p-kernel Memory Management

Sebastian Schonberg

Volkmar Uhlig

Dresden University of Technology
Faculty of Computer Science
D-01062 Dresden, Germany

email: {schoenbg,volkmar}Qos.inf.tu-dresden.de

Abstract

In this paper we present a concept to manage structures
required by p-kernels to support a hierarchical user level
memory management, based on FlexPages. FlexPages are
variable sized memory objects. We describe a structure and
algorithm which allow high concurrency, fast access and also
time guaranties for real-time systems. It is also designed for
use in sparsely occupied address spaces and has been tested
on the 64 bit version of the L4-p-kernel on Alpha processor.
It performs the map operation in the worst-case time of
8.2us. The time for the flush operation depends only on the
number of affected mappings and has a worst-case comple-
tion time of 3.5us.

1 Introduction

p-kernels provides mainly inter process communication (IPC)
and a basic memory management scheme. For security rea-
sons, both issues need support by the kernel. IPC relies
on trusted sender and receiver IDs, memory management
on protection schemes to enforce access control to physi-
cal frames; for that, systems with virtual memory uses the
translation from virtual into physical memory. In [HWL96,
HC92] techniques are presented that enable to manage ad-
dress spaces on user level. A mapping originally belongs
to exactly one address space, but can be transferred to an-
other space with less or same access rights. By use of this,
address spaces can be created hierarchically. Figure 1 illus-
trates that.

Moreover, all mappings issued directly or indirectly by an
address space can be revoked by the issuing address space.

These two services enable to build a memory management
completely on user level. Every thread has its appropriate
user level pager. On a page fault, the pge fault exception
handler in the kernel initiates an IPC to the pager and waits
for a reply that establishes a mapping in the caller’s address
space.

Secondly, p-kernels are often used in real-time and embed-
ded system environments, which strongly rely on predictabil-
ity and worst-case times of kernel services. The map opera-

M1 mo
From M1 From M1 From M1 From M1
m4

Figure 1: Hierarchical Memory Mappings

tion can be used to cheaply transfer huge amounts of data
accross address spaces without copying the data.

In opposite to current buffer management algorithms like
[DP93] where the mappings are established in advance and
the file is mapped in a round-robin scheme, due to the pre-
dictability a mapping can be established at a guaranteed
time.

Especially multi-media data streams can now be mapped
contiguously in the application’s address space because the
mapping will be established only for a certain time. This
time is calculated upon program start by negotiation of
Quality of Service parameters and depends on the data stream
and the available buffer space.

To establish such a “timed-mapping” at a precise time, at
least the map operation needs to be predictable. Hence,
it is necessary to give worst-case times for the map oper-
ation. For a flush operation, the kernel needs information
which mappings have been established by an address space
into which address spaces. This data is stored in a struc-
ture called memory mapping database. Since more than
one activity can operate over this structure, it must sup-
port concurrent operations. This can either be implemented
by short, atomic instructions disabling interrupts or non-
blocking fully preemptable synchronization as described in
[Val95].

In the following, we present a structure for a 64-bit version
of the L4 p-kernel on Alpha [Sch96] that allows to use the
technique of hierarchical address space management under



real-time constraints. Finally, we give some measurements
to prove the ability of our technique.

2 Objects and Operations

L4 supports multiple address spaces. As described in [Lie95],
address spaces can be generated hierarchically. Based on
an initial space which is almost identical to the physical
memory space, new address spaces can be generated. Figure
2 illustrates: an address space Ap maps two regions, R1
completely and R2 partially into A;. Furthermore, it maps
R2 completely into As. A; maps R1 entirely into A3z and
partially into A4. Additionally, A4 gets R2 partially mapped
by A3.

ol EE O I

Figure 2: Recursive Construction of Address Spaces

To enforce security, a mapping must not be established with-
out agreement of the receiver’s space. Since spaces are no
active entities, the map operation is bound to the kernel’s
IPC operation. By use of a flag, the kernel distinguishes to
interpret the IPC arguments as FlexPage and not as mes-
sage data. A FlexPage describes a memory region of 2"
contiguous pages.

The p-kernel provides the following three operations:

map is the operation to send a FlexPage with the same or
less privileges to a thread. This establishes a mapping
to the source frames in the receiver’s address space.
The mapping in the source address space leaves un-
changed. An already existing mapping for a page in
the region described by the FlexPage is not overridden;
if the destination refers to the same page, but with less
access rights, the access rights are extended.

grant is similar to map, but the mapping is removed in the
source’s address space.

flush revokes either all mappings referring to frames de-
scribed by the given FlexPage in caller’s address space
issued by threads of this address space or changes the
access to read-only. This operation is an own system
call and not bound to IPC. This is neccesary to per-
form a flush operation independently of an activity in
the receiver’s space.

When for example in Figure 1 m2 revokes its mappings by

the flush operation, m5, m6 and m7 are also affected and
flushed.

