
An I/O Architecture for Microkernel-Based Operating Systems

Hermann Ḧartig Jork L̈oser Frank Mehnert Lars Reuther
Martin Pohlack Alexander Warg

Dresden University of Technology
Department of Computer Science

D-01062 Dresden, Germany
contact@os.inf.tu-dresden.de

Abstract

In a workhorse operating-system architecture, a slightly
modified or unmodified off-the-shelf operating system runs
as workhorse on a core operating system, next to applica-
tion processes which have requirements not supported by
the original workhorse alone. Examples include off-the-shelf
operating systems running on real-time executives or trusted
kernels. For such architectures, several challenges and op-
portunities must be addressed with respect to I/O drivers. If
an I/O device is needed by the workhorse and by the other
core applications, the driver may have to be separated from
the workhorse. A welcome side effect of separating drivers
is the opportunity to make the workhorse more robust against
faults in the driver. On the other hand, if drivers remain in
the workhorse and thus the workhorse needs I/O privileges,
the workhorse needs to be effectively encapsulated even un-
der the assumption of full penetration of the workhorse by
an adversary. This paper describes how these challenges are
met by the design and implementation of our microkernel-
based operating system DROPS — the Dresden Real-Time
Operating System [15] — using L4Linux [16] as workhorse.

1 Introduction

In recent years, a novel approach towards building operating
systems has been investigated and used to support applica-
tions with special trustworthiness or real-time requirements.
It becomes widely accepted, that off-the-shelf operating sys-
tems are way too complex for guaranteeing them to be cor-
rect. On the other hand, these operating systems come with
a large base of legacy applications anddrivers that for eco-
nomical reasons should be reused whenever possible. Con-
sequently, rather than building completely new systems from
scratch or modifying off-the-shelf operating systems signifi-
cantly, off-the-shelf operating systems are just slightly mod-
ified to run atop a core operating systems that support these
required properties. Successful examples for that approach

are real-time operating systems, where modified Linux or
Windows kernels run on top of real-time cores, for instance,
RTLinux [32], Oncore, and Radisys Windows [27]. In other,
more recent proposals, slightly modified off-the-shelf op-
erating systems run on trusted cores, such as Perseus [26]
and — as far as we understand from announcements on the
WWW [8] — Microsoft’s Palladium (alias NGSCI).

In such systems, applications either use the off-the-shelf
system with its large functionality and driver base, or they
use the core directly if the core’s specific properties are re-
quired. For example, a robot application may run collision-
avoidance processes on the real-time core while long-term
planning processes run on the off-the-shelf non-real-time op-
erating system.

For the scope of this paper, we refer to the off-the-shelf
operating system as aworkhorse, to the underlying oper-
ating system as thecore, and to the applications that run
on the core besides the workhorse ascore applicationsor
more specifically real-time processes or trusted applications.
We investigate an aggressive approach towards a workhorse
operating-system architecture: We support the reuse of un-
trusted off-the-shelf operating systems including their un-
modified drivers, and we reuse the workhorse’s untrusted
or non-real-time functionality for trusted and real-time ap-
plications. That approach is based on the observation that
many real-time applications have relatively simple parts with
real-time (small periodic processes) and more complex parts
without real-time requirements. We will substantiate a simi-
lar observation for trusted applications in Section 4.

We expect that even completely unmodified off-the-shelf
operating systems can be used as workhorses if adequate vir-
tualization support is present in hardware; though we know
of no such example.

In this paper, we investigate opportunities for and chal-
lenges from I/O drivers in a microkernel-based workhorse
approach. These include:

• I/O drivers may have to be separated from the
workhorse and run as separate components. For exam-

1



ple, a keyboard driver may belong to the trusted base
for a banking application and thus needs to be removed
from the untrusted workhorse.

• A related but different motivation for separating drivers
is to protect the workhorse from faulty drivers, since
I/O drivers are known to belong to the most error-prone
parts of operating systems [9]. Successful removal of
drivers from the workhorse then leads to an operating
system which is more robust than the original off-the-
shelf operating system.

• A real-time system is one application of the workhorse
approach. In such a system, we want to make sure that
a crash of the workhorse does not induce the crash of
the potentially critical real-time processes. Thus, we
must effectively encapsulate the workhorse so that it
can crash and be rebooted without affecting real-time
processes. Drivers remaining in the workhorse require
the encapsulation to be done even if the workhorse has
I/O privileges. In a trusted-core scenario, our working
assumption is that the workhorse can be fully penetrated
and thus can use or induce malicious driver behavior to
attack the trusted applications or the core.

• I/O drivers that remain in the workhorse can be used
from applications that otherwise run on a trusted core.
For example, a secure file system can use a disk driver
of the workhorse under certain assumptions.

The remainder of the paper is structured as follows.
In Section 2, we describe the application models of the
workhorse-OS approach in more detail, concentrating on a
trusted core scenario, and we discuss the software architec-
ture. In Section 3, we investigate the separation of drivers
from the workhorse. Section 4 discusses the use of ser-
vices of an untrusted workhorse, such as hardware drivers,
by trusted applications. In Section 5, we discuss how the
workhorse can be encapsulated such that even full penetra-
tion cannot harm confidentiality and integrity of secured ap-
plications. Section 6 discusses some results of measurement
experiments using DROPS with L4Linux as workhorse. Sec-
tion 7 discusses related work. Finally some conclusions are
drawn and open issues are pointed out.

2 Application Scenario and Software
Architecture

In the following sections we firstly discuss an application
scenario, and then explain the software architecture.

2.1 Workhorse Architecture Applications in a
Trusted-Core Scenario

The application scenario we use and the overall system ar-
chitecture is depicted in Figure 1. A small secure core of the
system runs both, an untrusted workhorse and some applica-
tions with higher trustworthiness requirements. For brevity
reasons, we will refer to such core applications astrusted
applications. The workhorse is used to provide functional-
ity needed by trusted applications. However, the workhorse
needs to be separated such that even full penetration of the
workhorse does not harm the trusted applications, with re-
spect to their information security.

