
The COMQUAD Component Container Architecture

Steffen G̈obel Christoph Pohl
Ronald Aigner Martin Pohlack

Institute for System Architecture
TU Dresden, Germany

{goebel|pohl}@rn.inf.tu-dresden.de
{aigner|pohlack}@os.inf.tu-dresden.de

Simone R̈ottger Steffen Zschaler
Institute for Software Engineering

TU Dresden, Germany
{Simone.Roettger|Steffen.Zschaler}

@inf.tu-dresden.de

Abstract

Component-based applications require runtime sup-
port to be able to guarantee non-functional properties.
This paper proposes an architecture for a real-time-
capable, component-based runtime environment, which
allows to separate non-functional and functional con-
cerns in component-based software development. The ar-
chitecture is presented with particular focus on the
real-time–non-real-time split of the runtime environ-
ment and the communication issues of respective compo-
nent types and container parts.

1. Introduction

Considering non-functional properties of a system, such
as Quality of Service (QoS) or security aspects, is crucial
for reliable software systems. Apart from explicit specifi-
cation at design time, this also includes implicit considera-
tion at implementation level and adequate runtime support.
In this paper, we introduce theCOMQUAD container ar-
chitecture, which provides a runtime environment for QoS-
capable, component-based software applications.

Component models are typically implemented byappli-
cation serverscontaining all necessary infrastructural ser-
vices of the component runtime environment. The termcon-
tainer is often used to refer only to the immediate execu-
tion shell of component instances. In contrast, our notion of
a containercomprises all major parts of component man-
agement. Our components are black-box elements, which
implement business logic and cooperate with other compo-
nents to solve an application requirement. One of the main
features of our component model is that—corresponding
to ideas presented by Cheesman and Daniels [1]—more
than one implementation can be provided for one functional
specification. This allows to provide the same functionality

with different non-functional properties, and thus serves to
separate functional and non-functional concerns.

The internal architecture of component-based software
applications is usually captured by descriptive means ofar-
chitecture description languages(ADL, [10]). We useas-
sembly descriptorsas a part of ourCOMQUAD component
model [4] for this purpose. Classic ADLs describe connec-
tions between components at the level of instances of spe-
cific component implementations whereas our assembly de-
scriptors leave implementation selection to the container.
This is done by defining only how instances of certain func-
tional component specifications are to be connected with-
out referencing any implementations. Thus, the container
can select the appropriate implementations for these com-
ponent specifications based on their non-functional proper-
ties and according to its current client’s needs.

For many applications where QoS is an issue it is nat-
ural to separate mission-critical real-time (RT) code from
lower priority non-real-time (NRT) code. A Video on De-
mand (VoD) application is a typical example. Only the ac-
tual delivery of movies needs to provide guarantees of non-
functional properties. The much larger part of the applica-
tion dealing with management of customers and movies, se-
lection of, and payment for, movies by customers, adver-
tisement, bonus actions, etc. is typically not so critical in
terms of its non-functional properties. This realization was
the driving force behind our decision for a split container ar-
chitecture that handles both aspects separately. Such a sepa-
ration, however, brings about additional challenges—in par-
ticular with respect to the communication between the two
parts. This paper focuses on describing these challenges and
our solutions for them.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a high-level view on our container architec-
ture as well as the reasons for the RT–NRT split. Section 3
describes the necessary communication primitives between
both parts. Finally, we give an overview of related work and
conclude with an outlook. An extended version of this pa-



per is available as a technical report [3].

2. Split Architecture

Typically, applications that give guarantees on non-
functional properties are split into two parts:(i) a small
part of code that performs the actions for which guaran-
tees of non-functional properties are essential and(ii) a
usually much larger part for which non-functional guaran-
tees are not important.

