
Statically Checking Confidentiality of Shared-Memory Programs
with Dynamic Labels

Marcus Völp
Technische Universität Dresden

Department of Computer Science
01062 Dresden, Germany

voelp@os.inf.tu-dresden.de

Abstract

At WITS 2005, Warnier et al. published an algorithm to
statically check confidentiality of programs with dynamic
labels. Unlike prior approaches, their method allows for
temporary breaches of confidentiality. However, they share
the commonly made assumption that programs run entirely
in private memory. Thus, interaction with and observation
of the checked program is restricted to program start and
termination respectively.

This paper extends Warnier’s approach in two fun-
damental aspects: shared memory and synchronisation.
Through shared memory other programs may observe and
interact with the checked program at memory-access granu-
larity. Synchronisation renders parts of the shared memory
inaccessible to those programs which adhere to the locking
policy. We provide a mechanically-checked soundness proof
and show the effectiveness of a countermeasure to the AES
cache side-channel attack.

1. Introduction

Over the past years, several language-based approaches
have been proposed to statically check confidentiality (for
an overview see Sabelfeld et al. [11]). However, most of
these assume that programs run entirely in private memory.

One such approach is dynamic labelling by Warnier et
al. [5]. Dynamic labelling starts from an initial mapping
lab0 : A → L, which assigns each variable (at address
a ∈ A) a security level l ∈ L. The security levels are or-
dered in the lattice (L,≤) with greatest lower bound u and
least upper bound t. Each such level represents the secrecy
of information in this variable, respectively, for output vari-

0

0-7695-3102-4/08 $25.00 c©2008 IEEE
DOI 10.1109/ARES.2008.56

ables, the clearance of observers of this variable. By elimi-
nating the concrete values, maintaining only these security
levels, dynamic labelling abstractly interprets the checked
program (in the following called p) with the help of the la-
belling functions LabStat and LabExpr. Confidentiality
is validated by checking whether security levels in the final
mapping are decreasing.

Introducing shared memory and an abstract form of con-
currency control on this memory, we extend Warnier’s al-
gorithm to check:

1. Confidentiality of inputs to and secrets in the checked
shared-memory program.

2. Confidentiality of data placed by other programs in
shared memory. In particular, we check confidential-
ity of information that combines previously learned se-
crets.

Before detailing our approach we explain Warnier’s al-
gorithm in more detail and briefly sketch a real-life sce-
nario: a microhypervisor-based crypto server. Crucial parts
of this scenario we will use to illustrate the applicability of
our approach. In particular, we verify the effectiveness of a
known countermeasure [8] to the AES cache side-channel
attack. A result that previous language-based approaches,
every flow-insensitive type system [4] included, cannot es-
tablish because it involves a temporal breach of confiden-
tiality in the caches.

1.1. Dynamic Labelling

s
[[p]]−−−−→ s′y y

lab
LabStat(p)−−−−−−→ lab′

VMM VMM VMM VMM

channel

VM VMVM network VM

A B C Dcode

Crypto serverLoader

Microhypervisor

Figure 1. Set of interconnected VMs and the
shared memory buffers established with the
crypto server.

More precisely, checking confidentiality of a program p
using abstract interpretation works as follows (the above di-
agram shows this procedure): First, the relevant parts from
the concrete state s are extracted. In the case of checking
confidentiality, we extract only the security level of infor-
mation stored in the memory variables in s. Thus we obtain
the mapping lab. Then, for each state transition [[p]] of the
original program p we execute a corresponding transition
on the abstract state. The latter is described by the labelling
function for the respective statement: LabStat(p).

To illustrate this procedure, let us consider the simple
example l := 4 + h with respective security levels low and
high .

The initial abstract state of these variables is: l : low , h :
high . The abstract result state we obtain by application
of the respective labelling function LabStat(l := (4 + h))
for this statement. This function updates the mapping lab
at position l with the security level of the result of the
subexpression (h + 4), which is obtained by subsequent
application of labelling functions for the subexpressions:
LabExpr(4), LabExpr(h), and LabExpr(h + 4). These
specific functions do not modify the abstract state but return
as result security level: low , high and high = low t high
respectively. A comparisson of this state (l : high, h : high)
with the initial state indicates an illegal information flow
because the level of l is not decreasing (or equal). Thus in-
formation for which an observer of l is not cleared has been
stored in l. The program is not confidential.