. . .Workhorse OS applications email
handler

trusted core

trusted trusted

Figure 1: Application scenario.Trusted applications and the core
are protected from bugs and malicious behavior of the workhorse.

An application example is a trusted email handler on a
mobile system, for example on a PDA. The trusted email-
handler application needs to fetch an email from a server,
decrypt it, present it to the user and possibly send a reply.
Fetching the email from the server and storing it in the PDA’s
file system can be done using the untrusted workhorse; how-
ever, decrypting and presenting on the PDA requires services
from the small trusted core, namely secure storage of keys
and a user interface, for example a window manager. In
addition and most importantly, the small trusted core must
effectively encapsulate the workhorse.

From this email-handler example it becomes clear to
what extent the trusted applications can be protected from
a potentially penetrated workhorse. If the encapsulation of
the workhorse is successful, confidentiality and integrity of
trusted applications can be ensured, but obviously not their
availability. If the workhorse’s file system is used to store
encrypted emails, a successful penetrator can erase or mod-
ify the file, thus successfully break availability. However, as
long as the encryption keys are securely stored in the core’s
secure storage, neither confidentiality nor integrity, which
means unnoticed modification of content, can be compro-
mised as long as the workhorse is encapsulated effectively.
This is acceptable, if — as with IMAP email servers —
emails are held on the server as well.

If the secure storage is large enough to be able to hold all
changes since the last connection with a server, better avail-
ability can be ensured against software attacks that rely on
the penetration of the workhorse. In that scenario, secure
storage just holds the changes. The complete document can
be restored during the next connection to a server. How-
ever, availability cannot be ensured in case of a hardware

2



attack, for instance, imagine a thief throws the PDA into a
deep near-by lake.

The protection of confidentiality and integrity against soft-
ware attacks are valuable for a large class of applications.
This especially applies to mobile devices where only a lim-
ited availability can be ensured anyway. An important re-
quirement for such an architecture is the availability of se-
cure booting techniques, as to establish the trusted core[17].

2.2 Software Architecture

(L Linux)4

Disk Net

Protocols

Filesystems. . .
Applications

Secure

Drivers

Install

dataspaces

GUI
Secure
Storage

user mode

kernel mode

Workhorse OS

Legacy Applications
(Linux applications)

small secure core

Microkernel (Fiasco)

Figure 2: The software architecture.

Our architecture is based on a small trusted core that runs
trusted applications. The trusted core is built atop a mi-
crokernel (Fiasco [19]) and consists of a few basic servers
needed as part of a trusted computing base. The workhorse
is L4Linux [16], a modified variation of the Linux kernel,
which runs as user-level server in its own address space.

Linux applications call the L4Linux server using a binary-
compatible system-call interface that relies on a transparent
library and fast inter-process communication (IPC). In addi-
tion and most important, all drivers in L4Linux run unmodi-
fied, while the kernel had to be changed slightly1. However,
we see no reason why an unchanged Linux kernel could not
be used, in particular if there is better hardware support for
virtualization, such as an additional execution mode separat-
ing virtual and bare-metal execution.

The Fiasco microkernel provides threads and address
spaces as basic means of separation, and inter-process com-
munication for well-defined interaction. Threads run at user
level (e.g., ring 3 on IA-32), but can have I/O privileges (e.g.,
using IA-32’s I/O bitmaps). On IA-32, accesses to I/O reg-
isters can be controlled on a per-register basis. The micro-
kernel runs in kernel mode, while L4Linux (workhorse), the

1about 7000 LOC almost exclusively in the architecture dependent ker-
nel subtree

trusted applications, and all components of the trusted core
run in user mode and have their own address spaces.

Access to any form of memory resources is provided via
dataspaceswhich are unstructured containers for any type
of data [6]. All address spaces are built using one or more
dataspaces.

Dataspaces are provided by dataspace managers. Clients
call a dataspace manager to create a data space and obtain a
dataspace descriptor. A descriptor can be used to map data-
spaces from one address space to another using IPC. Access
rights can be restricted in such mapping operations. Data-
space managers construct dataspaces from other dataspaces
of which some may represent physical memory.

Communication among address spaces can be based on
messages that copy strings of data from one address space to
another or by establishing shared regions of memory among
address spaces using dataspace mappings. These mappings
may be temporary, thus established on demand and revoked
immediately after communication, or they can be permanent.

Drivers for bus-master DMA capable devices need to
know the physical address of parts of dataspaces and may
have to pin them in memory. The following simple scheme
is used for that purpose: A dataspace manager keeps track of
the physical pages that are given to an address space. Then,
a client of a dataspace manager can request to pin a location
referenced by a dataspace/offset pair and determine the phys-
ical address corresponding to the dataspace/offset pair [21].
If dataspace/offset is currently not mapped to a physical ad-
dress space, the dataspace manager either tries to establish
such a mapping or faults.

Apart from a dataspace manager, the trusted core contains
a window manager, secure storage, and a component to in-
stall new trusted applications. Secure storage is a small stor-
age, which is under complete control of the small core. It
is based on secure booting techniques, this means access is
only possible if the platform is under control of a trusted
core system. The trusted applications use the secure storage
to maintain keys and other credentials. Therefore, methods
as proposed in [12] can be used. The window manager can
have the workhorse and for example X-Windows, as well as
trusted applications as clients. It is the window manager’s
responsibility to clearly express which stack of software is
currently controlling the active window of the display. The
window manager is described in [13].

Trusted applications can use both, the workhorse and the
components of the trusted core. For example, files are se-
curely stored by first encrypting them using some key from
the secure storage and then delivering them to the file system
of the workhorse.

3



3 Separating Drivers from the
Workhorse

I/O drivers are known to belong to the most error-prone parts
of operating systems [9]. Nevertheless, in virtually all oper-
ating systems drivers still run at the highest privilege level,
this means in the kernels of operating systems. Thus drivers
have full access to all vital OS data structures and hardware
components; a faulty driver can easily crash a system. In our
workhorse approach, some drivers can be separated from the
workhorse and run in their own address spaces. This makes
the workhorse more robust against faults in those drivers than
the original off-the-shelf operating system. In addition, if a
workhorse architecture is used in a trusted scenario, drivers
have to be separated from the workhorse if they belong to the
trusted base of trusted applications. This reduces the num-
ber of drivers to be evaluated drastically in contrast to using
a workhorse with all its drivers as the trusted base.

