The Case for Practical Multi-Resource and
Multi-Level Scheduling Based on Energy/Utility

Hermann Hirtig, Marcus Volp, Marcus Hahnel
Institute of Systems Architecture, Operating Systems Group
Technische Universitidt Dresden
Dresden, Germany
{haertig, voelp, mhaehnel} @os.inf.tu-dresden.de

Abstract—Energy has become the dominating concern for
resource management. We advocate an energy-centered design
approach for resource-management systems. To this end, we
structure systems in layers, where layers implement higher-level
resources using lower-level ones. For each layer, we describe the
relation of the performance delivered for the higher layer to
its demands on the lower layer and refer to that relation as
demand/performance function. The lowest layers are rooted in
hardware and express demand in terms of energy, the highest
layers provide performance in terms of user-specific utility,
thus leading to an Energy/Utility characterization of a complete
system.

We describe the overall approach, some research challenges and
few initial results on the representation of demand/performance
functions.

Keywords—energy; utility; scheduling

I. INTRODUCTION AND OVERVIEW

Energy usage has become a major if not the dominating
concern for the design and implementation of resource man-
agement. This leads to additional and different requirements
for resource management algorithms. Most current resource
management approaches assume resources to be instantly
available but scarce. Therefore, especially in the field of
embedded and real-time systems, these algorithms attempt
to optimize the usage of such instantly available but scarce
resources. In contrast, the current or expected technological sit-
uation is characterized by abundant availability of inexpensive
and heterogeneous latent resources that can be activated using
energy which in turn becomes the resource to be considered.
This calls for resource management with a step of indirection:
energy as the prime resource is used to activate a latent
resource or to increase the load on an active resource. If there
are alternatives, the choice should be dictated by the energy
required.

A simple example for that change in resource management
are CPU admission and scheduling algorithms to provide CPU
cycles to a task. Most currently used or published algorithms
strive to optimize CPU usage for a given set of active CPUs.
However, with the appearance of heterogeneous multicore
computers and the observation that cores tend to have an
energy-optimal usage frequency, there are novel challenges:
If a given bandwidth of CPU cycles is required for a task, the
available options are 1) to add the task to the load of an active
CPU if possible within the optimal frequency or 2) to spend
energy to activate a latent CPU or 3) to increase voltage and
frequency of an active CPU.

A similar example is the us-
age of network interfaces. In some
application areas, computer sys-
tems have several network inter- \\ //
faces with different characteris-
W

tics, for example one high-speed
interface being relatively energy-
efficient for high bandwidth and
several low-speed interfaces being
relatively energy-efficient for low
bandwidth. Then, if a certain com-
bined bandwidth is required by the
clients of a network stack, there is
a choice between using one or few
of the low-speed interfaces or the
one high-speed interface.

Fig. 1. Choice between alter-
native low-level resources ;|
and R; > to generate the per-
formance for the intermediate
resource R,

These simple examples have in

common that a higher-level resource (CPU or network band-
width) is provided using alternative lower-level ones (cores or
NICs, Figure 1). In both examples, the choice should depend
on the energy needed.

To enable such choices, we advocate
to structure systems in layers, where
layers implement higher-level resources
dcmmlepermﬁ‘;‘;‘;‘gﬂ» wility ysing lower-level ones (Figure 2). For

each layer the performance delivered to
video the higher layer relative to its demands
on the lower layer is known as its de-
mand/performance function. The lowest
otwork layers are rooted in hardware and express
stack demand in terms of energy, the high-
est layers provide performance in terms
of user-specific utility, thus leading to
NIC an Energy/Utility characterization of a
energy complete system. Performance of each
demand layer is mapped to energy by recursively
inspecting the lower layers. For brevity,
we will sometimes refer to a higher-level
as a client of a lower-level one.

user

demand T performance

demand T performance

energy

Fig. 2. Energy/uti-
lity mapping through

demand/performance. We can reason about Energy/Utility

with a bidirectional interpretation:

e the (minimal) energy needed for a required utility or

e the (maximal) utility that can be achieved with a given
amount of energy.

user

HD video \LT delivered resolution

“good video”
v1deo network
WWldth
CPU cycle\
network
brightness scheduler stack
| display NIC
energy | active || latent | | 1G || 10G |
deman \i, \i/
energy

Fig. 3. Hardware software stack for video scenario

For all layers, we use the Energy/Utility ratio for resource
management decisions.