Before we show how to extend this algorithm for shared
memory programs, we briefly sketch a real-life scenario.

1.2. Crypto Server

A crypto server securely interconnects virtual machines
(VMs) over a public network with their counterparts on re-
mote nodes. The server protects the keys used, for example,
in the AES encryption [8]. It receives plain-text messages

in memory buffers that are shared with the VMs and re-
lays the encrypted messages via a shared-memory buffer to
a dedicated network VM. Legitimate communication chan-
nels may connect certain VMs bypassing the crypto server.

Figure 1 illustrates this scenario, which is for ex-
ample envisaged for the µ-Sina Virtual Workstation, a
microkernel-based version of the Sina Virtual Worksta-
tion [12]. A similar scenario we obtain by offloading
crypto-functionality in a heterogeneous multi-core envi-
ronment. Application fields include secure VPNs [2]
and secure banking applications [3]. Both minimise
the trusted computing base through untrusted legacy-
components reuse.

Compared to a monolithic operating system (OS) solu-
tion, the main difference is that here crucial OS functional-
ity is implemented by application-level programs.

The important points illustrated are:

• All memory is, in fact, shared with other programs (at
least with the OS). Some of these programs must be
trusted to preserve p’s confidentiality.

• Private memory (i.e., exclusively used parts of mem-
ory for which confidentiality is preserved) is a guaran-
tee given by these trusted programs.

• Widely unknown programs (e.g., the proprietary guest-
OSs inside the VMs) share memory with p.

1.3. Synopsis

The next section introduces our approach. We discuss
the extensions to Warnier’s algorithm in Section 3 and the
AES case study in Section 4. Sections 5 and 6 relate our
approach the work of others and conclude this paper.

Throughout this paper, we abstract from the PVS [9] spe-
cific syntax. The complete PVS sources for this paper are
available [15].

2. Shared Memory

Although private memory is in fact shared, we will
model it as exclusively owned by p and assume this guar-
antee is established separately for the servers providing this
memory.

Programs executing in parallel to p may obtain read or
read-write privileges to parts of p’s memory. In addition,
these other programs may have access to private memory
and to a set of authorised communication channels bypass-
ing p. Because we cannot generally trust these programs
to protect the confidentiality of information, we have to as-
sume that they will exploit all given means to leak informa-
tion. In Section 3.2, we lift this restriction for programs,
whose confidentiality has been established.

Assuming properly configured channels (e.g., confined
subsystems with the legitimate exception of communication
with p [13]), our concern is to establish:

1. that p does not leak internal information, and

2. that p does not forward information between these oth-
erwise confined subsystems.

To capture this behaviour more formally, let T be the set
of other programs. For all t ∈ T , let lt be t’s clearance. Let
A be the set of addresses that are accessible by p.

Define for each t ∈ T the set of addresses that are
read-only shared (ROt ⊆ A) respectively read-write shared
(RWt ⊆ A) with p. Furthermore, define the relation
canSend ⊆ T × T denoting the set of unidirectional chan-
nels.

These sets are properly configured (i.e., there are no
unauthorised channels bypassing p through which other
programs may communicate) if the following property
holds:

Definition 1 Proper configuration

∀t, t′ ∈ T, a ∈ A.
a ∈ RWt ∨ a ∈ ROt′ ∪RWt′ ∨ tcanSendt′ ⇒ lt ≤ lt′

The restrictions on transitive channels follow from the tran-
sitivity of ≤.

Thus, in a properly configured system any unauthorised
information flow must involve p.