3 Memory Mapping Database

The mapping database was designed to meet the following
requierements:

e the kernel reserves only a few pages of main memort
for its management, hence the database must minimize
its memory usage

e database operations run in the context of the calling
thread; that means they use the kernel stack of that
thread. Due to the restricted size of the stack, no
recursive algorithms can be used

e database operations must either guarantee timing re-
quirements or must be non-blocking with synchroniza-
tion

e operations that return must guarentee, that the ad-
dress spaces are in a well defined state and no pending
operation is in progress

o the execution order caused by the hard priorities of the
kernel must be strictly adhered.

3.1 Database operations

FlexPage operations modifying the address spaces have their
counterparts for the mapping database. The operation to
send a FlexPage inserts a new entry or modifies an existing
entry in the database. The operation to flush a Flexpage
removes entries from the database.

add entry inserts an entry into the database. The opera-
tion must be executed atomic to ensure database con-
sistency as discussed in the following section.

change entry modifies an existing entry. This is the fastest
operation, since the entry only needs to be modified
and no memory allocation and database insertion is
necessary.

flush entry removes all sub-mapping entries and if chosen,
the top entry. This operation is not time-critical but
must be interruptible. The freed entries are added to
the free pool.

The map and grant operations are implemented as blocking
and time-deterministic functions with disabled interrupts.
When the total amount of affected pages for a flush op-
eration is unknown, it can not be implemented as time-
deterministic and a non-blocking design is chosen.

The maximum number of mappings in a system cannot be
estimated on startup. Hence, a pre-allocation of memory
for a fixed number of entries is not possible. The database
is designed as an array in virtual memory. On touching
an address in this array, the kernel maps a page from its
kernel page pool to that address and restarts the faulting
instruction. Freed entries in the database are linked in a
list. Next time, an entry needs to be allocated, the entry is
taken from that list.

3.2 Structure

Since a frame can be mapped in many other address spaces,
the structure of the database is a tree representing the rela-
tion of the mapping to the issuing address spaces. To reduce
memory space, the structure can be realized by linking all
destination nodes together in form of a list. The parent en-
try only holds a reference to the first entry in the destination
list.

Each mapped frame is represented by one entry in the map-
ping database. An entry contains the page’s virtual address
and the address space ID.



O O Ut W N

e el el e
N OOt W= O O

The overall pointer structure is designed to support a fast
lookup of the nodes.

A running flush operation must either leave the databasein a
consistent state or lock inconsistent database areas. As men-
tioned above, despite a running flush operation, the map and
grant operations must be successfully completed without in-
terruption. Paying attention to that, the required pointer
links are displayed for an example in Figure 3.

M1 mo
</li‘mm M1 From M1 From M1 From M1
m1 M2 m2 m3 md
(From M2
M3 m5
(From M3 From M3
m6 m7

Figure 3: Mapping Database Memory Representation

3.3 Referencing a Mapping Entry

To find a reference to the database entry corresponding
to a virtual address in address space, the kernel needs an
appropriate lookup function. This function can either be
implemented as a hash function, or a shadow page table.
Since the Alpha has software managed Translation Look-
aside Buffers (TLB), we extended the leaf entry of a page
table by a pointer into the database. This allows a fast
lookup of the database entry and secondly, page tables and
mapping database always represent the same state.

4 Concurrency

Concurrency always occurs when more than one thread per-
forms map or flush operations over the same physical frame.
As described, the flush operation needs to be interruptible.
When a thread reaches an entry locked by another thread it
immediately switches to the thread that keeps the lock.
The following shows the flush implementation in pseudo
code.

void flush(mapping_ptr)
{
t_map_ptr = mapping_ptr;

flush_loop:
while (!(aquire_lock(t_map_ptr))) {
switch_to_locking_thread();
}

if (has_submappings (t_map_ptr)) {
unlink_submapping (t_map_ptr);
t_map_ptr = t_map_ptr->submapping;
goto flush_loop;

}

flush_no_lock_loop:
flush_page_table_entry (mapping_ptr);

18
19
20
21
22
23
24
25
26
27
28

N OOt W N

if (has_nextmapping (t_map_ptr)) {
t_map_ptr = t_map_ptr->next;
goto flush_loop;

}

if (parent_of(t_map_ptr) != mapping_ptr) {
t_map_ptr = parent_of (t_map_ptr);
goto flush_no_lock_loop;

}

release_lock (t_map_ptr);

}

The critical operation is to unlink the entry. Inconsistency
of the database would occur, when many threads wait to
acquire the lock and the thread currently holding the lock
releases the entry and a map operation of a high priorized
thread reuses exactly this entry. A field that counts the
pending operations over that entry was added to remove
the entry after all operations have been completed. For the
operation that changes the attributes to read-only the de-
scribed operation is uncritical since the mapping database
is only used to lookup the corresponding entries in the page
tables.