This section discusses more detailed the interaction of sep-
arated drivers with the workhorse, beginning with a general
description and concluding with an example.

Running a driver in its own address space instead of in the
workhorse increases the complexity of an I/O request.

Application

Microkernel

Workhorse OS

Driver

(1) (3)

(2)user mode

kernel mode

(a)

Application

Stub Driver

Workhorse OS

(1)

(4)

(2)

(3)

(5)

user mode

kernel mode

Microkernel

(b)

Figure 3: I/O requests with internal and separated drivers.

Figure 3(a) shows the original situation of an I/O request.
An application invokes the request (e.g., aread() system call)
calling the workhorse. The driver inside the workhorse then
issues the request directly to the device, and upon completion
the device responds with an interrupt, which the microkernel
maps to an IPC call to the workhorse. The driver completes
the request and wakes up the application by sending a reply
to the original system call. With a separated driver, the re-
quest is not issued by the workhorse itself, instead a stub,
which replaces the driver in the workhorse, forwards the re-
quest to the driver, which now runs in its own address space.
This architecture raises several problems:

• The driver can no longer access components of the
workhorse directly. In particular, it cannot access the

network or file-system buffers, data must be transfered
by other means between the driver and the workhorse.

• The communication between the stub and the driver in-
troduces additional costs. These costs do not only in-
clude the costs of the two IPC operations, but also over-
head introduced by the additional address-space switch
between the workhorse and the driver. It is one of the
aims of this paper to analyze those costs.

• Unique resources, such as the interrupt controller or
PCI buses, must be shared between separated drivers
and the workhorse (i.e., with the remaining drivers in
the workhorse). The core must provide appropriate
mechanisms to reliably share such resources.

3.1 Data Transfer

With separated drivers, I/O buffers (e.g., network packets
to send) must be transfered between the address spaces of
the workhorse and the driver. More generally, data must be
transfered between drivers and their clients. As already men-
tioned in Section 2.2, data can be either copied between the
address spaces or a memory mapping can be established by
sharing dataspaces between the two address spaces.

To grant access to the dataspace to the driver, a client must
ask the dataspace manager to share the appropriate access
rights. Drivers of bus-master DMA capable devices pin the
corresponding memory pages and request their physical ad-
dresses to initiate the data transfer between the device and
main memory. Drivers using programmed I/O (PIO) have to
map the pages of the dataspace to their own address space to
be able to copy the data to the device registers.

3.2 Examples

To further examine the workhorse architecture, we separated
two drivers from the workhorse.

3.2.1 Network Drivers

When we talk about separating network drivers, we really
mean the drivers of the network interface cards (NICs), not
a network stack, such as TCP/IP. Implementing network
stacks is the responsibility of the workhorse, or other com-
ponents of the workhorse architecture.

For separating the network drivers, we use the original
driver code and put it into an environment that emulates the
original workhorse. As described before, in the workhorse
the original driver code is replaced by a stub that commu-
nicates with the separated driver. We refer to that separated
driver asnetwork server. Applications using the network
server are callednetwork clients, with the workhorse being
one of them. The emulation environment in the network
server takes care of communication with the network clients,

4



but also ensures correct memory management, thread man-
agement, and interrupt handling.

For transmitting data to the network, each network client
uses a separate dataspace, which the network server uses for
performing I/O. The network client puts its data into the
dataspace and enables that part of the dataspace for device
I/O. Then it passes the offset and length of the data to the
network server, which checks these parameters and trans-
lates them into a physical address range. This range is given
to the original driver code, which initiates the actual transfer.

For receiving, the situation changes a little bit. It is the
nature of received network traffic that the final recipient of a
data frame is not known at the time it enters the computer.
In monolithic operating systems this led to the socket ab-
straction, where data is analyzed and dispatched into queues
within the kernel. The application interface is entirely based
on copying this data to user space. While early demultiplex-
ing, which can be implemented in hardware [14, 25, 10], is
a well-known solution to this problem, most network cards
have no support for it.

In a workhorse architecture multiple network stacks can
coexist using the same network device. Thus, the dispatch-
ing of the data must happen at the device driver, which is
the network server. Therefore, the network server receives
the data into its own address space. It determines the correct
recipient for each frame by inspecting parts of the packet
header. Then, it uses the underlying microkernel to copy
the data into buffers provided by the recipient. This copying
feature of the microkernel allows for aread -like semantics,
where the client can specify where the data has to be put
within its address space without the need of sharing parts
of its address space with the network server. Note, that we
cannot save this copy, unless data is early demultiplexed in
hardware.

3.2.2 SCSI Block-Device Driver

As a second example for separating drivers from the
workhorse we moved the driver of a SCSI host adapter to
its own address space. Similar to the network server, we
embedded the unmodified source code of the driver into an
emulation environment, which provides a block-device in-
terface to the workhorse and the other clients. In addition,
the environment provides the appropriate memory and inter-
rupt management functions the block driver uses within the
original workhorse.

For both, reading and writing blocks from/to the disk,
clients pass a reference to a dataspace, the block number,
and the number of blocks to the driver. This dataspace con-
tains the target/source buffer of the request. In L4Linux, a
stub is used to access the disks of the separated driver. This
stub uses the interface of the driver to provide a block device
to the workhorse on his part.

The environment used to emulate the original workhorse

roughly consists of 7500 lines of code. While this seems to
be quite expensive at first glance, it is still affordable because
with this environment we can reuse a wide range of network,
block device, and other drivers of the original workhorse.

4 Reusing an Untrusted Workhorse in
Trusted Applications

I/O drivers that remain in a workhorse can be reused from
trusted applications that otherwise run on the trusted core
directly, or from the trusted core via upcalls. For example,
a secure file system can reuse a disk driver of the workhorse
under certain assumptions.