To ease the further discussion, we combine these results
into t-independent forms:

a ∈ readable? ⇔ ∃t ∈ T. a ∈ ROt ∧ ∀t′ ∈ T. a /∈ RWt′

a ∈ writable? ⇔ ∃t ∈ T. a ∈ RWt

We combine both shared-memory channels and other
communication channels into the relation on addresses:
effects?. Two addresses are related (i.e., a effects? a′) if
a program t′ ∈ T may write data to a′ that another program
t ∈ T may eventually read from a. This is precisely the
case if a ∈ ROt and a′ ∈ RWt′ and if there is a chain of
programs t = t0, t1, ..., tn = t′ connected through commu-
nication channels (i.e., ti canSend ti+1) or through shared-
memory channels (i.e., ∃ac ∈ RWti ∩ROti+1).

Using this information we can now determine the secu-
rity levels of shared-memory variables a in the initial map-
ping lab0. We set lab0(a) := u

t∈ω
lt. This is the smallest

(greatest lower bound) security level of all other programs
t ∈ ω ⊆ T that can read information from a directly or in-
directly through a chain of other programs. Thus, any infor-
mation with security level smaller than lab0(a) can safely
be written to a.

2.1. Learned Secrets

So far, we have investigated the channels (shared mem-
ory and other communication channels) through which in-
formation may be leaked immediately. Deferred leakage
arises form the fact that other programs may remember se-
crets in their private memory.

Consider the following simple program:

p ::= sh1 := h; sh1 := l; sh2 := sh1

and two other programs q1 and q2 with RWqi
= shi and

ROqi = ∅. Assume h contains information which must not
leak to q2.

The only possible way for q1 to leak data to q2 is by
modifying the shared variable sh1 immediately before p ex-
ecutes sh2 := sh1. Lacking internal memory, only values
derived from the data in variable l could be leaked since
sh1 = l prior to sh2 := sh1. p would be confiden-
tial with respect to the information in h. Using internal
memory, however, q1 may store the information in h af-
ter sh1 := h and leak a derived value via sh1 immediately
before sh2 := sh1.

As illustrated in the introductory scenario we do not
know in general which code is executed by the programs
t ∈ T . More important, we do not know how these
programs derive the values from the secrets they learned
through shared variables.

Therefore, we have to consider all possible values that
may affect p’s control and data flows. Let it be an input
trace of the type N → writable? → Byte. We introduce IT
as the shortcut for this type. Every input trace contains for
each program step (∈ N) the values of the writable shared-
memory variables prior to p resuming its computation.

These values may possibly have been modified by other
programs executing concurrently to p.

Similarly, we record the security levels of these values in
a corresponding trace lt : N → writable? → L (which we
abbreviate as LT).

While it is possible to quantify over all these traces
when verifying some property of p in a theorem prover
(e.g., soundness of our algorithm), it is far from practi-
cal to consider security-level traces when statically check-
ing p 1. To overcome this problem, we maintain the addi-
tional mapping sec : writable? → L in the labelling func-
tions. LabStat(p)(n, ...).sec(a′) denotes the highest secu-
rity level of secrets learned during the first n steps of p from
addresses a with a effects? a′. Consequently, in all realistic
input traces, lt(n)(a′) ≤ LabStat(p)(n, ...).sec(a′) holds
for the security level of an input to variable a′ in step n.
Statically checking confidentiality remains feasible because
sec can be evolved stepwise.

1Note that abstract interpretation abstracts from the concrete value
traces anyway.

2.2. Concurrency Control

Synchronisation primitives restrict when variables can
be accessed. Consequently, while a program holds a lock,
others cannot read or modify intermediate values in the
lock-protected variables. This is provided that all programs
adhere to the locking strategy.

In general, not all programs are affected by all
concurrency-control primitives. Erroneous or malicious
programs may access variables without first acquiring the
protecting lock, programs on other CPUs remain unaffected
from locally disabled interrupts.

To uniformly handle synchronisation schemes, we ab-
stract from the concrete concurrency-control mechanism.
Let local? ⊆ A be the set of addresses that can only
be accessed by those other programs that adhere to the
concurrency-control mechanism. Thus local? variables be-
come inaccessible while p holds the lock. However, before
p disables the concurrency-control mechanism, we have to
ensure that secrets temporarily stored in locked variables
have been removed. This is done by maintaining the dy-
namic security levels of lock-protected variables and check-
ing them for decreasingness whenever the lock is released.

