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Abstract

Scheduling disk requests with service guarantees has
to bring the demand to meet guarantees in line with the
need to optimize disk utilization. This paper presents the
design, implementation and experimental evaluation of a
disk-scheduling framework which optimizes the disk utiliza-
tion under the constraints of both hard and statistical ser-
vice guarantees. The framework is based on two princi-
ples: 1) upon each scheduling decision, the calculation of
a subset of the outstanding disk requests such that all ser-
vice guarantees can be enforced under worst-case assump-
tions and 2) the scheduling of this subset based on the ro-
tational position of requests in order to improve the disk
utilization. Results are presented through an implementa-
tion of the scheduling framework in DROPS, the Dresden
Real-Time Operating System.

1. Introduction

Disk-storage usage in modern systems includes tradi-
tional, best-effort file access as well as the storage and re-
trieval of video and audio streams. The latter application
constrains the ability of a disk-request scheduler to optimize
the disk utilization. While best-effort applications have rel-
atively weak requirements, like “good” response times, the
retrieval of a video stream requires that deadlines for indi-
vidual disk requests are met. A disk-request scheduler has
to bring these constraints in line with the need to optimize
the disk utilization which is crucial for good overall perfor-
mance of the storage system.

Giving service guarantees for disk requests is a challeng-
ing requirement for a disk-request scheduler. Because of the
physical design of disk drives, the execution times of disk
requests have a poor ratio of average and worst-case execu-
tion times. However, the knowledge of the execution-time

distributions can be used to give statistical service guar-
antees. If an application can tolerate occasional deadline
misses, statistical service guarantees can be used to substan-
tially improve the disk utilization compared to hard service
guarantees [4].

This paper introduces and evaluates an admission-
control and scheduling algorithm which (a) can provide
both hard and statistical service guarantees for disk re-
quests and (b) uses an SATF (shortest access time first)
based request scheduler to optimize the disk utiliza-
tion. Service guarantees are ensured by calculating the ac-
tive subset of the outstanding disk requests upon each
scheduling decision such that no guarantees will be vio-
lated regardless of which request of this subset is executed.
Then, this subset is scheduled based on the rotational posi-
tion of the disk requests.

The rest of this paper is organized as follows: The next
section gives an overview of a general admission-control al-
gorithm which can give both hard and statistical real-time
guarantees. In Section 3, we describe the application of
that admission-control algorithm to disk storage and a disk-
scheduling algorithm which enforces service guarantees as
well as optimizes the disk utilization. In Section 4, we eval-
uate the implementation of our scheduler. Section 5 gives an
overview of related work and Section 6 concludes the paper.

2. Background: Quality-Assuring Scheduling
in DROPS

The interest in statistical guarantees in real-time systems
has been sparked by the observation that certain types of
applications (most notably multimedia applications) can-
not afford the poor resource utilization yielded by abso-
lute guarantees, but at the same time, such applications can
tolerate occasional deadline misses to a certain extent. The
work we present in this paper was conducted in the context
of DROPS, the Dresden Real-Time Operating System [5].
DROPS employs Quality-Assuring Scheduling (QAS) [4]
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which aims to improve the resource utilization of real-time
systems by:

• splitting calculations into one mandatory part and sev-
eral optional parts. The mandatory part has to be exe-
cuted under any circumstances, whereas optional parts
may be dropped in case of resource shortage; and

• using a probabilistic model in the admission control
which assures a certain quality parameter (i.e., the per-
centage of optional parts which meet their deadline).

The goal is to schedule active resources such that under
overload the system behavior degrades gracefully and pre-
dictably. Gracefully means that only optional parts are omit-
ted, and predictably means that the number of dropped parts
can be predicted.

More precisely, a periodic task Ti is a sequence of jobs
Jij , where Jij is to be executed in the jth period of Ti. Each
job Jij consists of a mandatory part Mij and one or more
optional parts Oij1, Oij2, ..., Oijci

; the number ci of op-
tional parts is fixed for each task. Each of these parts is con-
sidered successful if it is completely executed. This condi-
tion must hold for all mandatory parts of a task, but it is suf-
ficient that only a given percentage of optional parts is suc-
cessful. To ensure that all optional parts reach the requested
quality but do not consume more resources than necessary
in case of resource shortage, a resource scheduler must en-
force a reservation time ri. The reservation time is a con-
stant amount of time which is assigned to each task Ti in
each period to execute the optional parts. When an optional
part has exhausted this time, the optional part is aborted
and later parts of the same job are not started. The reserva-
tion time is calculated on the basis of worst-case execution
times for mandatory parts and the expected execution times
of both the optional and mandatory parts for optional parts.
Therefore the execution time of the mandatory parts Mij

and the optional parts Oijk are represented as non-negative
random variables Xij and Yijk , (k = 1, ..., ci). In the con-
text of this work, for each task Ti Xij and Yijk are assumed
to be identically distributed.