Now that we have informally introduced Energy/Utility, we
can use the notion with a range of interpretations. For example,
consider the scenario in Figure 3 of a network video player
requiring three resources, a network connection for streaming,
CPU cycles for decoding and a display for showing videos. It
is useless to spend all energy on receiving and decoding the
video stream in very high quality if the remaining energy does
not suffice to display the video in reasonable brightness. In
other words, available energy should be used for the resources
in order to optimize the usefulness of the video player for its
user.

In such cases, where available energy does not suffice
to provide all user demands, a rating of the importance of
demand to a user is needed. Such ratings can be borrowed
from operating-system level mechanisms such as priority or
proportional share or from economics expressions of user-level
satisfaction.

Examples for utility become closely related to specific
applications. These may be QoS parameters for media or the
number of transactions per second for database applications.
But also more subtle variants of utility are of interest, for
example the minimal time required to respond to sudden load
peaks. It may be necessary to keep a number of disk drives
running to be able to respond faster to load changes than the
time it takes to restart drives [1].

For a multi-level scenario to become practical, cross-level
global decisions should be restricted to rare decision points and
frequent decisions have to be made locally within a level. To
enable local and global decisions, energy costs for resources
are propagated upwards or required utilities downwards. Con-
sider Figure 1 as an abstract example: applications A and
B use an intermediate resource R,, which in turn can use
either one of the lower-level resources R;; or ;2 as in the
network example described earlier. Utility of either R;; or
R, 2 is used to implement R,,, depending on which is more
energy efficient. We refer to this type of selection as a local
decision between alternative implementations.

La] x|
NP7
/7NN @
s

Fig. 4. Translation between higher-level and lower-level demands.

L®

The configuration process can be initiated top down or
bottom up. In a top down process, given required utilities for
A and B are propagated downwards making the most energy
efficient decisions at each level. In a bottom up process, the
resource management decisions are guided by the desire to
generate the highest possible utility at the application level.
This upwards process requires knowledge, how application
utilities relate to each other depending on user preference.

II. MULTI-RESOURCE MULTI-LEVEL SCHEDULING

Central to our approach is an efficient translation between
the performance requested at the higher level of each resource-
layer in the hierarchy and the lower-level demands required to
achieve this performance. In general, multiple applications and
higher-level resources specify demands for the same shared
resource (e.g., Ry in Figure 4) that have to be satisfied
simultaneously. For example several applications may share
the network and specify demands in terms of latency and
bandwidth requirements. The first challenge for determining
the low-level demands of such a resource Ry is therefore to
combine these demands into a total demand. Depending on the
type of resource, this combination may simply be an aggregate
(e.g., the accumulated bandwidth or the minimal latency) but
there are also resources where these requests have to remain
in the form of a vector.

For example, to guarantee a low latency for network traffic,
bandwidth must be reserved for this traffic to avoid that low-
latency requests are buffered in the switches and elsewhere.
An elaborate study of this point is described in the context of
data centers in the work of Alizadeh et al. [2]. Their protocols
— called HULL — leave bandwidth headroom in switches
to guarantee unbuffered transmission of low latency requests.
Demands specified to a HULL-enabled network must there-
fore distinguish whether part of this low-latency bandwidth
is used or whether the request falls into the normal high-
bandwidth class. The example shows also that demands may
be incompatible. HULL can serve a combination of high-
and low-latency requests up to the bandwidth reservation for
both classes. Alternatively requests utilizing the full fabric
bandwidth can be satisfied. However, in the latter case, the
latency requirements for low-latency requests can no longer
be guaranteed. A demand vector with low latency and near
fabric bandwidth requests can not be met.

Based on the total demand (which may be a vector of
demands), a resource determines what lower-level resources
it needs to satisfy this demand and hence achieve the desired

Power [W]

400 600 800 1000
Bandwidth [MBit/s] min ====== Max == == gverage =

Fig. 5. Energy profile of a 1Gbit Intel EXPI9301CTLK Ethernet card when
receiving data at different bandwidths — Source [4].

performance. In the simplest form these requests are singular
demands the resource Ry places on the lower-level resources.
In Figure 4 these are R; and R,,. We write df for the
demand of Rj to R; and d’fn for R*’s demand to R,,. In
certain situations, it is necessary to expose further information
about the relative ranking of these demands to lower level
resources. In the context of real-time locking protocols, we see
a similar choice between forwarding these “nested” lower-level
resource requests with the ceiling priority of the resource or
with the current priority inherited from the threads requesting
this resource [3].