This section describes the general architecture of reusing
untrusted workhorse drivers for trusted applications and de-
tails the reuse of a disk driver as example.

4.1 Architecture and Principles

Reusing drivers of an untrusted workhorse in trusted ap-
plications is an important technique to keep trusted bases
small. Cryptographic techniques can be used to ensure the
confidentiality and integrity, this means to notice unautho-
rized modification of data. For example, an untrusted disk
driver can be used for the implementation of a secure file
system. However, availability cannot be ensured using that
technique.

Integrity of data to be submitted to the workhorse or re-
ceived from the workhorse cannot be trusted. Thus, this data
is encrypted before its submission to the workhorse respec-
tively decrypted after reception. The keys used for that pur-
pose remain in secure storage, which can be implemented
using techniques as proposed in Microsoft’sSealed Mem-
ory [12].

The principle architecture is rather simple: a server is
started either as an application of the workhorse or as an in-
kernel process2. The server accepts requests from trusted
applications and forwards them to the driver (or to another
part) of the workhorse. Data are passed between trusted ap-
plications and the server either by copying messages or using
temporarily shared mappings.

4.2 Example Implementation

To estimate the costs of using the drivers of the workhorse
from core applications, we implemented a small application
running atop the workhorse. This application accepts IPC
messages from core applications, which contain requests to
read and write files. Because of the limitations we described
above, data is copied between the two applications.

2Kernel here refers to the part of the workhorse that runs in kernel mode
if run as an off-the-shelf system, but runs in user mode and in its own ad-
dress space if used as a workhorse.

5



5 Encapsulating Untrusted Compo-
nents with I/O Privileges

In a trusted-core context, we must assume full penetration
of the complex workhorse, and even in this case still be able
to protect applications that run on the trusted core directly.
This requires that the workhorse including its remaining I/O
drivers must be effectively encapsulated. Even though mali-
cious drivers have not been reported yet, we have to deal with
the worst possible malicious driver if a workhorse contains
drivers and is fully penetrated by an adversary.

In this section, we discuss the adaption of virtual-
machine-monitor techniques and discuss a detailed example:
the encapsulation of a network-interface driver, either as part
of the workhorse or as separated driver.

A driver running with I/O privileges can attack the system
by:

• accessing device registers of other devices (PIO)
• monopolizing or disabling interrupts
• initiating bus-master DMA from devices

Monopolizing other resources, such as CPU and memory,
is prevented with the standard operating-system techniques
scheduling and memory management.

Accessing device registers is typically done using
memory-mapped I/O. Standard memory protection tech-
niques prevent attacks here. A specialty of the IA-32 is a
second I/O address space, the I/O port space. Access to it
can be restricted to specific I/O ports with per-task permis-
sion bitmaps [20].

Interrupts are managed at a central instance in a workhorse
architecture, which alone has access to the interrupt con-
troller. At least with the IA-32-based PC architecture, there
are enough interrupt lines to assign a different interrupt
line to each device. Interrupt lines must not be shared be-
tween devices to prevent denial-of-service attacks between
devices.3 Disabling interrupts at the host processor is often
used for synchronization, but is known to be fully replace-
able by appropriate locking mechanisms [18, 32].

What remains to be solved is bus-master DMA, which al-
lows devices to access arbitrary physical memory locations.
To prevent this, the access rights of devices to memory must
be restricted.

5.1 Restricting Devices

We apply the principle of address spaces to the I/O bus: We
map each address that is used by a device for accessing mem-
ory to an address in main memory. Once we have an instance
doing this mapping reliably, this instance can also deny ac-
cesses to addresses the device should not have access to.

3As it is unknown to which device a specific interrupt on a shared inter-
rupt line belongs all interrupt handlers connected to the interrupt have to be
invoked.

We refer to such an instance as anI/O-Memory-Management
Unit (I/O-MMU).

Figure 4(a) shows the scheme of a peripheral bus with
such an I/O-MMU. The devices are not connected to the
bus directly, instead each bus must pass the I/O-MMU. This
way, device-to-device accesses can also be controlled. For
purposes of intended device-to-device transfer, a window in
the physical address space of the main memory must be re-
served, but this does not need to contain any real memory.
Although this I/O-MMU allows a full isolation, we are not
aware of such a hardware being implemented today. A pos-
sible implementation could be a riser card that is placed be-
tween the bus and the proper device. This riser card must
contain the logic to intercept and validate memory transfers.

Within the architecture depicted in Figure 4(b) one I/O-
MMU for the whole peripheral bus protects the host mem-
ory from illegal accesses by devices. Nevertheless, inter-
device accesses cannot be prevented. Systems of this type
are already available, for example the UPA-to-PCI bridge
for the UltraSPARC architecture [29], HP ZX1 chipset for
Itanium2 [1], and the Alpha host bridge [11] provide some
means to translate bus-master DMA addresses into physical
host memory addresses.

Figure 4(c) shows an architecture that contains no I/O-
MMU at all. This is what most current PC architectures pro-
vide. As we will show in Section 5.3, a reliable protection
for a large group of devices can be achieved with this archi-
tecture as well.

For now, let us assume a system having per-device I/O-
MMUs.

5.2 Workhorse Support

Establishing and revoking mappings at these I/O-MMUs
must only be done by a trusted-core application. We call
this application themediator. The purpose of the mediator is
to map dataspaces, or parts of them, into the address space
of a device.

A client has to perform the following steps to enable a
dataspace, which must be accessible by that client, for I/O
requests:

1. The client asks the mediator to make a reservation in
the address space of the desired device. Thereupon the
mediator asks the dataspace manager to pin that data-
space on behalf of the client. The dataspace manager
checks the access rights of the client and performs the
pinning. Then, the mediator reserves the memory re-
gion determined by the dataspace in the address space
of the device, and binds the device to the dataspace.