We model the program steps during which concurrency
control is active as a function locked? : N → bool . For
reasons of simplicity, we consider only equally-locked pro-
grams in which this function only depends on the number
n ∈ N of previously executed instructions 2. Checking
confidentiality for delay-inequivalent programs is kept for
future work.

Because most programs do not rely on being pre-
emptible, we can transform most programs into equally-
locked programs by adding additional skip statements.

Example 1 For example, the program

p ::= if then else(e0)(↑ v := e1 ↓)(skip)

can be transformed into the equally-locked program

p′ ::= if then else(e0)(↑ v := e1 ↓)(↑ skip|v:=e1| ↓)

where |v := e1| is the number of steps needed to execute
v := e1 and ↑ (respectively ↓) denote enabling (and dis-
abling) of the concurrency-control mechanism.

This transformation is however, not generally applicable as
some programs rely on certain preemption points.

A preemption-aware spin lock [6], for example, disables
preemptions (e.g., the processor interrupts) when the lock is
granted to a program and while the latter executes the criti-
cal section. During the spinning phase of the lock, preemp-
tions are enabled to minimise interrupt-handling latencies.

2We adjust the n of instructions following a conditional to the maxi-
mum n of the respective branches.

Because the amount of spinning that is required to get the
lock is state dependent, an equally-locked implementation
has to disable preemptions during the complete spinning
phase, which in turn has to be elongated to a worst-case
bound. This, however, jeopardises the interrupt latency and
the reason why preemption-aware locks have been used in
the first place.

3. Dynamic Labelling for
Shared Memory Programs

We define the dynamic-labelling rules for a simple im-
perative programming language P with side effects.

Definition 2 The syntax of P is given by

Expressions e ::= e1 ◦ e2 | v | c | s2e(s)
Statements s ::= v := e | s1; s2 | skip | e2s(e) |

if then else(e)(s1)(s2)

v ∈ A ranges over variables, c over constants. ◦ stands for
the common total binary operators +,−,==, . . . that are
available, e.g., in C++. The side effects in this language
origin from s2e, which allows a statement to appear in ex-
pressions.

while has been deliberately excluded from this language
because prior results (e.g., [14]) indicate that in a concur-
rent setting, while may not operate on secret data. A pri-
ori bounded while loops we unroll to if then else se-
quences.

Similarly, we translate accesses into an array of length n
into sequences of if then else. For example the access
a[i] := e we write as the sequence:

if then else(i == 0)(v0 := e)(
if then else(i == 1)(v1 := e)(...
if then else(i == n− 1)(vn−1 := e)(skip)...))

Here vi is the variable corresponding to the array element
a[i].

Statements in P are programs. The semantics of a state-
ment has the type M → M , expressions produce an addi-
tional result value. M : A → Byte is the byte-wise ac-
cessed memory. Memory accesses have to be byte wise and
larger types have to be combined from their byte-wise rep-
resentation in memory because other programs may observe
updates and modify stored data in shared memory with byte
granularity. We do not give a formal semantics of P , since
any standard operational semantics with byte-wise memory
accesses will suffice for our purpose. For a memory m ∈ M
and an instruction count n let [[p]]n(m, it) be the result of
executing the first n steps of the program p stopping imme-
diately before the n + 1‘st step. The input trace it is passed

to the skip statement, which is executed in between any
two steps of p to apply the effects of other programs. More
precisely, skip updates the writable variables with the val-
ues obtained from the input trace for the current instruction
count.

In our formal definition of confidentiality we deviate
from Warnier and use instead the common l-similarity
based definition.

Definition 3 Two memories m,m′ ∈ M are observation-
ally indistinguishable by an l-classified observer if they dif-
fer only in higher classified variables (i.e., if m ∼l,lab m′

holds):

∼L×[A→L] ⊆ M ×M :=
{(x, y) ∈ M ×M | ∀a : A. lab(a) ≤ l ⇒ x(a) = y(a)}

We extend l-similarity on memories to l-similarity on input
traces in the usual way.

We can now formally define our confidentiality property.
In this definition we use the notation∼l,lab|S to indicate that
l-similarity must hold only for the addresses in the set S.