To summarize, with QAS a task is described by a tuple:

Ti = (Xi, Yi, ci, wi, qi, t), i ∈ N (1)

where:

Xi execution time of the mandatory part;

Yi execution time of an optional part;

ci number of optional parts;

wi worst-case execution time of the mandatory part, i.e.,
P(Xi ≤ wi) = 1;

qi quality parameter, percentage of successful optional
parts, 0 ≤ qi ≤ 1;

t length of period.

These values must be known prior to the admission of a
task. To accept a new task set, the admission control must
ensure that:

1. all mandatory parts Mi meet their deadlines. This
means that the worst case execution times wi of all
tasks must fit into the period:

n
∑

i=1

wi

t
≤ 1 (2)

2. for each task Ti a reservation time ri can be found so
that the quality parameter qi will be reached:

∃r1, ..., rn∀i = 1, ..., n : ri = min(r|EAi ≥ qici) (3)

EAi =

ci
∑

k=1

P(Ai ≥ k)

where Ai is a random variable denoting the number of
optional parts of task Ti which can be executed during
a period of Ti. The calculation of P(Ai ≥ k) depends
on ri.

Note that in this calculation only the random vari-
able X of the execution time of the mandatory part
M has to be considered, not the worst-case execution
time w. Thus, optional parts can be admitted even if
the mandatory parts filled the whole period according
to their worst-case execution times.

For a more detailed description of the admission tests
and the Quality-Assuring Scheduling in general refer to [4].

3. Quality-Assuring Scheduling of Disk Re-
quests

In this section we describe the application of Quality-
Assuring Scheduling to disks. We combine a mechanism to
enforce the service guarantees (i.e. the reservation times)
with a disk-request scheduler which optimizes the disk uti-
lization.

3.1. Adapting QAS to Disk Storage

Real-time data streams (e.g. video or audio streams) are
mostly read or written with a nearly constant average band-
width, for example 4 MBit/s for an MPEG-2 video stream.
Given a fixed block size, this bandwidth requirement can be
translated into a fixed number of disk requests that are exe-
cuted periodically. The period length must obey the ability
of the system to buffer blocks. Apart from that it can be cho-
sen arbitrarily.

Identifying mandatory and optional parts within a sin-
gle stream of disk requests leads to very awkward interfer-
ences. Instead, we chose to distinguish mandatory and op-
tional data streams. However, this approach might require
changes to some common applications. Figure 1 illustrates
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this approach for an MPEG video application. The origi-
nal stream is split into three streams, which store the differ-
ent frame types of the MPEG video. To decode the video,
frames are read from all three streams and reordered such
that the decoder reads the frames in the expected order.

Decoder

I Frames

P Frames

B Frames

Figure 1. Splitting MPEG streams.

Applications specify the quality parameter qi for the
whole stream. For our MPEG example, an application may
request that all blocks of the file containing the I frames
must be read to ensure a minimum quality of the video dis-
play. Hence, this stream is requested as a mandatory stream.
For the other two streams the MPEG application is modi-
fied such that it tolerates the occasional loss of disk blocks
(qi < 1), thus requesting the streams as optional streams.
If a block of such a stream could not be retrieved on time,
it is discarded as shown in Figure 1 for one block of the
B-Frame stream.

In contrast to the resource CPU, the variation of the exe-
cution times is caused by the disk, the resource itself, not by
the application. Hence, the generic task description of QAS
(Definition 1) is mapped to a task description Ti and a de-
scription of the system D, which includes the characteriza-
tion of the disk as well as the period length:

Ti = (ci, qi), i ∈ N (4)
D = (X, w, t)

where:

ci number of disk requests in each period;

qi requested quality for the stream; q = 1 denotes a manda-
tory stream, q < 1 an optional stream;

X execution time of a disk request;

w worst-case execution time of a disk request;

t period length.

With the knowledge of w and X we can perform the admis-
sion test as described in Section 2 and calculate the reserva-
tion times for the optional streams.

3.1.1. Worst-Case Execution Time w As a basis for the
worst-case assumptions we use a disk model to identify the
longest possible time any disk request may require for a par-
ticular disk. A model which can accurately predict the be-
havior of a disk would be too complex, if it could be found
at all. Additionally, such a model would require an in-depth
knowledge of the disk-drive design and firmware, which in
general is not available. Therefore, our approach is to use

a slightly simplified model and to run a set of microbench-
marks to extract the necessary parameters for that model.

Our model is:

w = tseek + n ∗ trot + m ∗ tsector (5)
+tovh + v ∗ tskew

where:

tseek the seek time; the worst case is the time for mov-
ing the disk heads from the innermost to the outermost
cylinder of the disk.

n ∗ trot the maximum rotational delay; in rare cases the
disk head needs several (n) rotations to settle on the
target track.

m ∗ tsector the time to access the data; this depends on
the number m of sectors which are accessed and the
time tsector to access a single sector. With modern disk
drives, tsector varies for different zones of the disk.
The worst case for such disks is in the innermost, slow-
est zone of the disk.

tovh the overhead caused by the request processing in the
disk controller and the data transfer between the disk
and the host system. It is assumed to be a constant
value.

v ∗ tskew the time to switch to the next cylinder respec-
tively the next disk head. The maximum number v of
cylinder or head switches that may occur depends on
the maximum request size and the minimum size of a
single track.