2. To execute a request that includes bus-master DMA be-
tween the device and a part of the dataspace, the client
asks the mediator to enable transfer at the I/O-MMU
for exactly this part in the dataspace. Then, it sends the

6



CPU

Hostbridge

RAM

D

MMU

D

MMU

D

MMU

Host Bus

Peripheral Bus

(a) Peripheral bus structure with a per-
device I/O-MMU.

MMU

CPU

Hostbridge
D D D

RAM

Host Bus

Peripheral Bus

(b) Peripheral bus structure with a per-
bus I/O-MMU.

CPU RAM

D D D
Hostbridge

Host Bus

Peripheral Bus

(c) Peripheral bus structure without an
I/O-MMU.

Figure 4: Different types of peripheral bus structures. The shaded boxes mark the protection domains.

dataspace ID together with the offset of the part to the
driver.

3. The driver performs the I/O operation and informs the
client upon completion.

4. The client asks the mediator to disable device access to
the part of the dataspace.

The first step allows for an optimization of the second and
the last steps: A dataspace-specific permission bitmap could
be used by the I/O-MMU, with each bit representing a cer-
tain fraction within the dataspace. Enabling and disabling
I/O for such a fraction is than as simple as enabling and dis-
abling this bit.

Note that for un-pinning a dataspace at its dataspace man-
ager, the dataspace manager must explicitly revoke all map-
pings of that dataspace in any device address spaces.

5.3 Architectures without I/O-MMU

Without hardware support in form of I/O-MMUs we use
virtual-machine-monitor techniques to emulate in software
what the I/O-MMU is supposed to do in hardware: Each ad-
dress that is given to a device for doing bus-master DMA is
translated in software to the correct physical main-memory
address. This way, we can prevent malicious drivers from
telling their devices to access arbitrary memory locations
without prohibiting bus-master DMA at all.

We encapsulate drivers by intercepting accesses to I/O
data structures. Intercepting is done using three building
blocks: We use hardware protection mechanisms to detect
I/O accesses. On IA-32 these are either page-tables for
memory-mapped I/O or I/O-permission bitmaps for port I/O.
An emulator is executed in the same address space as the
driver and interprets the intercepted operations. The inter-
pretation is sent to themediatorthat checks whether or not
the access is allowed and performs the I/O if it is allowed.
For this, the mediator must have an understanding of what
the device is doing in response to that specific I/O operation.

This requires the mediator to emulate some of the logic of the
device. After the mediator performed the I/O operation, the
emulator completes the instructions by setting the program
counter to the next instruction.

Both the emulator and the mediator are device-specific im-
plementations and have to be extended for new devices or
classes of devices. As a result of our work, we claim that
emulation is ways easier to implement/verify than the whole
driver, since only a small subset of the device specification
(how to access the DMA unit of the device) has to be con-
sidered.

Note, only the detection mechanism and the mediator
must be trustworthy. Detection and emulation do not need to
rely on hardware protection mechanisms. Instead they can be
accelerated using software patches, either extending macros
in an open-source system or patching at binary level. The
mediator must be trustworthy, and hence runs in a separate
address space. Malfunctions in the emulator can in the worst
case degrade availability of the provided service.

On architectures without I/O-MMUs, un-pinning data-
spaces must be done in accordance with the mediator. As de-
vice accesses to main memory cannot be stopped by simply
revoking mappings of device addresses, pinned dataspaces
must stay pinned as long as they may be referenced by out-
standing or ongoing bus-master DMA operations. The me-
diator is the only one that knows for sure if addresses passed
to the device for doing bus-master DMA are still in use or
not.

Examples

ATA devices can be intercepted quite easily as long as they
do not use command queueing. To perform bus-master DMA
requests, ATA devices use a table (DMA table) holding an
array of pointers to DMA blocks. The table is created at the
beginning of a request and its address is written to a device
register. The device signals the end of the request by raising
a device interrupt. From then, the DMA table is no longer
used.

7



To control the bus-master DMA transfers of an ATA de-
vice, it is only necessary to virtualize the DMA table. There-
fore, write accesses of the driver to the device register, which
holds the address of the DMA table, have to be intercepted.
The mediator checks if bus-master DMA access to all entries
of the DMA table is allowed for the driver and finally passes
a copyof that table to the device. Thus, the driver cannot
manipulate the table after the request has been started.

The terminating interrupt of the request can be uniquely
assigned to the request whose DMA table is currently active.

Command queueing complicates the virtualization of the
DMA table, because several tables are active concurrently
and it is not clear to the mediator which of these tables cor-
responds to a raised interrupt without having explicit knowl-
edge of the driver.4

Network devices usually use descriptor lists to commu-
nicate with the driver. Simplified, a descriptor consists of
the address and size describing the physical memory region
the device should receive network frames to or send net-
work frames from and a flag stating the owner of the de-
scriptor. If the aforementioned flag is set, the device may
access the frame, but the device does never access a frame
with a cleared flag.

To receive packets from the network device, a driver pro-
vides a receive descriptor list. Once the driver has written
the address of the list to a device register, the device starts
using the buffers the descriptor entries point to. The device
writes received frames until it encounters the first descriptor
with a cleared flag. After receiving a network frame, the de-
vice raises an interrupt. To send packets, the driver provides
a send list with all flags set.

The mediator intercepts write accesses to the device regis-
ters that which contain the addresses of the descriptor lists. A
copyof the descriptor list is passed to the device. The entries
of that lists point to addresses in the drivers address space.
The driver cannot manipulate the list after it has been passed
to the device. Once the device has completed a request and
sent an interrupt, the list of descriptors has to be copied back
to the driver, so that the driver can inspect the descriptors for
the results of the I/O operations.

This method works nicely for devices which are based on
descriptor lists that are separated from the I/O buffers (e.g.,
Tulip 2114x). Everything is much harder for devices whose
descriptors are adjacent to the I/O buffers. In that case not
only copies of the descriptors but also copies of the adjacent
data buffers have to be created and passed to the device (e.g.,
Intel EEPRO100).

Measurements presented in Section 6 are based on exper-
iments using the Tulip 2114x chip.