Definition 4 A program p with initial variable-to-security-
level mapping lab0 and security-level trace lt is confidential
if the following predicate holds:

confidential?(p, lab0 , lt) ⇔
∀l : L,m,m′ ∈ M, it, it′ ∈ IT,n : N.

m ∼l,lab0 m′ ∧ it ∼l,lt it′ ⇒
[[p]]n(m, it) ∼l,lab0 |readable?\local?

[[p]]n(m′, it′)
if locked?(n)

[[p]]n(m, it) ∼l,lab0 |readable? [[p]]n(m′, it′)
otherwise

Confidentiality states that executing p from two mem-
ories and with two input traces, which differ only in high
variables (� l), produces the same l-observable outputs af-
ter any number of steps n. Hereby, lock protected outputs
can only be seen if p does not hold the lock.

3.1. Labelling Functions

Our labelling functions match Warnier’s with two ex-
ceptions. Each labelling function takes a maximum in-
struction count n ∈ N up to which the statement (or ex-
pression) is evaluated. The second exception is the rule
LabStat(skip), in which we maintain the learned secrets
sec and in which the effect of other programs is applied to
lab according to the trace lt. The signature of the labelling
functions thus change to:

LabStat(s) : N× State × L× LT → State
LabExpr(e) : N× State × L× LT → State × L

aw := 5

aw

a

a’

a’’

skip

seclab lab sec lab

st st st
t+1

t
t−1

Figure 2. Update of the mappings lab and sec
in the labelling function LabStat(skip).

The security level L in the domain of these functions is the
security level lenv of the program counter. Like in Warnier,
this parameter is used to identify indirect flows in condi-
tional statements. The record State combines the map-
pings lab and sec with a current instruction count ic. For
st ∈ State, we write st.sec to access the record field sec
and st \ (sec) := sec′ for the partial update of this field
with sec′.

Let us here concentrate on the labelling function
LabStat(skip). The remaining rules can be found in the
appendix of this paper. They are straight forward extensions
of those in [5].

In between any two steps [[p]]n(m, it) and [[p]]n+1(m, it)
writable and not currently lock-protected shared-memory
variables are updated according to the information in it.
The corresponding labelling function for this update is:

LabStat(skip)(n, st, lenv , lt) :=
st\ (sec) := λ a ∈ writable?(n).⊔

(st.lab, readable?(n) ∪ {a′|a′ effects? a}) t⊔
(st.sec, readable?(n) ∪ {a′|a′ effects? a}) t

st.sec(a),
(lab) := λ a ∈ A.{

st.lab(a) t lt(st.ic)(a) ifa ∈ writable?(n)
st.lab(a) otherwise,

(ic) := st.ic + 1

with readable?(n) := readable? \
{

local? if locked?(n)
∅ otherwise

and writable?(n) respectively. We combine the security
levels of those variables from which the information origins
a′ effect?... with t. The operand

⊔
(lab, S) lifts t to the

set of security levels obtained by evaluating elements a ∈ S
of the set S ⊆ A in lab. Figure 2 illustrates the updates
performed in LabStat(skip) graphically. The security
levels of variables from which the inbound arrows origin
are combined using t.

Following in principle Warnier’s algorithm, we check in
each intermediate state whether the then visible (i.e., not

lock protected) variables in shared memory have a decreas-
ing security level compared to the level in lab0 . Decreas-
ing security levels mean that during those points at which
shared-memory variables are observable only information
that is cleared (according to lab0) for the observers of these
variables is stored.

More formally the predicate decreasing? is defined as:

Definition 5 Decreasing

decreasing?(p, st0, lenv , lt) :=
∀n ∈ N.∀a ∈ A.readable?(n)(a) ⇒
LabStat(p)(n, st0, lenv , lt).lab(a) ≤ st0.lab(a)

3.2. Trusted Servers

So far we assumed that no other program (t ∈ T) is
trusted not to leak confidential information. Our algorithm,
however, establishes precisely this form of trust for the pro-
gram p. It is therefore desirable to investigate how to con-
nect checked programs through shared memory.