Once we have translated the user-level demand to a demand
for hardware resources, we consider the energy profile of
these resources to obtain the power and in turn the energy
as the power-time product that this resource requires. Figure 5
contains an example of such an energy profile. It shows the
power required by a 1Gbit intel EXPI9301CTLK Ethernet card
while receiving data. We measured this power by tapping into
the supply lines of a riser card for different bandwidth from
idle (0 Mbit/s) to the full capacity (near 1 Gbit/s). It is easy to
see that a direct representation of this energy profile is much
too detailled to be usable for the rather coarse grain global
energy adjustments that we have to make.

Models for other hardware resources have been pub-
lished [5]-[7]. However, like the profile in Figure 5, these
profiles tend to be too detailed for our purpose. In Section IV,
we return to this point and give further insights into our
approach for reducing this complexity.

There are two primary ways to configure the hardware/soft-
ware stack of a system.

Top Down: Top-down configuration starts with a set of
demands that should result in utility and searches as described
above for the most energy-efficient configuration that delivers
this utility.

Bottom Up: Bottom-up configuration starts with an avail-
able energy budget and strives to optimize the utility. In prin-
ciple, all alternative demands of the application are checked
in the same way as in top-down configuration and deliver a
necessary energy budget. Whichever configuration meets the
user’s demand best within the available budget is chosen.

III. CHALLENGES

In addition to the above challenges, for which we will
introduce partial solutions in Section IV, we explain also those
for which we have no immediate solution at hand.

1) Complexity of Application Models: One of the biggest
challenges is to obtain the energy profiles and demand/perfor-
mance functions for all hard- and software resources.

For simple usage characteristics of hardware resources
(e.g., for the CPU [8] though not for sophisticated instruction
mixed and for an energy-adaptive network interface [4]) we
have already found suitable energy profiles (see Section IV)
and we are confident to be able to extend these to more
complex resources. However, for applications, suitable char-
acterizations in terms of demand/performance functions are
rare.

The main difficulty when characterizing more complex
applications such as for instance a database management
system (DBMS) is to understand the delicate interplay be-
tween internal state, frequently changing load and internal
optimizations that already try to improve the energy-efficiency
of the application. For example, repeated observation of similar
requests lets the DBMS cache results (which increases the
memory demand of the system) or to switch from a demand
driven computation of queries to a setting where a background
thread computes part of the queries ahead of time.

We hope that a decomposition of the DBMS into internal
schedulers of a multitude of resources reveals an internal
structure that is compatible with our approach.

2) Local Optimization: Load-based local optimizations
within a single resource, can provide a significant gain in terms
of energy consumption. For example while the network may
be configured to use a high bandwidth network card because
the increased bandwidth reduces the energy spent in decoding
the video, it is still possible to move to a lower bandwidth
mode when the current traffic is low enough to warrant such
a switch. The components themselves know best when and
how to perform such local optimization. Examples of locally
optimizing components beside the network are disks that use
request reordering and the wireless network with adaptive link
rates and transmit energy.

A similar approach to those local optimization can be found
in software, which can replace individual sub-components such
as search algorithms depending on the current type of work
requested. A database is an example that performs such opti-
mization, choosing operator implementations that are the most
adequate for a given system load and query composition. This
optimization is based on prediction and, if needed, dynamic
evaluation of progress and performance during the runtime of
a query [9].

While such local optimizations lead to increased energy-
efficiency in single components, optimizing a whole system
configuration requires a global view. This makes decomposi-
tion harder and, with increasing complexity of the software
and hardware stack, increases the time required for global
reconfiguration and optimization.

The streaming video example introduced in Figure 3 is one
example that a global view is needed. The demands requested
from the network card in terms of bandwidth may be 2 or
10 Mbit/s depending on the video codec used. We cannot let
the network card or even the video player make the decision
which bandwidth to use. If we reduce the bandwidth while still
retaining the same video quality we will have to use a more

Fig. 6. Choice between alternative utility-generating low-level resources ;1
and R; o to generate the utility the intermediate resource Ry, offers to the
applications A and B.

sophisticated codec (e.g., MPEG-4 instead of MPEG-2 for a
DVB video stream) that is heavier on CPU usage.