This distinction can be applied to the architec-
ture of a component runtime environment. Figure 1 gives
an overview of our architecture consisting of two lay-
ers: the component manager and the resource manage-
ment subsystem. The component manager itself con-
sists of three subsystems: implementation manager,
QoS repository, and contract manager. The imple-
mentation manager supports the life cycle of compo-
nent implementations and the QoS repository stores the
non-functional specification of each component imple-
mentation. The parts that need to give guarantees (RT)
and the parts that do not (NRT) have been clearly sepa-
rated. Most of the work is done in the NRT part of the
component environment. It manages the available com-
ponent implementations and application specifications,
handles requests for creation of component networks, ne-
gotiates contracts between components, and maintains
a model of the instantiated components and the net-
works formed by them. The RT part is essentially re-
stricted to actually instantiating components, reserving
resources, and executing the instantiated components in re-
sponse to user requests. The contract manager instantiates
and connects the components required to service a par-
ticular client’s requests. In order to select the correct
components and component implementations, the con-
tract manager uses the functional and non-functional
component specifications provided in XML-based descrip-
tors [4, 3].

We base our system onDROPS (Dresden Real-time OP-
erating System, [6]) where we have small real-time capa-
ble server processes for dedicated tasks—for example, a
window manager, a SCSI disk driver, and network drivers.
These servers run directly on our real-time capable mi-
crokernel. Complex legacy software without real-time re-
quirements runs concurrently on a large off-the-shelf Linux
server (L4Linux, [7]).

For the NRT container we use the infrastructure of a
stripped down JBoss container [2] and add support for the
new COMQUAD component model [4] together with nec-
essary services, such as contract negotiation, administra-
tion, as well as implementation and component manage-
ment. The NRT container exclusively handles the deploy-
ment of component archives including integrity checks and

the initialization phase of components. Whenever a client
wants to create a component instance, the NRT container re-
ceives and processes the requiredcreate call of the com-
ponent’s home interface. It also starts the contract negoti-
ation phase, which is discussed in more detail in [3], and
sends control commands to the RT container. Afterwards,
the client directly talks to the RT container.

For the RT container we have identified a minimal set
of necessary services. It contains a simple instance repos-
itory, communication infrastructure (cf. Sect. 3), resource
managers, and a small framework for components, consist-
ing of interfaces and base classes for component instances,
and helper functions. The RT container must be able to
manage the component life cycle (create , destroy ,
initialize , connect , stop , setParameter ,
reserveResources , and install/uninstall
Specification/Implementation ). Addition-
ally, the RT container must allow to invoke opera-
tions (callMethod ) on component instances. For-
tunately, it is not necessary to implement all of these
functions with RT guarantees. We focus on RT commu-
nication between connected components, not the estab-
lishing of communication structures and setup in RT.
Thus, only thecallMethod operation must be car-
ried out in RT.

DROPS resource managers as described in [8] are or-
ganized in a resource management subsystem (see Fig. 1),
which is governed by aQoS manager. To be able to man-
age different kinds of resources, the resource managers im-
plement a genericadmission interface, which is used by the
QoS manager to make reservations. In case a reservation
is violated—for instance, because a higher priority reserva-
tion has been made—the container is notified via itsnotifi-
cation interface. The container then initiates the adaptation

Resource Management Subsystem

Component Manager

Implementation Manager

QoS
Repository

Instance of
Comp. Impl. 1

Contract Manager
Instance of

Comp. Impl. 2
Communication

Proxy

Resource Proxy

NRT–NRT

RT–RT

NRT RT

NRT RT

RT: real-time; NRT: non-real-time

non-real-time
real-time

Figure 1:COMQUAD container architecture



of all components using the considered resource.
The most noteworthy consequence of this split in the ar-

chitecture can be seen in the communication proxies. This
is the subject of the next section.

3. Component Communication

The architecture split described in Sect. 2 implies two
types of components: real-time and non-real-time. As a con-
sequence, four constellations of communication can occur:

NRT to NRT.This communication uses the infrastructure
provided by the JBoss-based container only.

NRT to RT.The communication crosses container bound-
aries. Therefore, we use a dynamic proxy to intercept and
delegate the message to a specialized invocation handler.
The message is transferred to the RT container via a generic
bridge. In the RT container a generated demultiplexing con-
tainer skeleton delivers the message to the addressed inter-
face skeleton. On the RT side we do not use a Dynamic
Invocation Interface but generated code instead, which is
larger but faster [5]. Communication with RT components
requires a reservation and the invoking component’s com-
munication pattern has to conform to the reservation. Non-
conforming communication can be delayed or dropped by
the RT container.