These parameters must be acquired once for each disk in the
system. For those measurements, the microbenchmarks are
adjusted to deliver the worst-case values for each parame-
ter separately. Section 4.1 shows how this is done.

Whereas it is possible to adjust microbenchmarks to trig-
ger worst-case situations for a particular disk parameter, the
measurement of the worst-case execution time of a whole
disk request is not applicable. It would require a workload
which causes a worst-case behavior of the disk.

3.1.2. Service-Time Distribution X In contrast to the
worst-case execution time, we can use direct measurements
to obtain the distribution of the request service times. Like
with the worst-case parameters of a disk, the measurement
of the service time distribution has to be performed once
for each disk in the system. The workload used for the mea-
surements must represent the characteristics (request loca-
tions and sizes, read or write requests) of the expected load
on the system.

3.2. Enforcing Service Guarantees

A straightforward approach to schedule requests with
different service guarantees is to schedule them separately:
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for instance by executing all real-time requests at the begin-
ning of each period to enforce the real-time guarantees and
by assigning the remaining time in the period to best-effort
requests. However, with such an approach the scope of op-
timizing the request scheduling is limited to each request
class. This leads to a poor resource utilization, especially
in the case of a large number of different classes. To ex-
ploit all optimization potential, a request scheduler must be
able to choose from as many outstanding requests as possi-
ble.

In the optimal case the scheduler considers the requests
of all mandatory and optional streams as well as best-effort
requests. However, the scheduler must also ensure the ser-
vice guarantees: execution of all mandatory streams and op-
tional streams according to the assigned reservation time.

We ensure these guarantees in the following way: At
each point in time when choosing the next request for ex-
ecution, we construct a subset of the outstanding requests
such, that no service guarantee will be violated regardless of
which request of that subset is executed. The subset contains
all active requests which can be considered by the sched-
uler. We call it Dynamic Active Subset (DAS).

Figure 2 shows the algorithm for constructing the DAS.
t_left denotes the remaining time until the end of the
current period, t_w the worst-case execution time w. First,
all outstanding mandatory stream requests for the current
period are added to the DAS, and the remaining time is de-
creased by the worst-case execution times. If there is time
left for another worst-case disk access in the period, all re-
quests of optional streams which have not yet exhausted
their reservation time are added to the DAS and t_left
is decreased by their remaining reservation time r_left.
r_left is set to the reservation time ri at the beginning
of each period and decreased by the actual execution time
of each request of the stream which is executed. Finally, if
there is still time left in the period, best-effort requests are
added to the DAS. Note that once an optional stream is ac-
cepted for the DAS, all available requests of that stream for
the current period are added to the DAS; likewise for best-
effort requests, once they are accepted all available best-
effort requests are added to the DAS.

Using the worst-case execution time to decide if there is
enough time in the period to add more requests ensures that
all service guarantees are met. Consider the following ex-
ample: A mandatory stream has three outstanding requests
for the current period, the remaining time in the period is
100 ms and the worst-case execution time of a request is
30 ms. Thus, t_left is 10 ms after adding the manda-
tory stream to the DAS. In this situation, no other requests
can be added to the DAS, because otherwise if another re-
quest is selected for execution there might not be enough
time left to execute the mandatory requests afterwards. This
means Condition 2 of the admission control would be vi-

das.init()
period = get_current_period()
t_left = period.time_left()
t_w = disk_model.t_w

// 1. add mandatory streams
for each m_stream in period

das.add(m_stream)
t_left -= t_w * m_stream.req_left

// 2. add optional streams
if (t_left >= t_w)

for each o_stream in period
if (o_stream.r_left > 0)
das.add(o_stream)
t_left -= o_stream.r_left

// 3. add best-effort requests
if (time_left >= t_w)

das.add(best-effort)

Figure 2. Selecting requests for the Dynamic
Active Subset (DAS)

olated. Likewise for optional streams, we must ensure that
all streams get their reservation time assigned before we can
add best-effort requests.

The above example also shows the benefit of this ap-
proach. In most cases, the actual execution time of a re-
quest is much smaller than the worst-case time, especially
for modern disks. For instance, assume an execution time of
8 ms for one of the mandatory request which was selected
for execution. Thus, there are 92 ms left in the period, which
means that we can also add other requests to the DAS in ad-
dition to the two remaining mandatory requests for the next
scheduling decision. This gives the request scheduler more
options to optimize the disk utilization.

The algorithm to create the DAS can be expanded further
to meet additional requirements, for example how optional-
stream requests are treated in case the reservation time for
their stream is already exhausted. The algorithm shown in
Figure 2 skips such requests. However, they could also be
added to the DAS as best-effort requests or they could even
be given precedence over best-effort requests to improve the
quality of optional streams before best-effort requests are
considered.

Creating the DAS ensures that no service guarantees are
violated regardless of which request of the subset is exe-
cuted. This enables a request scheduler to apply an arbitrary
policy to select requests out of the DAS for execution. We
will now show how this can be used to optimize the disk uti-
lization.