Because this trade-off can occur in different parts of the
software stack we need a whole system view to see how the
decision for lowering the energy-consumption — and thus
performance — of one component affects other components.

This means, that a subtree of a system hierarchy cannot be
decomposed for the sake of optimization as long as multiple
subtrees of the root node contain resources that are traded
against each other. In our example CPU and network card are
those resources with the video player being the limiting root
node.

Figure 6 illustrates another reason why occasional global
decisions are needed. Consider that, starting from the scenario
from 1, another application C is starting to use [?; . This may
cause R,, to become cheaper (e.g., if R,, and C share R;)
or more expensive in terms of required energy (e.g., if both
R, 2 and R;; have to be powered) , and the cost associated
with R,, is outdated. In that case a complete reorganization of
the resource managers is indicated. In real-time systems, such
situations are closely related to mode changes and we hope to
draw from the insights obtained there.

For our energy aware resource hierarchy we envision
components that are energy-adaptive on their local level, and
energy-aware and configurable for global system configura-
tion. Components providing these characteristics can enable
highly energy-efficient systems.

IV. OPERATION MODES: MASTERING THE COMPLEXITY
OF ENERGY/UTILITY-BASED SCHEDULING

In the previous section, we have seen the central role of
translating demand and performance between lower and higher
levels (Figure 4). We have also seen on the example of the
gigabit Ethernet card that hardware profiles, which actually
determine how much energy is required for a given system
utility, can be rather complex, which would complicate the
translation and make our approach intractable. Fortunately, we
found that many resources follow a much simpler energy/per-
formance characteristic when we leave fine-grain adjustments
to the resource-local schedulers: they either consume energy
in nearly discrete steps, which we call modes of operation, or
in a way that can be approximated as a linear combination of
the demands of two adjacent modes.

1.8 - = mwe P TS

D Gt
5 :'\'I'"-. :..u et .-“‘1.‘.‘, A },,.\,‘:
t: - ¥

0 200

400 600 800 1000
Bandwidth [MBit/s] min ====== Max == == gverage =

Fig. 7. Modes of a 1 Gbit Intel EXPI9301CTBLK Ethernet card.

Consider Figure 7, which augments Figure 5 in Section II
with additional annotations. To keep the card operational
without sending or receiving any data, a power of approx-
imately 1.48 W is required. We call this state of operation
the idle mode of this resource. Once the card receives with a
bandwidth higher than approximately 660 Mbit/s, the average
power demand is almost constant at 1.8 W. In Hihnel et al.
[8] and [4] (from which the above measurement originates),
we have seen that the energy profile of many resources show
such a flat power demand. For example, the average power
demand of a 10 Gbit Intel Ethernet Server Adapter X520-T
while receiving at a bandwidth of 10 Gbit/s was only 0.15W
larger than the idle mode power of 7.85 W, which motivated
us to characterize the card only with a single operation mode
and a constant power demand of 8 W.

In the range between 0Mbit/s and 660 Mbit/s, the power
demand of the 1Gbit NIC increases nearly linearly from
1.48 W — the idle mode (M,q;.) power — to 1.8 W — the
card’s single and therefore adjacent non-idle mode which we
call M;. If we call these bandwidth values the upper and lower
threshold bandwidths for the modes idle and M respectively
(i.e., the NIC can no longer be idle if a bandwidth greater
than 6“?(M;4.) = 0Mbit/s has to be received and it starts
being in M7 once the bandwidth is greater than 6% (M) =
660 Mbit/s), we can characterize the power demand P in
between these two modes as the linear combination

P=oa-(b—0""(Mae)) + P(Mae))]

In this equation, b is a request (in this case the requested band-
width) in the interval [0“P(M;q;.), 0% (My)]. The parameter

o= (P(M;) — P(Miuc))
©Glow (M) — 0% (M;que)

is the gradient of the straight dashed line represented by
Equation 1.