In opposite to a global lock for the frame, locking every
single map entry allows to simply implement dependencies
between the threads acquiring locks. This implementation
avoids possibly occuring problems due to dead-lock situa-
tions or priority inversion. This can be done without chang-
ing the priority of a thread while running a database oper-
ation.

The lock as mentioned above, also affects the map and grant
operation that way that a new mapping cannot be added
with read-write permissions while a read-only flush opera-
tion is still in progress on the same frame.

The resulting entry structure is as follows:

e the child list, this is a doubly linked list; the first and
the last entry point back to the parent entry

e a pointer to the list of destination entries

the virtual address and the

address space ID,
e the thread currently holding the lock and

e the counter for the number of pending threads

To implement a flush of an entire address space, all mappings
of the same address space are linked together.

5 Performance

The performance measurements were done on an Alpha 21164,
clocked 433 MHz with 64 MB RAM and 1 MB second level
cache.

The test program structure for the map operation looks like:

server thread:
from = wait (ANY, &pagefault);
while (true) {
fpage = flexpage_of (pagefault);
from = reply_and_wait (from, fpage,
ANY, &pagefault);



O 00~ Ut i WN

client thread:
start = get_time ();
for (page = 0; page < NR_TESTS; page++) {
/* generate request to server thread */
read_memory (address);

address = next_page(address);

}

time = get_time () - start;

The benchmark test accesses every page in an address range.
The first run establishes a mapping only in that address
space. This case is standard for handling a page fault. Here,
the responsible pager already has all pages mapped in its
address space.

In the second case, even this pager has to request the page
from its pager.

We measured the time from generating the request until the
reply from the pager. We get costs from 3.5us to 8.2us for
a one-level page fault and costs from 8.2us to 18us for a
two-level page fault. For the second case, scheduling in the
kernel generates additional costs. The peek at every 256"
run occurs due to the allocation of a blank page for the
mapping database.

18 ‘
Two Level Pagefault -------

16

14

Time per mapping [us]

0 64 128 192 256 320 384 448 512
Testrun

Figure 4: Memory Mapping Costs

For flush we measured two cases. A flat structure in which
all mappings are initiated from the same address space and
a hierarchical structure where a mapping is passed from one
address space to the next. Figure 5 illustrates the costs for
these both cases. Obviously the costs are independent on
the mapping structure. Consequently, the costs for flushing
an entry only depend on the number of entries in the tree
and not from its structure. The higher costs for flushing a
FlexPage with less mappings are caused by cache and TLB
misses in the kernel.

6 Conclusion & Future Work

We presented an algorithm and a structure for a memory
mapping database that allows p-kernel based user level mem-
ory management providing the map and flush operation
even under real-time constraints. The current state only
provides a predictable map, but further work will be done
to get a predictable flush operation, too.

3.5 T T T

Flush hierarchical structure -------

25

Flush time per entry [us]

15

1 4 16 64 256 1024 4096
Contiguous Pages

16384 65536

Figure 5: FlexPage Flush Costs

In the DroPs [HBB198] project that deals with coexistence
of real-time and time-sharing systems, a predictable flush
operation allows to give memory pages originally reserved
for the real-time part as read-only pages to the time-sharing
environment. Since the page is only mapped read-only, it
can simply be flushed and passed on to the real-time part
within a deterministic time.

Acknowledgements

Hermann Hartig, Uwe Dannowski and Jean Wolter provided
helpful feedback and commentary on earlier versions of this

paper.

References
[DP93] Peter Druschel and Larry L. Peterson. Fbufs:
A high bandwidth cross-domain transfer facility.
In 14th ACM Symposium on Operating System
Principles (SOSP), December 1993.

[HBB198] Hermann Hirtig, Robert Baum-
gartl, Martin Borris, Claude Hamann, Michael
Hohmuth, Frank Mehnert, Lars Reuther, Sebas-
tian Schonberg, and Jean Wolter. Drops — OS
support for distributed multimedia applications.
In Euro Sigops ’98, 1998.

K. Harty and D. R. Cheriton. Application-
controlled physical memory using external page-
cache management. In 5th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS),
pages 187-197, Boston, MA, October 1992.

H. Hirtig, J. Wolter, and J. Liedtke. Flexible-
sized page-objects. In 5th International Work-
shop on Object Orientation in Operating Systems
(IWOO0O0S), pages 102-106, Seattle, WA, Octo-
ber 1996.

[HC92]

[HWL96]

[Lie95] J. Liedtke. On p-kernel construction. In 15th
ACM Symposium on Operating System Princi-
ples (SOSP), pages 237-250, Copper Mountain

Resort, CO, December 1995.



[Sch96]

[Val95]

S. Schonberg. L4 on Alpha, design and imple-
mentation. Technical Report CS-TR-407, Uni-
versity of Cambridge, 1996.

John .D Valois. Lock-Free Data Structures. PhD
thesis, Rensselaer Polytechnic Institute, Troy
New York, 5 1995.