RT to RT.Communication between RT components can be
scheduled entirely by the RT container, because their spec-
ification contains information about the load generated.

RT to NRT.There are cases when RT components use com-
plex services provided by NRT components. However, syn-
chronous communication is not suitable in this case, be-
cause it could delay the RT components for an unbounded
amount of time. The alternative of asynchronous commu-
nication requires message buffers. It is noteworthy that it
is basically impossible to communicate from the RT side
to the NRT side without the possibility of message loss.
The thorough discussion of this communication constella-
tion is subject of another publication [13], where we pro-
pose a generic buffer component, which implements re-
placement strategies and handles request delivery on behalf
of the sender. Using this generic buffer component it is pos-
sible to transparently connect RT and NRT components.

4. Related Work

The OMG’s CORBA Component Model (CCM) forms
the basis for many functional concepts of our component
model, but it does not address special problems related to
non-functional properties—for instance, dynamic selection
of implementations at runtime. Just like Sun’s Enterprise
JavaBeans (EJB) component model, CCM supports only a

limited, fixed set of non-functional aspects like persistence,
access control, transactions, etc.

A fundamental building block of our component con-
tainer implementation is formed by the extensible JBoss ap-
plication server [2]. It features a variant of Interceptors that
forms the foundation for the resource and communication
proxies in our component platform architecture.

The project QuA [15] aims at precisely defining an ab-
stract component architecture, including the semantics for
general QoS specifications. There are some differences to
our approach: First of all, we do not only consider QoS in
terms of timeliness and accuracy of output but also with re-
spect to other non-functional properties such as security as-
pects. While the abstract QuA architecture could theoreti-
cally be implemented on top of any real-time-capable com-
bination of operating system and middleware, our approach
is closely tied toDROPS [6]. This allows us to fully lever-
age the virtues of this platform—for instance, its clean mi-
crokernel architecture.

CIAO [16], another related project, builds a QoS-enab-
led CCM implementation. The project’s philosophy is a
strong adherence to existing OMG specifications such as
RT/CORBA [12] and CCM, and the extension of those. In
contrast, we decided to focus on the challenges of support-
ing non-functional properties. Hence, we have tried to keep
the functional part of our component model as lean as pos-
sible while still adopting tried and tested concepts.

The Real-Time Specification for Java (RTSJ) [14] intro-
duces the concepts of timeliness, schedulability, and real-
time synchronization to Java-based applications. One of
the biggest challenges in this connection is to prevent the
garbage collector of Java’s memory management to in-
terfere with real-time task scheduling. However, resource
reservation is not addressed by this specification, which
would prevent an implementation of our concepts on top
of this platform.

Requirements for real-time extensions for Java were de-
fined in the NIST report [11]. The NIST group proposes
partitioning the execution environment into a real-time core
providing the basic real-time functionality and a traditional
JVM, which services normal Java applications. Based on
these requirements, the J Consortium defined the Real-Time
Core Extensions for Java (RTCE) [9], which follow the idea
of a separate core for real-time services. In contrast, in RTSJ
all services are provided in one JVM, as such containing the
real-time and the non-real-time applications. The architec-
tural RTCE approach is similar to the design ofDROPS,
in that both run large and complex parts in a classic non-
real-time environment and only small, predictable parts in a
real-time environment.



5. Conclusions and Outlook

Our paper proposed an architecture for a real-time-
capable, component-based runtime environment, building
on concepts for separating non-functional and func-
tional concerns in component-based system development
[4]. We furthermore introduced a prototypical implemen-
tation of this architecture, and explained various special
issues thereof.

In detail, we presented the conceptual split of our
COMQUAD component container into a lean real-time
part and a larger non-real-time part. The former is ca-
pable of giving guarantees by enforcing resource reser-
vations, whereas the latter part has been built for run-
ning less time-critical code, including contract negotiation
for real-time components. Thus, our container is an ap-
plication server that acts as a contract manager selecting
component implementations to be instantiated for applica-
tion assembly at runtime.