Again, in [8], we have seen that this characterization holds
for a multitude of resources including the CPU when consid-
ering as adjacent modes the idle mode and a full-performance
mode at each supported frequency level of the CPU. The full-
performance mode was triggered by an artificial benchmark,
which we wrote to complete as many integer instructions as
possible. Figure 8 shows the measured and estimated power
and the relative error of this estimation of 13 SPEC CPU 2006
benchmarks.! The estimation accounted halted clock cycles
with an idle mode power and used the fraction of non-halted
versus halted cycles for the estimation. Please note, all 13

Measurements were taken on an Intel i5-2400S Sandybridge processor run-
ning Linux 3.3.4 with no frequency scaling and idle=halt. The measured power
for idle and our artificial benchmarks were 7.7 W idle, 10.8 W benchmark at
2.0GHz, 7.7W and 12.7W at 2.5GHz and 8.1 W and 20.76 W at 3.2 GHz.

RAPL Evaluation of SPEC Benchmarks
24
S 18
o 12
5 6
o
o 02 cc woct o el _end urm o 1P 1al o nd
eY\‘oe“ s o) go® I e o0 gant n2 o€ AY as Y\a\a“c‘o spec(a
B 2.0GHz@ 1.0257V [2.0GHz @ 1.0257V (Est.) 2.5GHz @ 1.046V [] 2.5GHz @ 1.046V (Est.)
B 3.2GHz@ 1.241V B 3.2GHz @ 1.241V (Est.)
5
=] -
s - —== - = B N — ———]
ju
g -15
W _os
o A02 cC a \S A . o ok ° al \'S nd
pere” oz® 9 T g™ e S‘P’“Q\-\\>cx“"“‘t N2 net® 235 en ™ gect®
] Error 2.0GHz@ 1.0257V [] Error 2.5GHz@ 1.046V [l Error 3.2GHz @ 1.241V
Fig. 8. SPECINT from SPEC CPU 2006 Benchmarks measured using RAPL when estimated by modes Source: [8]
high-level perf . . .
18l evel perfornes constant despite increasing demand from the considered lower-
level resource, or as linear combination of adjacent modes.
HD . Figure 9 illustrates these modes in the mapping from video
SD — quality to network bandwidth.
mode M;
2 Mbit/s 10 Mbit/s B. Translating Utility to Energy with Modes
low-level demand . . .
With modes, the translation between higher and lower-level
Fig. 9. Mode-based characterization of the video demand/performance demands and ultimately between utility and energy becomes
function.

benchmarks were SPEC CPU 2006 integer benchmarks (CINT
2006). We expect that for other benchmarks it will be necessary
to characterize the floating point unit and other instruction
extensions such as Intel AVX or SSE as separate resources
with additional modes. Hylick et al. [10] support our findings
for disks.

A. Modes for Software Resources

Before we continue introducing how modes work for
software resources let us recall how we are used to construct
systems where time is the primary resource to manage. Rather
than computing schedules for the actual execution times of
tasks, adjusting priorities and other steering metrics based on
the actual execution, we compute upper bounds and determine
schedulability and resource demands based on these bounds.

To return to our video example, rather than adjusting the
network demand to the actual bandwidth required to fetch the
next scene, streaming works by allocating a certain amount of
memory to buffer part of the video stream before decoding.
For a reasonably sized buffer, a network demand of 2 Mbit/s
suffices to display an SD video and a demand of 10Mbit/s
sustains the demand for a full HD stream.

Analogous to hardware modes, we therefore strive to
characterize demand/performance functions in terms of modes,
which describe certain flat levels where the performance is

simpler than translating the actual demands down to the lowest
level resources and then via complex energy models to the
requested energy. Figure 10 demonstrates this translation for
our video example and the resource network bandwidth. Using
similar demand/performance functions for the resources dis-
play and CPU and accumulating the resulting power demands,
we obtain the energy required for displaying the video in a
certain combination of resource modes as the product of the
accumulated power of all resources and of the time that the
system remains in this combination of modes.

Top Down: The top down translation starts with the
demand that the application has to meet (in our case the
demand to display a HD video). Going to the right, the
smallest lower-level demand that, when satisfied, meets this
demand is the low threshold of mode M;; with a bandwidth
demand of 10Mbit/s. With this demand, or more generally
with the total demand of all applications that need network
bandwidth, we can lookup the demand/performance function
of the network to find that the demand is above the upper
idle mode threshold and below the low threshold 6% (M) of
mode M7 of the network. This means, we have to compute
the resulting network demand using Equation 1 as a linear
combination of the M, and M; demands.