For this purpose, we exploit the special role of the lat-
tice (⊆, P (V ar)) over the power set of program variables.
As pointed out by Sands et al. [4], checking programs with
this lattice returns precisely how information flows between
program variables. Because information may be returned
to p via shared-memory variables, we need to connect all
writable? variables to external repeaters. An external re-
peater reads from precisely one variable and returns previ-
ously read values (and their security levels) into the checked
program. In the result mapping lab′ of this program, each
writable variable gets a security level corresponding to the
set of variables from which information flows into this out-
put variable. Thus, when building the relation effects? for p
we can now consider these precise channels rather than the
pessimistic assumptions presented above.

3.3. Soundness

Soundness of our labelling algorithm, that is, programs
our algorithm determines as being confidential are confi-
dential, follows from the following main theorem with the
help of an additional proposition.

Theorem 1 Soundness

good?(p) ∧ decreasing?(p, st0, lenv , lt) ⇒
confidential?(p, lab0, lt)

where st0 combines lab0, sec0 and an initial value for ic.

For statements p, good? is defined as:

Definition 6 Goodness

good?(p) ⇔ ∀m,m′ ∈ M, it, it′ ∈ IT, lt ∈ LT.
∀lenv , l ∈ L, st ∈ State, n ∈ N.

(m ∼l,st.lab m′ ∧ it ∼l,lt it′ ⇒
[[p]]n(m, it) ∼l,LabStat(p)(n,st,lenv ,lt).lab [[p]]n(m′, it′)) ∧

(∀a ∈ A.¬lenv ≤ LabStat(p)(n, st, lenv , lt).lab(a) ⇒
[[p]]n(m, it)(a) = [[skip|p|]]n(m, it)(a))

the definition for expressions is similar.

The first conditional of good? means that execution of p
maintains in general the l-similarity relation between states
but with dynamically changing labels. In the second con-
ditional good? differs fundamentally from the respective
predicate in Warnier’s work. The latter assumed that lenv �
lab(a) ⇒ [[s]](m)(a) = m(a). This is no longer the case
as other programs may modify shared variables. Thus, we
had to replace this conditional as shown above. A further
difference is our restriction of the predicate decreasing? to
readable?(n) variables as shown in Definition 5.

The main theorem states that, provided all labelling func-
tions are good?, programs whose security levels are de-
creasing are confidential. The additional proposition (not
shown here, see [15]) establishes good? for the labelling
functions of statements and expressions in P . The proof of
this proposition is straight forward by structural induction
over the statements and expressions of P .

In the following we sketch the proof of the main theorem.
The proof that our labelling algorithm is sound (Theorem 1)
follows closely the soundness proof in Warnier et al. The
precise proof is included in [15]. Here we only sketch the
basic steps:

Proof

Chose l ∈ L, m,m′ ∈ M, it, it′ ∈ IT, lt ∈ LT, st0 ∈
State such that

1. st0.lab = lab0 , st0.sec = sec0 ,

2. both the memory states and the input traces are l-
similar: m ∼l,lab0 m′ and it ∼l,lt it′,

3. the program p terminates in both memories before step
max, and

4. in some step n ≤ max holds [[p]]n(m, it)(a) 6=
[[p]]n(m′, it′)(a) for some address a that is read-
able by another program in this step (i.e, for which
readable?(n)(a)).

Then l should at most be st0.lab(a) to satisfy
confidentiality (i.e., l ≤ lab0 (a)). Goodness
gives us l ≤ LabStat(p)(n, st0, lenv , lt).lab(a)
where we instantiate lenv with the initial program

a a’ c(a)

c(a’) = c(a)

Figure 3. Processor caches are modelled as
a disjoint region of shared memory.

counter level. From decreasing? we know that
LabStat(p)(n, st0, lenv , lt).lab(a) ≤ lab0 (a). Tran-
sitivity of ≤ leads to the desired result l ≤ lab0 (a).
q.e.d.

4. Case Study : AES

To illustrate the feasibility of our algorithm we prove a
countermeasure to the AES cache side-channel attack to be
effective.

A central part of AES involves indexing with the encryp-
tion key into pre-computed lookup tables. Osvik et al. [8]
describes how to deduce the encryption key by observing
these access patterns in the processor caches. A known
countermeasure to this attack is to unify the cache pattern
of this algorithm by accessing these tables with cachelines
strides after the AES lookup.

