

If threadA was helped, there is at least one other thread
that wants to acquire the lock (the helper). This implies that
there always is a new lock owner afterA leaves its critical
section. This is the highest-priority thread that was waiting
for the lock. It can be equivalent with threadA’s helper, but
this need not be the case if there is a higher-priority thread
waiting for the lock on another CPU, polling. It follows that
A cannot unconditionally switch to the new lock owner—
provided this was desirable—as that thread might already run
on another CPU.

The static CPU binding principle mandates that unlocked
code and user code only run on a thread’s home CPU. In
other words, staying on its guest CPU is also not an option
for threadA.

ThreadA could switch to its helper, but that would require
keeping track of the current helper, and is ambiguous if more
than one thread helpedA.

The only option is for threadA to call the scheduler. The
scheduler will select the highest-priority thread whose home
CPU isA’s current guest CPU. It will never select threadA
again, independent ofA’s priority, becauseA has a different
home CPU.

Once threadA has been descheduled from its guest CPU,
it becomes runnable on its home CPU again. In Fiasco, no
special notification is necessary:A was enqueued in its home
CPU’s ready queue already before it was helped (because at
that time, it was runnable, but not executing), which means
that the scheduler considers it automatically. Also, ifA now
is the highest-priority thread of its home CPU, that CPU’s

4Fiasco synchronizes accesses to a lock’s helper queue using a spin lock.

4



scheduler will poll, waiting forA being removed from guest
CPUs, and run it immediately.

4 Summary and conclusion

In this report, we discussed design choices we made for
Fiasco’s SMP implementation, and we developed Fiasco’s
remote-thread–locking mechanism, in particular the remote-
helping mechanism.

We started from three design principles: CPU-local data
structures, static CPU binding, and manipulating (locking)
remote threads locally.

From these principles, we derived a remote-locking de-
sign with the following properties: In the uncontented case,
remote-thread lockdown does not require an IPI. It is never
necessary to access the ready queue of a remote CPU. Kernel
code running within a thread context always runs on the CPU
to which the thread is bound, except in the case of helping:
When a thread helps another thread to finish a critical sec-
tion, the helped thread can execute on the helper’s CPU for
the duration of its critical section. After a thread was helped
on a remote CPU, it always releases that CPU, waiting for
its home CPU’s scheduler to pick it up again. Helping does
not occur when the thread blocking a critical section is cur-
rently executing on another CPU; in that case, the thread that
wishes to enter its critical section simply waits, polling the
lock’s state.

In combination, these properties minimize the number of
IPIs. For the normal (uncontented) case, they completely
eliminate the need for synchronous notifications where one
CPU needs to wait for the result of an IPI it sent to another

CPU; in that case, IPI latency therefore has no effect on
CPU-local execution, even for remote-thread manipulation.

We discussed wakeup binding, an alternative to static CPU
binding for one special case: When a thread is runnable after
is was locked, there are cases in which it is advantageous
to immediately start it on the CPU on which it was locked,
instead of on its home CPU. In particular, certain types of
servers, such as very small servers or L4Linux, can benefit if
IPC behaved this way. We proposed to make this behavior
an optional, configurable feature of the L4 interface.

In the near future, we plan to quantize the effect of wakeup
binding to allow developers to assess this binding scheme’s
applicability to their projects.

References

[1] M. Hohmuth and H. Ḧartig. Pragmatic nonblocking syn-
chronization for real-time systems. InUSENIX Annual
Technical Conference, Boston, MA, June 2001.

[2] J. Liedtke. L4 reference manual (486, Pentium, PPro).
Arbeitspapiere der GMD No. 1021, GMD — German
National Research Center for Information Technology,
Sankt Augustin, September 1996. Also Research Report
RC 20549, IBM T. J. Watson Research Center, Yorktown
Heights, NY, September 1996.

[3] M. V ölp and J. Liedtke. Threads on an L4/x86 SMP
nucleus. InProceedings of the First Workshop on Com-
mon Microkernel System Platforms, Kiawah Island, SC,
USA, December 1999.

5