3.3. SATF for DAS

The DAS mechanism is designed such that, within a
DAS, all scheduling algorithms can be used, while still en-
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Figure 3. Progression of two subsequent disk
requests.

suring all deadlines.
However, due to the highly dynamic nature of DAS,

it is not possible to use the scheduling mechanisms im-
plemented in the disk controller’s hardware, as the DAS
sometimes shrinks, and thus requests would have to be re-
voked from the disk. Furthermore, the accounting of ser-
vice times for single requests and the implementation of ar-
bitrary scheduling policies are both infeasible when using
the hardware-internal scheduling.

Thus, we integrated an SATF scheduler (shortest access
time first as described in [8]) into the disk driver, which
minimizes both the seek delay (as SSTF (shortest seek time
first) does) and the rotational delay between subsequent re-
quests.

To implement such an algorithm outside the disk, the
scheduler has to use physical disk-sector addresses rather
than logical ones. This means a substantial increase in the
amount of information needed to conduct scheduling in
contrast to conventional algorithms using logical addresses.

3.3.1. Modeling With SSTF the overall time for a request
sequence is minimized by choosing the subsequent request
based on the time required to perform the seek to this re-
quest’s cylinder. As the mapping from cylinder distance
to time can be assumed to be monotonic, one can choose
the subsequent request to be scheduled based on the cylin-
der distance. Furthermore, as the logical distance between
two logical block addresses maps nearly monotonic to the
(physical) cylinder distance, often the logical distance is
used and no conversion to physical addresses is required.

This approach is not feasible when implementing SATF
as information about the rotational position of sectors and
the actual position of the disk head is needed.

Thus, to choose the subsequent request from the ready
queue we need a model which predicts the time between the
current request and the subsequent request. This is the time
we aim at minimizing with SATF.

Based on the disk behavior as shown in Figure 3 and ex-
periences from previous work such as [19, 6, 7, 1, 8, 15] we

used the following model:

tbetween = tseek
(

δcyl
)

+ tovh
(

rwthis, rwnext

)

+ (6)
trot

(

δangle , tovh(rwthis, rwnext), tseek(δcyl )
)

where:

tseek(δcyl ) is the time necessary for the seek between the
cylinder of the current request and the subsequent re-
quest. It depends on the cylinder distance δcyl . As sin-
gle requests may span several tracks the computation
must be based on the physical position of the last sec-
tor of the current request and the first sector of the sub-
sequent request.

tovh denotes the overhead time occurring between the cur-
rent request and the subsequent request. It consists of
two parts, the overhead occurring after the current re-
quest and the overhead before the subsequent request.
Both are not fixed but depend on the types of requests
issued. We noticed different overhead times for read
and write requests.

The different times of the head settling for read and
write accesses to the platters after seeks might be re-
sponsible for this difference [14]. Another difference
between read and write requests is the amount of data
to be transferred before and after the requests. For read
requests, no data has to be transferred before the com-
mand can be started but the last sectors read by the disk
must be transferred to the host after completion of the
command, whereas at least data for one sector has to be
transferred to the disk before it can start a write com-
mand. On completion of a write request no data, but
only a completion message needs to be transferred to
the host controller.

A correlation between request size and overhead
could not be detected for SCSI disks. The explana-
tion for this is that due to the parallel execution of re-
quests and data transfers between host controller and
disk these overheads are nearly fixed as only the first
sectors for write requests and the last ones for read re-
quests need to be transferred.

Similar investigations for ATA disks using a Linux
device driver showed a clear dependency between the
request sizes and occurring overhead times. Thus, this
model will have to be changed if applied to ATA disks.

trot
(

δangle , tovh , tseek(δcyl )
)

models the rotational delay
the disk head has to wait for the destination sector to
arrive after head settling is finished and the overhead
time has elapsed. The value of this parameter is be-
tween zero and one full rotation of the disk (in case the
destination sector was just missed) and depends on the
angle difference δangle between the current request and
the subsequent request, the overhead time tovh , and the
seek time tseek(δcyl ). As for the seek time, also for the
rotational delay, the last sector of the current request
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and the first sector of the subsequent request are the
starting point for the computation.

3.3.2. Necessary Information To be able to implement
SATF scheduling based on the model described above we
need static geometry data, which we assume to be fixed
(remapping of defect sectors at runtime is ignored in our ac-
tual implementation) and dynamic information, which has
to be updated at runtime.

The following data belongs to the static part:

• The complete mapping from logical to physical ad-
dresses is used to determine the cylinder addresses and
the angle offsets of specific sectors.

• The rotational speed of the disk is used for the compu-
tation of angle positions.

• The seek curve which maps from cylinder distance to
time is used to predict the time for specific seeks.

• We distinguish overhead times for four cases: read-
read, read-write, write-read and write-write request
pairs. These four times have to be acquired for the de-
sired Tagged Command Queueing (TCQ) queue
sizes. Reasonable are sizes of one and two (see Sec-
tion 3.3.3).

For the dynamic part of the disk model we need to maintain
the internal state of the disk. For SATF the relevant infor-
mation is the current position of the disk head and the type
of the current request, so that we can choose the right over-
head time for the prediction of the service time for the sub-
sequent request.