We are currently investigating different implementations
of contract negotiation algorithms. These are needed by the
contract manager to select component implementations and
profiles based on non-functional requirements of clients.
We refer to this selection process asContainer-Managed
QoS[4].

A special case of inter-component communication is
stream-based communication. This kind of communica-
tion frequently has associated non-functional requirements,
the classic example being a VoD service. More details on
stream support in our component model can be found in
[4].

Acknowledgements

COMQUAD—Components with Quantitative proper-
ties and Adaptivity—is a DFG-funded research group
(FOR 428) at Technische Universität Dresden. See
http://www.comquad.org/ for details.

References

[1] J. Cheesman and J. Daniels.UML Components: A Simple
Process for Specifying Component-Based Software. Addi-
son Wesley Longman, 2001.

[2] M. Fleury and F. Reverbel. The JBoss extensible server. In
M. Endler and D. Schmidt, editors,International Middle-
ware Conference, volume 2672 ofLecture Notes in Com-
puter Science, pages 344–373, Rio de Janeiro, Brazil, 16–
20 June 2003. ACM / IFIP / USENIX, Springer.

[3] S. Göbel, C. Pohl, R. Aigner, M. Pohlack, S. Röttger, and
S. Zschaler. The COMQUAD component container architec-
ture and contract negotiation. Technical Report TUD-FI04-
04, Technische Universität Dresden, Apr. 2004.

[4] S. Göbel, C. Pohl, S. R̈ottger, and S. Zschaler. The
COMQUAD component model – enabling dynamic selec-
tion of implementations by weaving non-functional aspects.
In K. Lieberherr, editor,3rd International Conference on
Aspect-Oriented Software Development (AOSD’04), pages
74–82, Lancaster, UK, 22–26 Mar. 2004. ACM Press.

[5] A. Gokhale and D. Schmidt. The performance of the
CORBA dynamic invocation interface and dynamic skele-
ton interface over high-speed ATM networks. InGlobal
Telecommunications Conference (GLOBECOM ’96), pages
50–56, London, England, Nov. 1996. IEEE.

[6] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and
J. Wolter. DROPS: OS support for distributed multime-
dia applications. In8th European Workshop on Support for
Composing Distributed Applications, Sintra, Portugal, Sept.
1998. ACM SIGOPS.

[7] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. In5th
Annual Australasian Conference on Parallel And Real-Time
Systems (PART ’98), Adelaide, Australia, Sept. 1998.

[8] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul. Co-
operating resource managers. In5th Real-Time Technology
and Applications Symposium (RTAS), Vancouver, Canada,
June 1999. IEEE.

[9] J Consortium. Real-Time Core Extensions (RTCE), Sept.
2000. Available at http://www.j-consortium.org/.

[10] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, Jan. 2000.

[11] National Institute of Standards and Technology.Require-
ments for Real-time Extensions for the Java Platform, Sept.
1999. Available at http://www.nist.gov/rt-java/.

[12] Object Management Group.Real-Time CORBA Specifica-
tion, version 2.0 edition, Nov. 2003. formal/03-11-01, see
http://www.omg.org/realtime/.

[13] M. Pohlack, R. Aigner, and H. Ḧartig. Connecting real-
time and non-real-time components. Technical Report TUD-
FI04-01, Technische Universität Dresden, Feb. 2004.

[14] The Real-Time for Java Expert Group. The Real-
Time Specification for Java, v1.0 edition, 12 Nov. 2001.
http://www.rtj.org/.

[15] R. Staehli and F. Eliassen. QuA: A QoS-aware component
architecture. Technical Report Simula 2002-12, Simula Re-
search Laboratory, 2002.

[16] N. Wang, C. D. Gill, D. C. Schmidt, A. Gokhale, B. Natara-
jan, C. Rodrigues, J. P. Loyall, and R. E. Schantz. To-
tal quality of service provisioning in middleware and appli-
cations. Microprocessors and Microsystems, 27(2):45–54,
Mar. 2003. Special Issue on Middleware Solutions for QoS-
enabled Multimedia Provisioning over the Internet.

http://www.comquad.org/

	Introduction
	Split Architecture
	Component Communication
	Related Work
	Conclusions and Outlook