Had this total demand been 2 Gbit/s, i.e., above the upper
M threshold, the 1 Gbit Ethernet card could no longer sustain
this traffic. Instead, as described in greater detail in [4], we
would have to switch to the 10 Gbit card. As this card, does
not show a graceful increase of its energy demand, we have
to caculate all further resource requests as if we had requested

video

T My
SD ’
¢ M,
2 Mbit/s 10 Mbit/s network
: iy
1Gbit/s ‘
10 Mbit/s M;
idle 1G NIC 10G NIC
GB Ethernet receive power
Fig. 10. Mode-based translation between utility and energy.
power, . .
B For more coarse grain fluctuations of the load, such a
reconfig. || payoff after

! - .
ireconfiguration
|

Ri: I-1I

EM,My,...) FESIESNW] EMMiy,,...)

time

Fig. 11. Change of modes as a result of changes of the workload

10 Gbit/s in the first place (because 6P (M) = "% (Myr)
there is no room for a linear combination of M; and M;; and
we have to directly switch to My, which corresponds to the
10 Gbit card’s only mode of operation.

Fortunately, our network can be serviced with a 10 Mbit/s
bandwidth of the 1 Gbit card, which corresponds according to
the card’s demand/energy function to a power of approximately
1.5W. In other words, mode My of the video inflicted the
linear combination of M;4;. and M for the network as a whole
which in turn inflicted the M,q;. - M linear combination for
the gigabit Ethernet card.

Bottom Up: The bottom-up translation is as described
in Section II except that we expect the characterization of
demand/performance functions in modes to reduce the number
of possibilities to a degree where the configuration can be
transformed into a treatable optimization problem.

Scheduling based on Modes: Once we have determined
the mode for each resource that best matches the current
system-level demand while minimizing the system’s overall
energy consumption, we have optimally adjusted our system
to the current load situation. For as long as this situation
persists, the energy demand for this mode combination can
be determined from the power demand of all lowest-level
hardware resources times the duration how long this situation
lasts. Upon a change of requirements (e.g., when the user
decides to stop playing the video and switches to a browser)
a change of modes may be indicated. Unless this change is
short term and local to a few resources, we can simply leave
the system in its original mode because the energy to reach a
global decision on a new set of modes dominates prospective
energy savings.

readjustment is not only justified but may also be required to
meet the requested utility. The decision involves finding a new
set of modes for all resources and transitioning between these
modes. To accommodate for the costs of this mode change, we
propose to introduce so-called transition modes. The switch
from or to such a transition mode can then come for free
and the same framework be used to account for these mode
switching costs and in particular for the computation required
to determine the new configuration. Figure 11 illustrates this
mode change and the transition modes I — I] for the abstract
resource R; and 11— IV for R;. The payoff point is the time,
when the gain of operating the resources R; and I; in the
new mode compensates the energy overhead induced by the
reconfiguration

V. RELATED WORK

We believe this paper to be the first to use Energy/Utility to
govern multi-level and multi-resource scheduling as a holistic
design principle.

We comment on some related research fields.

Energy/Utility: Doug Jensen’s seminal work on Time/Util-
ity functions and his frequent lectures in Dresden were one
source of our work and certainly an inspiration for the choice
of the name.

However, Jensen’s time/utility and our Energy/Utility have
significantly different semantics, in his own words: “Jensen’s
time/utility functions (or TUFs) allow the semantics of soft
time constraints to be precisely specified. A TUF, which
is a generalization of the deadline constraint, specifies the
utility to the system resulting from the completion of an
activity as a function of its completion time.” [11]. In contrast,
Energy/Utility specifies the utility that is generated if energy
is used to activate resources. Scheduling decisions induced by
TUFs — to our understanding — are used for CPU resources
and in Ravindran et al. [11] adapted to “CPU scheduling
for reduced and bounded system-level energy consumption”.
Wu et al. [12] introduce a fixed utility-energy ratio (UER) to
translate execution time into an energy demand. Analogously

to TUFs, spending energy for a task which completes late
results in degraded utility.