In previous work, different approaches to keep track of
the head position were discussed. The most complex ones
compute the rotational position from the actual time, the ro-
tation time of the disk and regular calibration requests [7, 9].
However, this involves additional requests sent to the disk
as well as an accurate time source.

In contrast, in our implementation we use the physical
position of the current request and the model described in
Section 3.3.1 to compute the actual position of the disk
head. This works always except in cases when the disk has
idled some time. In this situation the rotational position is
unknown to the scheduler. On the other hand, in such situ-
ations the request queue is empty and therefore the sched-
uler has no assortment of requests to choose from anyway.
So the simple approach based on the previous request seems
appropriate.

3.3.3. Hiding the Overhead Times In the situation of not
using TCQ we spend a substantial amount of time in com-
munication with the disk without media access. This is nec-
essary as the disk needs to know what to do and the data to
be written, while the host needs the data read by the disk.

In the following we describe the usage of TCQ to mini-
mize these times as proposed in [9].

With modern SCSI and ATA disks it is possible to send
more than one request to the disk concurrently. The disk
normally executes one request at a time, so the internal re-
quest queue can be kept filled by the host. For current SCSI
disks we determined a maximal queue size of 32. This size
should be enough to hide the overhead times introduced by
communication between host controller and disk.

In fact, a request queue size of two is sufficient. One re-
quest is transferred to or from the disk while the other is be-
ing executed. When using larger request-queue sizes there
are times when the disk has two or more ready requests in
its queue and therefore the disk could use its internal sched-
uler to reorder the execution sequence. Thus, using a queue
size of two has the advantage that we can keep full con-
trol over the deadlines.

With SCSI disks there is another way, besides limiting
the hardware queue size, to prevent the disk from reorder-
ing requests, the use of ordered queue tags. Each outstand-
ing request queued in the disk can be tagged with either a
head of queue tag, an ordered queue tag, or a simple queue
tag [17]. The ordered queue tags act as barriers in the se-
quence. If each request sent to the disk is tagged with this
tag the disk is not allowed to reorder. Simple queue tags
raise no restrictions regarding the reordering of requests. If
requests tagged with the head of queue tag are sent to the
disk they are inserted as the request to be executed next.

However, using these tags earns no advantages beyond
what can be achieved with the limitation of the queue size,
thus they are not investigated further in this paper.

3.4. Starvation and Response Times

We have designed DAS with the intent that any schedul-
ing algorithm can be used in combination with it and real-
time guarantees are still kept. In our first implementation we
concentrated on the overall system performance and there-
fore chose SATF. However, a well known disadvantage of
SATF is that it does not prevent starvation. Since DAS guar-
antees that deadlines for real-time requests are met, starva-
tion can only occur for best-effort requests.

Several generic ways of adding starvation control to
scheduling algorithms can be found in the literature. Such
methods, namely aging and grouping, are described in [15].
Similarly to the mentioned methods we slightly modified
the SATF implementation to have control over maximum
latency and therefore to prevent starvation completely.

The modification consists of a threshold governing how
long single requests are allowed to stay in the driver’s
queue. If they stay longer, the modified SATF prefers them
over requests which could be reached faster according to the
unmodified SATF.

This algorithm is known under the name SATFUF
(shortest access time first with urgent forcing) and is de-



Proceedings of the 24th IEEE International Real-Time Systems Symposium, Cancun, Mexico, December 2003 7

IBM Ultrastar 36Z15 Seagate Barracuda 36ES2
IC35L018UWPR15 ST318438LW

Size 18.4 GB 18.4 GB
RPM 15 000 7 200
tseek 7.18 ms 11.36 ms
trot 4.02 ms 8.37 ms
n 5 2
tsector 0.01 ms 0.01 ms
m 128 128
tovh 0.07 ms 0.50 ms
tskew 1.06 ms 1.23 ms
v 1 1
w 29.69 ms 31.11 ms

Table 1. Disk and worst-case parameters

scribed in [8]. There are more sophisticated ways to im-
plement starvation control, but this simple approach is
adequate to demonstrate the feasibility of software con-
trol for starvation in our system.

Starting from the performance-oriented approach we im-
plemented, it seems easy to implement arbitrary policies.
For instance, one might generally prefer best-effort requests
over real-time requests in the scheduler so as to increase the
responsiveness of the interactive best-effort system.

4. Evaluation

To evaluate the presented scheduling framework, we in-
tegrated the scheduler into the SCSI driver of DROPS [5],
which we ported from Linux. For the measurements we
used a 1 GHz Pentium 3 PC with 256 MB of RAM and two
different disks, an IBM Ultrastar 36Z15 and a Seagate Bar-
racuda 36ES2 disk drive, which were connected to a Tekram
DC-390U3W Ultra 160 SCSI adapter.

4.1. Disk Parameter Extraction

To gain the necessary information about the physical lay-
out and characteristics of the disks, we implemented a set of
microbenchmarks. This work was inspired by [1] and is de-
scribed in more detail in [13, 12].