4Command queueing for ATA devices is currently not in wide-spread
usage.

6 Performance Impact of the
Workhorse Architecture

In this section we explore the impact of separating and en-
capsulating drivers in our workhorse architecture, which is
based on L4Linux. We study both, the effects on the perfor-
mance of the device drivers itself using micro-benchmarks,
as well as the effects on the overall system using an applica-
tion benchmark.

When doing micro-benchmarks not only the resulting per-
formance but also the CPU utilization during the measure-
ment is of interest, as it shows the additional overhead intro-
duced by our architecture. Therefore, we used low-priority
looper which consumed all idle CPU resources with a cache-
footprint of one cache line.

The basic test environment is a 1.6 GHz Pentium 4 run-
ning on a Intel 845 chipset with 256 MByte SDRAM.

6.1 Block-Device Performance

The hardware used for the block device measurements
consists of an IBM Ultrastar 36Z15 disk (18.4 GByte,
15,000 rpm, 4 MByte disk cache) attached to a Tekram DC-
390U2W disk controller (U2W SCSI, 80 MByte/s).

To explore the performance impact of our architecture on
the SCSI driver, we usedtiobench[4] to measure the low-
level performance of the disk system. Tiobench reads and
writes blocks of files in sequential and random order.

Table 1 shows the results of tiobench. As it can be seen,
we still reach the bandwidth of Linux running on the plain
hardware. For random writes we even exceed the bandwidth
of Linux, which we believe is due to changes in the timing
in the stub in L4Linux. This result could be expected, as the
SCSI disk handles several requests at a time using command
queueing, which hides additional overhead. However, the
overhead can be seen with a slightly higher CPU utilization.

To show the impact on overall system performance we set
up an application benchmark, which consists of the follow-
ing five parts:

1. Extraction of a Linux kernel source archive (tar
-xjf linux-2.4.20.tar.bz2 )

2. Configuration of the Linux kernel with the supplied pre-
defined configuration (make oldconfig andmake
dep )

3. Build of the kernel (make bzImage )

4. Duplication of the build tree and three searches
through them (grep -r ’random search
pattern’ . )

5. Clean up of the build tree (make clean ) and removal
of the scratch directory

8



Read Write
sequential random sequential random

bandwidth CPU bandwidth CPU bandwidth CPU bandwidth CPU
Linux 46.5 MB/s 14% 14.1 MB/s 4% 43.7 MB/s 24% 18.4 MB/s 8%
L4Linux (int. driver) 46.5 MB/s 19% 13.8 MB/s 6% 43.4 MB/s 26% 18.3 MB/s 9%
L4Linux (ext. driver) 46.5 MB/s 20% 13.3 MB/s 7% 43.7 MB/s 27% 20.4 MB/s 12%

Table 1: tiobenchresults for IBM Ultrastar 36Z15 disk. Average of 10 runs, command line’tiotest -f 1024 -b 65536 -r
16384 -d /mnt/disk’ (file size 1GB, block size 64KB, 16384 requests for random read/write).

time [s]
0 60 120 180 240 300 360 420 480 540

Linux 2.2.25

L4Linux (int. Driver)

L4Linux (ext. Driver)

473.82

535.85

547.85

extract

config

build

copy + grep

cleanup

Figure 5: Application benchmark running on Linux, L4Linux with internal driver and L4Linux with external driver.

We measured the time for each single part and the overall
time consumed.

Figure 5 shows the results of that test. The overhead in-
troduced by separating the driver from L4Linux is about 2%,
which is less than the overhead caused by moving Linux to
user level, which is about 13%.

6.2 Overhead of Using Drivers of L4Linux
from Core Applications

To measure the overhead caused by using drivers in L4Linux
by core applications, we used the application described in
Section 4.2 to perform a test similar to tiobench used in the
previous section.

Bandwidth CPU
Sequential Read 46.6 MB/s 28%
Sequential Write 43.6 MB/s 32%

Table 2: Using the disk driver in L4Linux from core applications
using the same hardware as in Table 1.

The application running on the core sequentially reads and
writes an 1 GB file issuing 64 KB requests to the applica-
tion running on L4Linux. Table 2 shows the results of this
test. We can still achieve the same bandwidth as tiobench,
however, because of the additional copy operation the CPU
utilization increases.

6.3 Network-Device Performance

To investigate the influence of our architecture on the net-
work performance, we measured the maximum throughput
and CPU utilization on an unmodified Linux kernel, on
L4Linux with an integrated driver, on L4Linux with a sep-
arated driver, and on encapsulated L4Linux as described in
Section 5.3.

In all of our experiments, we connected two nodes with
a Fast Ethernet switch D-Link DES-1008D. To generate
a similar network load, we usednetperf 2.2pl4[2]. One
node comprised an AMD Duron 800 MHz on a VIA KT133
chipset, 128 MByte SDRAM and a DECchip 21142/43 Eth-
ernet controller. The other node was a Pentium III Copp-
permine 800 MHz with 256 MByte RAM and different net-
work cards. On the latter machine, we changed the various
operating-system setups and measured the CPU utilization.

For determining the performance impact of sepa-
rated drivers, we used an Intel EEPro100 network card
(100MBit/s) in the Pentium III. We used netperf to measure
TCP and UDP send and receive throughput. Additionally,
the UDP request/response rates were acquired. All measure-
ments were done three times, first with the original Linux
on the Pentium III, second with L4Linux on the Pentium III,
and third with the separated driver and L4Linux on the Pen-
tium III. Table 3 shows the corresponding results.