The approach advocated in this paper is also related to
optimization approaches in model-driven software engineering.
For example Gotz et al. [13] specify resource mappings for
components in contracts and employ integer linear program-
ming (ILP) as an optimization strategy for selecting between
alternative implementations of the same interface. In their ILP
formulation, alternatives appear as two-value integers denoting
whether or not a particular implementation is selected. We are
optimistic that we can reuse their or similar work for what
we call global optimization in this paper. However, we are
convinced that a practically useful design approach requires
that a majority of decisions to select a suitable combination
must be local.

Multi-Level Scheduling:

Multi-level scheduling has found tremendous interest in
real-time scheduling theory. Abstractly speaking, it addresses
the possibility of scheduling schedulers. As a practical ex-
ample, CPUs may be scheduled by a hypervisor for virtual
machines and each guest running on top of the hypervisor
contains schedulers for the virtualized CPUs.

Practically oriented works include proportional-share
schedulers for virtual machines, for example in the XEN
operating system [14]. Lackorzynski et al. [15] make the point
that proportional-share schedulers do not work in systems with
mixed-criticality task sets spread over more than one virtual
machine. They postulate that in some cases resource requests
have to be annotated by higher-level resources such that low-
level schedulers can consider their criticality.

In comparison to these contributions, multi-level as used
in this paper refers to a much simpler hierarchy, namely a
hierarchy of resource levels translating between higher-level
performance and lower-level demands.

Multi-Resource scheduling:

A large portion of classical scheduling work concentrates
on scheduling for a single type of resource, namely an active
resource like CPU cycles. Relatively little is done for the com-
bined, holistic management of various resources. Examples
include Linux-RK aka resource kernels [16], Redline [17] and
DROPS [18]. Resource Containers by Banga et al. [19] offer
an elegant mechanism for attributing usage to the applications
on whose behalf resources are accessed.

These systems consider resources that are instantly avail-
able but scarce. Our approach considers energy as prime
resource to activate latent resources.

Energy-Aware Scheduling:

A further area, which has found tremendous interest in
the scheduling theory community, is energy-aware scheduling.
Examples includes various forms of frequency- and voltage-
scaling based algorithms that describe energy as factor that
may vary properties of an active resource(CPU).

In contrast, this paper considers energy as the prime
resource to enable various resources.

VI. OUTLOOK

In this paper we have shown a promising approach to full-
system energy optimization using our Energy/Utility concept.
We have further discussed some open challenges that remain
in the focus of our future work.

So far, we have investigated Energy/Utility only in the
context of existing system structures. But, the model presented
in Sections I and IV reveals its true potential when applied to
analyze the behavior of future system.

For example, in the collab-
orative research center (CRC)
912 — HAEC, we are currently
targeting a highly adaptive
hardware architecture called
HAEC-Box with many-core
chip stacks connected on-board
via optical and via off-board
wireless links. Figure 12 shows
the configuration for 3 x 3 chip-
stack boards. Antennas in both
directions of the board are tar-
geted for 100 Gbit/s interfer-
ence free links to all chipstacks
on the opposing boards. Be-
sides alternative routes via the
optical link and the radio beam
of neighboring chip stacks, beams can also be combined
for increased bandwidth at the cost of interference-induced
package losses, giving rise to further adaptation possibilities.
We plan to extend our Energy/Utility framework to investigate
communication aware scheduling and placement decisions as
well as link scheduling algorithms to tune the energy spent for
communication to the HAEC-Box’s application needs.

Fig. 12. Chipstacks and commu-
nication links of HAEC-Box

ACKNOWLEDGMENTS

This work is in part funded by the DFG through the
collaborative research center “Highly Adaptive Energy Effi-
cient Systems” (HAEC) and through the cluster of excellence
“Center for Advancing Electronics Dresden” and by the EU
and the state Saxony through the ESF young researcher group
“IMData”.

REFERENCES

[1] G. Wang and A. R. B. andi Chris Gniady, “Mitigating disk energy
management delays by exploiting peer memory,” in MASCOTS. 1EEE,
2009, pp. 1-4.

[2] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low
latency in the data center,” in Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation, ser. NSDI’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 19-19. [Online].
Available: http://dl.acm.org/citation.cfm?id=2228298.2228324

[3] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” Computers, IEEE Transac-
tions on, vol. 39, no. 9, pp. 1175-1185, 1990.