The extraction mechanisms work empirically and are
able to gain information from ATA and SCSI disks. To ex-
tract this information we instrumented the disk drivers in
the Linux kernel. A similar approach is described in [3].

Using the methods described in the literature mentioned
above, we gained most of the information for the worst-case
prediction, which is outlined in Table 1, the seek curve, and
the physical disk layout. The distributions of the request ser-
vice times for the two disks are shown in Figure 4. They
were measured for a random workload of 64 KByte read re-
quests.
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Figure 4. Request service time distribution.

Additionally, we used two techniques which we will de-
scribe below. The first is the determination of the overhead
times tovh for Model 6 and the second is the enquiry of the
number of additional rotations n for Model 5.

Overhead Times The overhead time used in Model 6 con-
sists of two parts, the overhead before and the overhead af-
ter a request, as described in Section 3.3.1.

To determine these two times for read and write requests
we conducted the following experiment: We issued a ran-
dom workload containing both read and write requests to
the disk. We initialized the SATF model with default values
for the overhead-time parameters and scheduled the work-
load with this SATF. We measured the resulting bandwidth
while using SATF and varying each of the four time param-
eters independently. For each of the parameters we chose
the value resulting in the highest bandwidth.

Further experiments with SCSI disks showed that the
overhead times do not depend on the request size (see Sec-
tion 3.3.1). We repeated the above experiment using differ-
ent block sizes and obtained similar results.

Parameter n In rare cases the disk head needs some addi-
tional rotations to settle on the destination track. To obtain
the maximal number of additional rotations we provoked
worst case situations by alternately issuing requests to the
innermost and outermost region of the disk.

In this experiment we measured the times needed to
complete the requests. With the help of Equation 5 we com-
puted the n for the worst case. To obtain realistic numbers
we issued a large number of requests (at least 100 000).

4.2. Creation of the DAS

To understand how the DAS varies over time, we used
a setup with three different streams, one mandatory stream
with 5 requests per period, one optional stream with 45 re-
quests per period and a best-effort stream with a constant
load of 100 requests. We ran this setup and measured the
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number of requests of the mandatory, optional and best-
effort streams which were added to the DAS each time it
was created.

Figure 5 shows the result of this experiment. At the be-
ginning of the period the requests of all streams are added
to the DAS, because the mandatory and optional streams
do not completely fill up the period. The total number of
requests in the DAS decreases over time as more of the
mandatory and optional requests are executed (remember
that the number of outstanding best-effort requests is fixed).
At some points only the requests of the real-time streams
are added to the DAS, reducing the total number of requests
in the DAS. This ensures that their service guarantees can
be met and happens more frequently towards the end of the
period. In addition to the number of requests in the DAS
we measured the time required to calculate the DAS, we
measured an overhead of about 30 000 cycles (30 µs on our
CPU). Even though this overhead occurs on each schedul-
ing decision, it is still negligible compared to the overall
costs of a disk request.

4.3. SATF

As described in Section 3.3, an SATF scheduler requires
the mapping of logical block addresses to the rotational
positions of the sectors on the disk. One such translation
takes about 1 500 cycles (1.5 µs). It is done prior to the re-
quest scheduling, thus it adds no significant overhead to a
scheduling decision.

4.3.1. Accuracy of the Model To verify the accuracy of
Model 6 we issued a large number of small requests to
the disk and measured the difference between the predicted
time to the subsequent request according to the model and
the real execution time.

The results of this experiment are shown in Figure 6.
When using no TCQ a small proportion of the requests is
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Figure 7. Scheduler performance

completed one rotation of the disk later (about 4 ms for the
IBM disk), while the majority is executed as predicted.

A dramatic increase in accuracy is achieved when using
TCQ with a size of two. Nearly all requests are executed as
predicted. So, using this technique of hiding the command
overhead not only increases the disk utilization but also the
accuracy of the prediction.

4.3.2. Performance Evaluation For performance evalua-
tion we compared our SATF implementation with the disk-
internal scheduler using TCQ. With the investigated disks
we experienced a queue size limit of 32 when using TCQ.
In software much larger queues are feasible.

Figure 7 shows the performance results for a random
workload for both disks. On the very fast rotating IBM disk
SATF loses about 12 % compared to the disk internal sched-
uler at a queue size of 32, but still outperforms the disk with
larger queue sizes. With the relatively slowly rotating Sea-
gate disk SATF is about 6 % faster with a queue size of 32.

4.3.3. Latency To gain an understanding of the magnitude
of request-execution latencies that can be caused, a very
simplistic experiment was performed: Two best-effort re-
quest streams are started concurrently, both consisting of
read and write requests and both using random block ad-
dresses. The first stream addresses the first logical quarter
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Figure 8. Latency for different scheduling algorithms.

of the disk and uses 100 times more bandwidth than the sec-
ond, while the second stream addresses the very end of the
disk.

We expect that the second stream will starve or that re-
quests from that stream will be delayed for very long times,
depending on the scheduling algorithm used.

The results of this experiment are shown in Figure 8 for
both disks. SATF has the largest latency of about 10 s (max-
imum not shown) in our experiments. This is to be expected
as there is no starvation control at all.