We argue that cache memory can be modelled as shared
memory and thus that our algorithm can be used to check
confidentiality of this countermeasure. The process is as
illustrated in Section 1.1 except that we evolve the labelling
functions stepwise and that we check decreasingness after
each step.

Let a be some memory address, c(a) the cache set of
a. Other programs may observe an access to a, though not
necessarily the value of a, by checking whether conflicting
addresses a′ (with c(a′) = c(a)) have been evicted from
the cache. We model caches as a separate memory with
addresses distinguished from the variables in the programs
p and t ∈ T . A cache is shared among programs on the
same CPU. Each memory access we transform into an ac-
cess to the normal variables a ∈ A followed by a write
access which stores a constant to c(a). The constant leaks
the program-counter level lenv though not the value at a.
Figure 3 illustrates this transformation.

Simplified to the part necessary to illustrate how our al-
gorithm protects confidentiality, the AES encryption pro-
gram is

p ::=↑ a[key]; a[0]; ...; a[n] ↓

where a[0], ..., a[n] are the cacheline-stride accesses. Pre-
emptions are disabled during this sequence (as indicated by
↑, ↓). All programs on the same CPU automatically adhere

to this locking scheme because the operating-system sched-
uler does not execute other programs when preemptions are
disabled.

The array access a[key] is unrolled to a sequence of
if then else(i == key)(a[i], c(a[i]) := 1)(...), thus
lenv and consequently lab(c(a[key])) assumes the key’s se-
curity level. The cache’s security levels are no longer de-
creasing. However, because this memory is lock protected
and because the stride accesses reduce lab(c(a[i])) to a key
independent security level, this temporal breach of confi-
dentiality is repaired.

Note that we did not conclude that the AES encryption
preserves confidentiality of the plain text. This requires an
explicit downgrading of the ciphertext before its memory
location becomes observable.

5. Related Work

This work directly builds on Warnier et al. [5].
Research on confidentiality goes back to the seventies

to the work of the Dennings [1]. For a recent overview
on the approaches and remaining issues in language-based
information-flow security see Sabelfeld and Myers [11].

Others have investigated the impact of OS primitives
on information flow including synchronisation primitives
Sabelfeld [10], though not the possibility to use lock
protected variables for temporal breaches of confidential-
ity. Volpano et al. [14] introduces an atomic construct
with effects similar to our concurrency-control mechanism.
O’Neill et al. [7] introduces IO channels which can be used
to emulate shared memory. Although the above works
achieve similar results, they all check confidentiality with
a flow-insensitive security type system. Thus, they cannot
tolerate temporary breaches of confidentiality. A feature we
showed was required to verify confidentiality of the AES
countermeasure.

. Acknowledgements

The author of this work was supported by the European
Commission through PASR grant 104600. Further thanks
go to Intel Corp. for their support and to the anonymous
reviewers for their comments.

6. Conclusions

In this work, we extended Warnier’s dynamic la-
belling algorithm to statically check confidentiality for pro-
grams that interact through shared memory with other
concurrently-executing programs. Our extensions are com-
pletely formalised and proved sound in the theorem prover
PVS.

The extended algorithm not only detects whether secrets
initially in the checked program are leaked, but also whether
this program forwards secrets from other programs. These
secrets can be internal or learned during the course of exe-
cution.

We applied our algorithm to a central part of the AES
encryption algorithm and proved confidentiality for a coun-
termeasure to a cache side-channel attack on the encryp-
tion key. This prove was only possible because dynamic
labelling allows confidentiality to be temporarily breached.

References

[1] D. Denning. A lattice model of secure information flow. vol-
ume 19, pages 236–243, New York, NY, USA, 1976. ACM
Press.

[2] C. Helmuth, A. Warg, and N. Feske. Mikro-SINA—Hands-
on Experiences with the Nizza Security Architecture. In
Proceedings of the D.A.CH Security 2005, Darmstadt, Ger-
many, Mar. 2005.