[4] M. Héhnel, B. Dobel, M. Volp, and H. Hirtig, “eBond: energy
saving in heterogeneous R.A.LN,” in Proceedings of the fourth
international conference on Future energy systems, ser. e-Energy ’13.
New York, NY, USA: ACM, 2013, pp. 193-202. [Online]. Available:
http://doi.acm.org/10.1145/2487166.2487188

[5]

[7]

[8]

[9]

[10]

(11]

[12]

D. C. Snowdon, “OS-Level power management,” PhD Thesis, School of
Computer Science and Engineering, University of NSW, Sydney 2052,
Australia, Mar 2010, available from publications page at http://ssrg.
nicta.com.au/.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang,
“Fine-grained power modeling for smartphones using system call
tracing,” in Proceedings of the sixth conference on Computer systems,
ser. EuroSys 11. New York, NY, USA: ACM, 2011, pp. 153-168.
[Online]. Available: http://doi.acm.org/10.1145/1966445.1966460

Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Yli-
Jadski, “Practical power modeling of data transmission over 802.11g
for wireless applications,” in Proceedings of the Ist International
Conference on Energy-Efficient Computing and Networking, ser.
e-Energy 10. New York, NY, USA: ACM, 2010, pp. 75-84. [Online].
Available: http://doi.acm.org/10.1145/1791314.1791326

M. Hihnel, M. Volp, B. Dobel, and H. Hirtig, “The potential of
energy/utility-accrual scheduling,” in Advanced Information Networking
and Applications Workshops (WAINA), 2013 27th International Confer-
ence on, 2013, pp. 1636-1641.

A. Hameurlain and F. Morvan, “Evolution of query optimization meth-
ods,” T. Large-Scale Data- and Knowledge-Centered Systems, vol. 1,
pp. 211-242, 2009.

A. Hylick, R. Sohan, A. Rice, and B. Jones, “An analysis of hard drive
energy consumption,” in MASCOTS, E. L. Miller and C. L. Williamson,
Eds. IEEE Computer Society, 2008, pp. 103—-112.

B. Ravindran, E. D. Jensen, and P. Li, “On recent advances in
time/utility function real-time scheduling and resource management,”
in International Symposium on Object-Oriented Real-Time Distributed
Computing, May 2005.

H. Wu, B. Ravindran, E. D. Jensen, and P. Li, “Energy-efficient, utility
accrual scheduling under resource constraints for mobile embedded
systems,” ACM Transactions on Embedded Computing Systems, vol. 5,
no. 3, pp. 513-542, Aug. 2006.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

S. Gotz, C. Wilke, S. Richly, G. Piischel, and U. ABmann, “Model-
driven self-optimization using integer linear programming and pseudo-
boolean optimization,” in Fifth International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE), 2013, to
appear.

S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards Real-time Hi-
erarchical Scheduling in Xen,” in Proceedings of the 11th International
Conference on Embedded Software, ser. EMSOFT, Oct. 2011.

A. Lackorzynski, A. Warg, M. Volp, and H. Hirtig, “Flattening
Hierarchical Scheduling,” in Proceedings of the tenth ACM international
conference on Embedded software, ser. EMSOFT ’12, Tampere,
Finland, 2012, pp. 93-102. [Online]. Available: http://doi.acm.org/10.
1145/2380356.2380376

S. Oikawa and R. Rajkumar, “Linux/rk: A portable resource kernel in
linux,” in In 19th IEEE Real-Time Systems Sumposium, 1998.

T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,
“Redline: first class support for interactivity in commodity operating
systems,” in Proceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI'08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 73-86. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855747

H. Hirtig, R. Baumgartl, M. Borriss, C.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schonberg, and J. Wolter, “Drops: Os support
for distributed multimedia applications,” in Proceedings of the 8th ACM
SIGOPS European workshop on Support for composing distributed
applications, ser. EW 8. New York, NY, USA: ACM, 1998, pp. 203—
209. [Online]. Available: http://doi.acm.org/10.1145/319195.319226

G. Banga, P. Druschel, and J. C. Mogul, “Resource containers:
a new facility for resource management in server systems,’
in Proceedings of the third symposium on Operating systems
design and implementation, ser. OSDI ’99. Berkeley, CA, USA:
USENIX Association, 1999, pp. 45-58. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=296806.296810