Using the disk-internal scheduling we still obtain very
long times of about 2 400 ms for the IBM disk and about
1 400 ms for the Seagate disk.

Using SATFUF as described in Section 3.4 we can con-
trol the maximal starvation time easily by modifying the
threshold. We can very accurately trade overall system per-
formance for responsiveness in the best-effort part of the
system. For the experiments shown in the graph we used a
threshold of 500 ms.

Using FCFS (first come first served) results in very com-
pact distributed response times for each of the disks. While
known to be the best choice for responsiveness, it normally
results in very bad overall system performance.

The results show that some kind of starvation control is
implemented in the disks. However, the latency experienced
strongly suggests some control at software level.

4.4. Overall System Behavior

4.4.1. Benefit of Statistical Guarantees Figure 9 shows
the bandwidth which can be assigned by the admission con-
trol to one optional stream depending on the requested qual-
ity compared to the bandwidth which can be achieved with
a best-effort load (64 KByte requests, 500 ms period length,
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random load). The maximum bandwidth of the optional
stream was determined on the basis of Condition 3 of the ad-
mission control using the service-time distributions shown
in Figure 4. The graph shows the bandwidth which can be
actually used by an application, that is qi ∗

b∗ci

t
where b de-

notes the block size of the requests.
This measurement demonstrates the large benefit of us-

ing statistical guarantees with disk drives. With a worst-case
execution time of about 30 ms for both disks (see Table 1)
only a bandwidth of 2 MByte/s can be assigned to real-
time streams, whereas the penalty of using statistical guar-
antees is much lower. With a requested quality of 99.9 %,
14.6 MByte/s or 96 % of the best-effort bandwidth can be
used for the IBM disk, for the Seagate disk 8.1 MByte/s or
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94 %. With a quality of 95.5 % for the IBM disk and 94.7 %
for the Seagate disk the whole bandwidth can be assigned
to real-time streams.

4.4.2. Service Guarantees and Disk Utilization With the
next measurement we want to evaluate the effects of en-
forcing service guarantees on the disk utilization. As we
have already shown in Section 4.2, the DAS does not al-
ways contain all outstanding requests. To measure how this
affects the disk bandwidth we used a setup consisting of one
real-time stream and a best-effort load with a constant num-
ber of outstanding requests. We measured the bandwidth we
achieved for both streams and additionally the portion of
scheduling decisions where only the real-time requests were
added to the DAS. For the first part of this measurement
we used a mandatory stream. Figures 10(a) and 10(b) show
the bandwidth we achieved depending on the number of re-
quests we used for the mandatory stream. As it can be seen,
enforcing the guarantees for a mandatory stream has no ef-
fect on the overall bandwidth, although in about 5 % respec-
tively 12 % of the scheduling decisions only the requests of
the mandatory stream were considered by the scheduler. Be-
cause the mandatory stream had to be admitted using worst-
case execution times it could only occupy a small portion of
the available bandwidth (max. 2 MByte/s for both disks).
Therefore we replaced the mandatory stream with an op-
tional stream (q = 0.95) for the next measurement. Again,
the results shown in Figures 10(c) and 10(d) show that there
is no penalty for enforcing the statistical guarantees. In-
stead, the overall bandwidth even slightly increases.

These results are partially caused by the random work-
load we use in our measurements. With such a workload
the bandwidth which can be achieved by the scheduler de-
pends mainly on the number of requests it can choose from.
For the mandatory load the small number of scheduling de-
cisions, where only the requests of the mandatory streams
were added, do not have an effect on the overall bandwidth.
For the optional stream this explains the slight increase in
the bandwidth, especially if the period is shared equally be-
tween the optional stream and the best effort load. In this
case the requests of both the optional stream and best-effort
load can be added to the DAS most of the time, whereas for
a larger number of optional requests only the requests of the
optional stream are added to the DAS, decreasing its aver-
age size.

To verify that our scheduler also works for other work-
loads, we ran the same measurement for a sequential rather
than a random workload. Figures 10(e) and 10(f) show that
also for this load there is no penalty for enforcing service
guarantees.

4.4.3. A Complex Example To summarize our evaluation
we ran a complex setup. Table 2 shows this setup, it con-
tains five optional streams with different quality require-

ments and an additional best-effort load. As you can see our
scheduling framework fulfills the requested qualities and as-
signs the remaining bandwidth to the best-effort load. The
bandwidth which is assigned to the best-effort load depends
on the ability of the particular disk. With the IBM disk we
achieve a total bandwidth of 16.3 MByte/s and with the Sea-
gate disk we achieve 9.3 MByte/s.

5. Related Work

Algorithms using a similar approach to the calculation
of the DAS are slack-time-based algorithms like the Just-
in-Time scheduler [10] or the ∆L scheduler [2]. In gen-
eral, the slack time of a request is the difference between
the latest time by which the request must be executed and
the earliest time the request can be executed. Within this in-
terval, a scheduler can choose any time to execute the re-
quest. The ∆L scheduler tries to improve the responsive-
ness of best-effort requests by giving them precedence over
real-time requests whenever sufficient slack time is avail-
able. The physical positions of requests are not considered
at all by the ∆L scheduler, real-time requests are scheduled
in EDF order and best-effort requests in FCFS order. The
Just-in-Time scheduler uses the slack time to schedule re-
quests in SCAN order to improve the disk throughput.