[3] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. Re-
ducing TCB size by using untrusted components — small
kernels versus virtual-machine monitors. In Proceedings of
the Eleventh ACM SIGOPS European Workshop, Leuven,
Belgium, Sept. 2004.

[4] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 79–90, New York, NY, USA, 2006. ACM
Press.

[5] B. Jacobs, W. Pieters, and M. Warnier. Statically checking
confidentiality via dynamic labels. In WITS ’05: Proceed-
ings of the 2005 workshop on Issues in the theory of security,
pages 50–56, New York, NY, USA, 2005. ACM Press.

[6] L. Kontothanassis, R. Wisniewski, and M. Scott. Scheduler
Conscious Synchronization. ACM Transactions on Com-
puter Systems, Feb. 1997.

[7] K. O’Neill, M. Clarkson, and s. Chong. Information-flow se-
curity for interactive programs. In CSFW ’06: Proceedings
of the 19th IEEE workshop on Computer Security Founda-
tions, pages 190–201, Washington, DC, USA, 2006. IEEE
Computer Society.

[8] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: the case of AES. 2005.

[9] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype
verification system. In D. Kapur, editor, 11th International
Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[10] A. Sabelfeld. The impact of synchronisation on secure in-
formation flow in concurrent programs. Lecture Notes in
Computer Science, 2001.

[11] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 2003.

[12] secunet. Sina Virtual Workstation .
http://www.secunet.com/index.php?id=24&L=3.

[13] J. Shapiro. Verifying the EROS Confinement Mechanism.
In IEEE Symposium on Security and Privacy, 2000.

[14] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. In Conference Record
of POPL 98: The 25TH ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, San Diego,
California, pages 355–364, New York, NY, 1998.

[15] M. Völp. Statically Checking Confidentiality of Shared-
Memory Programs with Dynamic Labels - PVS Sources.
(http://os.inf.tu-dresden.de/˜voelp/sources/dyn sm.tgz).

[Labelling Functions]

LabExpr(s2e(s))(n, st, lenv , lt) :=
(LabStat(s)(n, st, lenv , lt),⊥)

LabStat(e2s(e))(n, st, lenv , lt) :=
proj 1(LabExpr(e)(n, st, lenv , lt))

LabExpr(c)(n, st, lenv , lt) := (st, ⊥)

LabExpr(v)(n, st, lenv , lt) :=
Let str = LabStat(skip)(n, st, lenv , lt) In
(str, str.lab(v))

LabStat(s1; s2)(n, st, lenv , lt) :=
Let str = LabStat(s1)(n, st, lenv , lt) In{

LabStat(s2)(n, str, lenv , lt) if str.ic < n
str otherwise

LabStat(v := e)(n, st, lenv , lt) :=
Let (str, lres) = LabExpr(e)(n, st, lenv , lt) In
If str.ic < n Then
Let st′r = LabStat(e2s(e) ; skip)(n, st, lenv , lt) In
st′r \ (lab)(v) := lenv t lres]

Else
(str, lres)

Endif

LabExpr(e1 ◦ e2)(n, st, lenv , lt) :=
Let (str1, lres1) = LabExpr(e1)(n, st, lenv , lt) In
If str1.ic < n Then
Let (str2, lres2) = LabExpr(e2)(n, r1‘1, lenv , lt),
ex = LabStat(e2s(e1 ; e2) ; skip)(n, st, lenv , lt)

In{
(ex, lres1 t lres2) if str2.ic < n
(str2, lres2) otherwise

Else
(str1, lres1)

Endif

LabStat(if then else(e)(s1)(s2))(n, st, lenv , lt) :=
Let (stre, lres) = LabExpr(e)(n, st, lenv , lt),
ex = LabStat(e2s(e); skip)(n, st, lenv , lt) In
If ex.ic < n Then
Let lenv1 = lenv t lres,

str1 = LabStat(s1)(n, ex, lenv1 , lt),
str2 = LabStat(s2)(n, ex, lenv1 , lt)

In
str1 \ (lab) := str1.lab tpointwise str2.lab,

(sec) := str1.sec tpointwise str2.sec,
(ic := max(str1.ic, str2.ic)

Else
ex

Endif