For determining the performance impact of encapsulating
L4Linux, we used a DECchip 21142/43 Ethernet controller
network card (100MBit/s) in the Pentium III. The netperf
setup was the same as in the previous experiments. The three

9



TCP STREAM UDP STREAM UDP RR
CPU Rate CPU Rate CPU Req/s

Linux send 18.0 % 94.1 MBit/s 7.0 % 95.7 MBit/s 36.2 % 10441
Linux receive 30.0 % 93.9 MBit/s 21.2 % 95.7 MBit/s
L4Linux (int. driver) send 27.0 % 86.8 MBit/s 10.5 % 95.4 MBit/s 49.0 % 7058
L4Linux (int. driver) receive 26.0 % 53.0 MBit/s 37.0 % 95.7 MBit/s
L4Linux (ext. driver) send 44.8 % 94.0 MBit/s 20.0 % 95.6 MBit/s 73.0 % 7163
L4Linux (ext. driver) receive 66.0 % 93.9 MBit/s 52.0 % 95.7 MBit/s

Table 3: Impact of separated network drivers. Throughput and request-response rates for different operating system setups.

operating-system setups are original Linux, L4Linux with an
integrated driver, and the encapsulated L4Linux with an inte-
grated driver, as described in Section 5.3. Table 4 shows the
corresponding results.

7 Related Work

Using unmodified or slightly modified legacy operating sys-
tems on top of other systems in general is an old technique.
IBM’s VM [23] system supports other IBM operating system
without modifications. MACH’s single-server approach5

used a modified variant of BSD Unix on their microkernel.
However, changes were significantly more substantial than
in our system. Drivers in general were part of the MACH
microkernel, rather than encapsulated. RT-MACH [31] —
probably the first attempt to run a legacy operating system
besides applications with specific requirements — suffered
from the same shortcomings.

A different approach often taken to supporting a legacy
interface is to rebuilt large parts of a system call interface
based on a new kernel. Notable examples include QNX [3]
that provides a Unix-compatible interface based on a small
real-time kernel, and EROS [28], a capability-based system
built from scratch that plans to emulate a Linux interface.

Several systems use small real-time executives to run
legacy operating systems besides real-time applications.
RTLinux [32], a widely used system, includes the real-time
executive and the real-time tasks into the address space of
the Linux kernel. Thus neither can the Linux kernel be pro-
tected from the real-tasks nor the real-time tasks from Linux
crashes. In earlier papers [24], this group presented results
using real-time cores with address-space-based encapsula-
tion of real-time tasks.

An attempt to protect an operating system from faulty
drivers is the NOOKS architecture [30]. Drivers remain in
the kernel’s address space, but run at lower privilege level
(ring 1 of IA-32). Calls from the kernel to drivers and vice
versa are controlled via wrapper functions which can emu-
late accesses to device registers as well. However, no per-

5MACH’s single server was more an intermediate step towards an in-
tended multi-server architecture than an explicit attempt to exploit a legacy
operating system for more than a development step.

formance results are provided so far. In contrast to our
approach, NOOKS considers the Linux kernel (still about
500K LOC) as trustworthy base. No attempt is made to
protect trusted applications from a penetrated Linux kernel
that can make use of all drivers and driver’s I/O privileges.
In addition NOOKS does not address threats via bus-master
DMA, which is admissible since NOOKS explicitly does not
consider malicious drivers.

Related work includes VMware [5] and Disco [7].
VMware is often used in a scenario where different sets
of applications are run on different virtual machines to ef-
fectively separate them. The underlying assumption is that
separation using a hardware abstraction is safer than separa-
tion using a software platform like an operating-system in-
terface. This may indeed be true for today’s most widely
used operating systems. However, VMware does not en-
capsulate existing drivers. Rather it provides its guest op-
erating systems with a fixed set of available I/O devices.
These devices have been selected to optimize performance,
this means drivers with as few I/O-port accesses as possible
are used. In our approach, we try to support as many differ-
ent devices as possible, with as little knowledge as possible.
VMware enables the usage of legacy software on incompat-
ible legacy systems. Our approach aims at running trusted
applications besides legacy applications on a small trusted
core, while safely reusing complex functionality of an un-
trustworthy workhorse.

The architecture of the Fluke device-driver framework
[22] is quite similar to ours. They run Linux device drivers
as user-level applications atop the Fluke microkernel, ei-
ther co-located with an application or in separate address
spaces. The latter mode corresponds to L4Linux with inter-
nal drivers, compare with Figure 3(a). While their results
using this mode are similar to ours with L4Linux, they don’t
mediate bus-master-DMA operations and therefore are vul-
nerable to errors in the driver.

Palladium probably comes closest to the work described
in this paper. An announcement by Microsoft Palladium [8]
mentions a system Nexus to run underneath (as far as we un-
derstand) a version of the windows operating system. But
although there is a huge number of WWW-sites available
containing (hearsay) knowledge, no publications on details

10



TCP STREAM UDP STREAM UDP RR
CPU Rate CPU Rate CPU Req/s

Linux send 22.0 % 87.6 MBit/s 14.5 % 95.7 MBit/s 43.2 % 11651
Linux receive 19.0 % 65.7 MBit/s 22.7 % 95.7 MBit/s
L4Linux send 20.5 % 69.7 MBit/s 13.3 % 94.1 MBit/s 65.0 % 8647
L4Linux receive 32.0 % 65.0 MBit/s 40.0 % 95.7 MBit/s
L4Linux (Mediator) send 41.0 % 66.4 MBit/s 44.0 % 95.1 MBit/s 75.0 % 7970
L4Linux (Mediator) receive 39.0 % 65.3 MBit/s 47.8 % 95.7 MBit/s

Table 4: Network-related impact of encapsulating L4Linux.

of the architecture are known to us except a paper onAu-
thenticated Operation[8, 12] that describes Sealed Storage
and its use in an authentication chain.

8 Conclusion

This paper presented a microkernel-based design and partial
implementation of a workhorse operating system architec-
ture with a Linux derivative as workhorse. We presented how
drivers can be separated from the workhorse to 1) increase
the robustness of the workhorse or to 2) make the driver us-
able as a component of a trusted base for trusted applications.
We demonstrated how to encapsulate a workhorse such that
even full penetration of the workhorse by an adversary can-
not be used successfully to harm trusted applications. Last,
we presented a technique how to use an untrusted workhorse
to implement trusted applications. For our partial implemen-
tation of the architecture, we did some case studies with a
small set of drivers. The measurement results, although not
outstanding, are still good enough to encourage the pursue
of microkernel-based workhorse architectures.