The Cello Disk-Scheduling Framework [16] aims to
meet the service requirements of different types of appli-
cations, for example periodic real-time, interactive best-
effort, or high-throughput best-effort applications. It uses
a two-level scheduling scheme: a class-independent sched-
uler which distributes the available bandwidth among the
different request classes and a class-specific scheduler for
each request class which schedules the requests of that
class according to the application requirements. The class-
independent scheduler maintains a scheduled queue which
contains the requests which have been already selected for
execution. The state of this queue is exported to the class-
specific schedulers in terms of slack time for each request.
These schedulers can use this information to implement for
instance a slack-stealing algorithm similar to [2] for inter-
active best-effort applications or a Just-in-Time EDF sched-
uler for real-time applications. The evaluation of Cello was
done using several simulations. The paper identifies two
problems with this approach, one being that the order in
which the class-specific schedulers are invoked impacts the
feasibility of the request schedule and the disk utilization.
Our approach does not suffer from this problem, we sepa-
rate the request scheduling from the enforcement of service
guarantees.

Various systems use statistical guarantees for disk re-
quests in the context of multimedia or continuous-media
servers [18, 11]. [18] describes an admission-control and
scheduling algorithm for continuous-media streams similar
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(a) IBM Ultrastar 36Z15 (random load, mandatory stream)
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(b) Seagate Barracuda 36ES2 (random load, mandatory stream)
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(c) IBM Ultrastar 36Z15 (random load, optional stream)
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(d) Seagate Barracuda 36ES2 (random load, optional stream)
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Figure 10. Influence of real-time streams on disk utilization.

to ours; disk request are scheduled in rounds, new streams
are only accepted if at least a client-specified percentage of
frames of the stream can be delivered on time. Our system
extends this by also considering hard real-time and best-
effort applications, which is a crucial requirement for to-
day’s systems having to cope with varying application de-
mands.

6. Conclusion and Outlook

In this paper we presented admission-control and
scheduling mechanisms for disk requests supporting
hard real-time applications, statistical real-time appli-
cations, and best-effort applications. Our scheduling al-
gorithm separates the enforcement of QoS guarantees
(i.e. the calculation of the DAS) from the optimiza-
tion of the disk utilization. With this separation various

disk schedulers can be implemented without violating guar-
antees. We demonstrated this with the modifications
of our original SATF scheduler to provide better re-
sponse times for best-effort requests. The evaluation of our
implementation pointed out that enforcing service guar-
antees does not affect the ability of a request scheduler to
optimize the disk utilization and the benefits of using sta-
tistical service guarantees.

Future work will include the consideration of block-
placement policies of file systems on the admission con-
trol. In our experiments we used a synthetic workload which
was uniformly distributed over the whole disk. Incorporat-
ing knowledge of the placement policy can further improve
the disk utilization. The performance results we presented in
this paper represent a slightly pessimistic lower bound. One
of the problems to be solved is the creation of a request-
service-time distribution representing file-system behavior.
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IBM Ultrastar 36Z15 Seagate Barracuda 36ES2
Stream Requests / Band- Requested Reservation Achieved Achieved Reservation Achieved Achieved

(i) Period (ci) width Quality (qi) Time (ri) Quality Bandwidth Time (ri) Quality Bandwidth
KByte/s % ms % KByte/s ms % KByte/s

1 5 640 99.00 20.90 99.73 638.54 36.90 98.83 632.81
2 20 2560 95.00 77.50 97.98 2509.12 139.00 96.88 2481.30
3 10 1280 90.00 35.60 94.44 1209.36 63.50 93.58 1198.39
4 5 640 85.00 15.80 90.04 576.44 28.00 90.30 578.13
5 10 1280 60.00 23.40 67.05 858.65 41.00 67.44 632.81

Best-effort bandwidth 10473.13 3528.73
Total bandwidth 16265.28 9282.93

Table 2. Complex Example

One approach could be to replay request traces, but traces
cannot be applied to different disks easily.

Future work will also include the extension of our
scheduling algorithm to support real-time applications with
arbitrary deadline requirements for disk requests. The over-
all idea is to modify the calculation of the DAS to use
the deadline of the closest request instead of the pe-
riod end. In general, by adapting the calculation of the
DAS, different policies can be implemented, for exam-
ple the distribution of the remaining time in a period which
is not assigned to real-time streams among all applica-
tions.

Several extensions to the model used for the SATF time
prediction are possible, for instance modeling of the disk-
cache behavior, adaption to the “access on arrival” feature
of modern SCSI disks, adaption to overhead times depend-
ing on disk-request sizes for ATA disks, and considering the
varying interrupt latencies in existing real-time systems for
the prediction of the actual disk head angle. These should
be investigated in further studies.
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