Additionally, we propose the introduction of hardware-
based memory protection for I/O devices (I/O-MMU) in
legacy hardware.

References

[1] IDF 2002: hp zx1 chipset. Available from URL:
http://www.hp.com/products1/itanium/
idf/chipset/index.html .

[2] Netperf Homepage. URL:
http://www.netperf.org/ .

[3] QNX Homepage. URL:http://www.qnx.com/ .

[4] Tiobench Homepage. URL:
http://tiobench.sourceforge.net/ .

[5] VMware Homepage. URL:
http://www.vmware.com/ .

[6] M. Aron, L. Deller, K. Elphinstone, T. Jaeger,
J. Liedtke, and Y. Park. The SawMill Framework for
Virtual Memory Diversity. InProceedings of the Sixth
Australasian Computer Systems Architecture Confer-
ence (ACSAC2001), 2001.

[7] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running commodity oper-
ating systems on scalable multiprocessors.ACM Trans-
actions on Computer Systems, 15(4):412–447, 1997.

[8] Amy Carroll, Mario Juarez, Julia Polk, and
Tony Leininger. Microsoft “Palladium”: A
Business Overview, August 2002. Available
from URL: http://www.microsoft.com/
PressPass/features/2002/jul02/
0724palladiumwp.asp .

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating systems errors. InProceedings of the eigh-
teenth ACM symposium on Operating systems princi-
ples, pages 73–88. ACM Press, 2001.

[10] U. Dannowski and H. Ḧartig. Policing offloaded. In
Proceedings of the Sixth IEEE Real-Time Technology
and Application Symposium, Washington D.C., May
2000.

[11] DIGITAL Semiconductors. 21174 Core Logic Chip,
1997.

[12] Paul England and Marcus Peinado. Authenticated op-
eration of open computing devices. InProceedings of
the Australian Conference on Information Security and
Privacy, pages 346–361. Springer Verlag, 2002.

[13] Norman Feske. DOpE – a graphical user interface for
DROPS. Master’s thesis, Dresden University of Tech-
nology, 2002.

[14] A. Gallatin, J. Chase, and K. Yocum. Trapeze/ip:
Tcp/ip at near-gigabit speeds. In1999 USENIX Tech-
nical Conference (Freenix Track), Berkeley, California,
June 1999.

11



[15] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg,
and J. Wolter. DROPS: OS support for distributed
multimedia applications. InProceedings of the Eighth
ACM SIGOPS European Workshop, Sintra, Portugal,
September 1998.

[16] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance ofµ-kernel-based systems.
In 16th ACM Symposium on Operating System Princi-
ples (SOSP), pages 66–77, Saint-Malo, France, Octo-
ber 1997.

[17] Hermann Ḧartig. Security Architectures Revisited.
In Proceedings of the Tenth ACM SIGOPS European
Workshop, Saint-Emilion, France, September 2002.

[18] Hermann Ḧartig, Michael Hohmuth, and Jean Wolter.
Taming Linux. InProceedings of the 5th Annual Aus-
tralasian Conference on Parallel And Real-Time Sys-
tems (PART ’98), Adelaide, Australia, September 1998.

[19] Michael Hohmuth. Pragmatic nonblocking synchro-
nization for real-time systems. PhD thesis, TU Dres-
den, Fakulẗat Informatik, September 2002.

[20] Intel Corp. Intel Architecture Software Developer’s
Manual, Volume 2: Instruction Set Reference, 1999.

[21] Simon Kagstr̈om and Rickard Molin. A device driver
framework for multiserver operating systems with un-
trusted memory servers. Master’s thesis, Lund Univer-
sity, Sweden, 2002.

[22] Kevin Thomas Van Maren. The Fluke Device Driver
Framework. Master’s thesis, The University of Utah,
December 1999.

[23] R. A. Mayer and L. H. Seawright. A virtual machine
time sharing system.IBM Systems Journal, 9(3):199–
218, 1970.

[24] F. Mehnert, M. Hohmuth, and H. Ḧartig. Cost and ben-
efit of separate address spaces in real-time operating
systems. InProceedings of the 23th IEEE Real-Time
Systems Symposium (RTSS), December 2002.

[25] Myricom, Inc. GM: A message-passing sys-
tem for Myrinet networks. Available from URL:
http://www.myri.com/ .

[26] Birgit Pfitzmann, James Riordan, Christian Stüble,
Michael Waidner, and Arnd Weber. The PERSEUS
system architecture. Technical Report RZ 3335
(#93381), IBM Research Division, Zurich Laboratory,
April 2001.

[27] Krithi Ramamritham, Chia Shen, Oscar González,
Subhabrata Sen, and Shreedhar Shirgurkar. Using Win-
dows NT for Real-Time Applications: Experimental
Observations and Recommendations. InProceedings
of the Fourth IEEE Real-Time Technology Applications
Symposium (RTAS), 1998.

[28] J. S. Shapiro.EROS: A Capability System. PhD the-
sis, University of Pennsylvania, April 1999. Available
from URL: http://srl.cs.jhu.edu/˜shap/
EROS/thesis.ps .

[29] Sun Microsystems.UPA to PCI Interface User’s Man-
ual, STP2223 Data sheet.

[30] Michael M. Swift, Steven Martin, Henry M. Levy, and
Susan J. Eggers. Nooks: An architecture for reli-
able device drivers. InProceedings of the Tenth ACM
SIGOPS European Workshop, September 2002.

[31] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao.
Real-time Mach: Towards a predictable real-time sys-
tem. In USENIX, editor,Mach Workshop Confer-
ence Proceedings, October 4–5, 1990. Burlington,
VT, pages 73–82, Berkeley, CA, USA, October 1990.
USENIX.

[32] Victor Yodaiken and Michael Barabanov. A Real-Time
Linux. In Proceedings of the Linux Applications De-
velopment and Deployment Conference (USELINUX),
Anaheim, CA, January 1997. The USENIX Associa-
tion.

12


